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Abstract

The subject of the work is to present research aimed at developing an author’s program that
simulates orbital flights. The most important implementation details will also be discussed.

In this paper we will also discuss shortly physical basics of the orbital flight. Then we will move
on to the description of the virtual machine, 3D visualization and a simple physical engine created
especially for the orbital simulation program.

This work also describes the application from the user’s perspective and possible educational or
hobby applications of the created simulator. The article ends with an overview of the improvement
plans and possible future developments of the application.
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Chapter 1

Introduction

Spaceflight and rocketry are of interest to many enthusiasts of all ages. There are many hobby organi-
zations that organize rocket building competitions and demonstrations. One of them is Polish Rocket
Society (Polskie Towarzystwo Rakietowe) which organizes events, courses and actively promotes rock-
etry in the society. In author’s opinion, such activities have a huge impact on increasing the awareness
of critical thinking, creativity and deepening knowledge in the field of exact sciences, including physics
[21].

1.1 Physics simulation controlled by the software

However, regardless of the undoubted advantages of such activities as building and launching amateur
rockets - there are some obvious constrains. One of them is that it is almost impossible to build
an amateur rocket that will fly into space. Therefore, there is a need to create a tool that gives a
substitute for such a flight - the simulation software with credible behaviour of physics.

In addition to physics simulation, that software should also enable precise control of the rocket’s
flight, for example by writing programs that are executed by the simulation of the on-board computer
of some kind. That approach will be compatible with actual on-board computers of spacecraft of the
Apollo-era [13] [14].

In author’s opinion, combining physics simulation with control by a computer program written by
the user is not just fun. It gives another level of understanding of applied computer science. Writing
computer programs for such a specific purpose with certain explicit constraints and applied under
real-world real-time conditions is quite similar to real-time embedded system programming (in cars,
for example).

1.2 Purpose of this work

This paper describes the path that the author has traveled to achieve the goals outlined in the above
section. We will discuss some of the technical research and development that had to be undertaken to
deliver a working prototype.

1.3 Work results

The result of this work is primarily a discussion of the technical and conceptual aspects of the imple-
mentation of the Orbital Flight Simulator (OFS) application. Bearing in mind that OFS must provide
a reasonable and useful set of functions. This article also discusses some of the technical research that
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had to be done to come up with a solution: e.g.: solving the problem of the size of the world. The
working application itself is a side effect of these activities.

1.4 Work organisation

This paper is divided into chapters as follows. Each chapter describes a step or steps taken to implement
the final solution. Some chapters cover more theoretical aspects, while others focus on describing the
exact solution to practical problems during the development process. However, the author tries to
avoid describing things that are not specific to the solution or can be found in the attached literature.

In chapter 2, we will discuss some examples of applications that solve similar problems that we
are trying to solve with our simulator. In addition, we will present selected, well-known examples of
virtual machines and approaches to their implementation.

In chapter 3 based on the discussion in the second chapter, we outline the main ideas and require-
ments for our solution. In this chapter we will present the basic shape of our solution.

From the chapter 4, we begin to build our toolkit by starting with an intuitive description of the
orbital flight problem. In this chapter, we will also derive the equations of motion for our rocket.

The chapter 5 provides a detailed overview of the internal structure and functions of the embedded
virtual machine. We will also discuss the proposed assembly language.

Chapter 6 describes issues related to three-dimensional simulation visualization. The chapter also
contains an overview of the most specific problems related to our solution. More general topics that
can be found in the literature will only be mentioned. We will also explain why the work involves
implementing our own graphics engine instead of using one of the existing solutions.

In the chapter 7, we will discuss our simulation physics engine, which solves rocket equations of
motion in real time. As in the previous chapter, we will discuss the reasons why we decided to create
our own solution instead of using existing ones.

Chapter 8 describes the languages, libraries and other programming tools used to implement the
solution. We will also discuss the reasons for choosing this particular set of tools. In addition, we will
present a short comparative analysis of the available toolkits.

In the chapter 9, we will discuss the user interface and features of the application from the user’s
perspective.

And finally, in the last chapter 10, we summarize the whole work and present the final conclu-
sions. We will also describe the possible development paths of the application in the future and the
educational aspects of the solution.
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Chapter 2

Overview of existing solutions

There are at least two alternative, widely available software solutions to the orbital simulation problem.
Both of them approach this problem in a different way. Orbital Flight Simulator is also unique in its
own way. In this chapter, we will discuss the similarities and differences between this three solutions.

For a better picture and understanding, in this chapter we will compare some features of the
existing solutions with the features implemented in our Orbital Flight Simulator.

2.1 Kerbal Space Program

Kerbal Space Program is an advanced space program simulation software with a touch of self-irony.
Technically, KSP is a video game, but it features sophisticated physics simulation and accurate orbital
mechanics implementation. The figure 2.1 shows the program’s user interface.

Figure 2.1: Kerbal Space Program, source: self-elaboration (screenshot)
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Kerbal Space Program contains some features that are absent in Orbital Flight Simulator (OFS)
described in this paper. First of all, KSP allows users to build their own spacecraft from a set of
prefabricated components. Another feature is the ability to explore the entire solar system, not just
orbits near the main planet. Although there are plans to include this feature in OFS as well. KSP is also,
understandably, much more sophisticated in terms of visuals (although its graphics are maintained in
a cartoon style - OFS focuses on realism) [18].

On the other hand OFS contains features that are absent in KSP. One of them is the presence of
the Virtual Machine and the ability to program the flight of the rocket with precision unattainable
in Kerbal Space Program. This gives OFS additional educational applications and is supposed to
bring our solution closer to real solutions known from spaceships. Real spaceships are almost entirely
controlled by machines.

2.2 Orbiter 2016 simulator

Another good example of space flight simulator is a free software called Orbiter 2016. Example image
of its user interface is shown in the figure 2.2.

Figure 2.2: Orbiter 2016, source: [19]
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This program uses a different approach than the Kerbal Space Program. First of all, it focuses on
the realism of graphics. Solar system objects as well as all vehicles and their interiors are modelled
with great attention to detail. Believable spacecraft behaviour and Newtonian physics have also been
implemented.

Orbiter simulator does not contain a virtual machine similar to our Orbital Flight Simulator, but
it does contain an advanced scripting solution - a Lua language interpreter [32]. This scripting engine
allows users to control a variety of simulation tasks including autopilots, mission control, physics
simulation interaction, e.t.c. It is a modern solution - rather at the level of the application itself - a
general-purpose scripting language that allows user to automate various processes (including steering
of the spacecraft) using extensions and commands added to the Lua language. For details on Orbiter
features, see [19].

OFS by implementing its own Virtual Machine uses a different approach. It try to simulate be-
haviour, functions and constrains of real on-board computers, especially in the earlier years of the
space exploration era - the already mentioned Apollo Guidance Computer. The author believes this
approach has interesting implications - especially for educational applications and hobbyists interested
in low-level computer architecture, science, physics, and space exploration in general.

2.3 Overview of other virtual machines

The purpose of virtual machines is to define abstraction layers between real hardware and executing
software. There are many uses for virtual machines: from emulating outdated hardware on modern
computers (for example, an old game console) to allowing software portability (Java Virtual Machine).

The general VM architecture developed in this paper was inspired by the machine described in [5],
but differs from it in many details:

� Different language used in the implementation: C++ instead of Python.

� Different instruction set and FPU presence: addition of floating point instructions and registers.

� No stack and no interrupts. Both can be emulated with main memory, comparisons and condi-
tional jump instructions.

� The presence of translator from assembly language into byte-code. In [5] translator was only
mentioned without details of its implementation.

A very well-known example of a general purpose virtual machine is the Java Virtual Machine [17].
Despite its complexity (it is on a completely different level than the VM developed in this paper), it
has some basic similarities with our solution.

� Both machines use bytecode interpreted by a built-in interpreter (Java VM also has a just-in-time
compiler, which our implementation doesn’t have because it is redundant in our applications).

� Both machines contain a translation from a higher-level human-readable language into byte-code.
The Java VM uses a very high level language called Java and our machine uses low assembly
language.

The Java VM tries to be as efficient as possible in terms of memory usage and speed. It’s basically
a low-cost hardware abstraction layer that is necessary to achieve hardware independence from the
programs it runs. The Java VM also includes very powerful features that make it easier to write Java
programs and improve stability and resistance to programming errors. One such feature is Garbage
Collector. Garbage Collector is a subsystem that automatically releases memory when it is no longer
needed. Our VM does not have it - the programmer must take care of allocating and releasing memory
resources himself. This is typical for low and middle level languages such as our assembly language.
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Chapter 3

Motivation and the proposed
solution

The analysis of existing solutions shows that it is possible to create a software that will better serve
the goals set in the first chapter. In this chapter we will try to define the requirements that our solution
should meet.

We need a universal tool that reliably simulates the physics of rocket flight and gives the user the
most precise control possible. In addition, the solution should provide visual feedback of acceptable
quality: a reliable representation of the appearance of the rocket, planet, atmosphere and outer space.
Spaceflight also needs to happen in real time.

Therefore our solution should meet the following requirements:

� A low-level language that is easy to learn and gives the user the ability to write any algorithm.
Existing programming languages can be used, but it is better to create our own, simple language
tailored to our requirements.

� The low-level language in terms of its capabilities and functions should correspond to the low-
level language that was used to program the on-board computer of the Apollo spacecraft - Apollo
Guidance Computer. The choice of this model language is dictated by the fact that the AGC
is basically a representative on-board computer. It is advanced enough to fully digitally and
algorithmically control the spacecraft in real-time, and at the same time it is simple enough not
to overwhelm with its complexity. Of course, we must bear in mind that our language model
will be much simpler - at least at the prototype stage. Some basic features of the AGC language
as well as the computer itself will be discussed in Chapter 4.

� As a consequence of the above requirement, some instructions in this language should allow
assembly language programs to send commands to the racket.

� Commands sent to the rocket should have full control over the thrust vector (direction and
magnitude). In addition, the commands must be able to change the orientation of the rocket
during the flight phase above the atmosphere when the main engine is turned off (simulation of
the reaction control system and/or gyroscopes).

� The rocket itself must have the physical properties of its real-world counterpart: time-varying
mass and the right size and shape. The same applies to the properties of the planet and other
celestial bodies in the simulation.

� A set of commands should enable programming of any flight: ballistic, suborbital and orbital. A
deorbit maneuver should also be possible.
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� Our software should give the user the ability to edit, save and load written programs. It should
also include a source code editor. This will give us a kind of substitute for a simple integrated
development environment in which the user can comfortably develop his/her orbital programs.

� A very desirable feature is the ability to stop and speed up time. Real-time simulated spaceflights
can be long-lasting.

� Visual feedback of the state of the rocket is another very welcome feature. The user should
know what are the current and historical flight parameters, such as: rocket mass, speed, delta-v,
position, altitude, apogee and perigee of the orbit. Historical data should be presented in the
form of easy-to-read charts.

� Another welcome feature is the ability to plot a future flight trajectory prediction. The user
should know how the flight will proceed with the current parameters (direction and magnitude
of the thrust vector, atmospheric pressure, altitude, e.t.c.)
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Chapter 4

Key issues of orbital flight
simulation

The main idea of the application is to simulate ballistic rocket flights. This includes orbital flights.
Our application was created to simulate flights in the gravitational field of the planet. The parameters
of the planet (size, mass, e.t.c.) are similar to those of Earth. The rocket is guided by a virtual
on-board computer of the original design. Controlling the rocket is about writing programs in the
assembly language of the virtual machine. Flight programs written in assembly language have access
to virtual machine memory where telemetry data such as rocket speed, position, time, mass, etc. is
stored. Based on this data, the flight program can send commands to the rocket.

4.1 Overview of orbital flight in intuitive terms

First, let’s define the orbital flight problem. In this section, we’ll take a more informal approach - we’ll
try to define it intuitively. Later in this chapter, we will introduce more formal mathematics.

As we know, a simple ballistic flight looks like this: take a stone and throw it straight into the air.
It will go up to the certain point, and after reaching maximum altitude, it will start to fall until it
collides with the ground. If we throw that stone at some angle, the flight will be in parabolic shape.
This shape is the resultant of the gravitational force that pulls the stone to the ground and the
initial velocity of the stone given by the throwing force. We can assume that the gravitational force
is constant and always directed towards the center of the planet. By changing the throwing force (its
angle and magnitude) we can affect the parabolic shape of the stone’s flight.

There is another very important force - the force of atmospheric drag, which is especially important
when the speed of the stone is large enough. The magnitude of this force is directly proportional to
the velocity of the stone and inversely proportional to the altitude above the ground. At a certain
height, this force disappears completely.

Now imagine that we throw this stone with a very large initial force. It is possible that this stone
will leave the atmosphere and continue its ballistic flight. If the angle and speed are right, the stone
will never fall to the ground because the planet is round and the gravitational force that bends the
stone’s trajectory is always directed towards the center of the planet. Suppose there is no atmospheric
drag because the flight is above the atmosphere. If the above conditions are met, such a flight is
called an orbital flight. As we can see, orbital flight is a special case of ballistic (or suborbital) flight.
Typically, the orbit is ellipse-shaped. There are two particular points of such an ellipse: the apogee
- where the altitude is highest, and the perigee - where the altitude is lowest. The orbit is stable if
perigee is above the upper atmosphere.

Of course, under real conditions, the so-called ”low Earth orbit” is not stable - there is still some
atmospheric drag. Therefore, space vehicles must periodically start their engines to stay in orbit.
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However, for the purposes of our simulation, we will assume that above a certain altitude there is no
more atmospheric resistance.

Figure 4.1: Comparison of suborbital and orbital flights, source: [15]

The figure 4.1 shows the difference between suborbital and orbital flights. In the figure, flight B
corresponds to parabolic flight, flight A to suborbital (but still parabolic), and finally flight C to
regular orbital flight.

4.2 Overview of basic orbital parameters

In this section we need to say a few words about orbits in general. In his work, Kepler defined a
number of parameters that define orbits. In addition to perigee and apogee, we can also distinguish,
among others:

� Eccentricity - a quantity characterizing the shape of the orbit.

� Inclination - the angle between the orbital plane and the reference plane.

� Semi-major axis - half of the long axis of the ellipse.

� True anomaly - a term used to describe an angular parameter that determines the position of a
body moving in a orbit.

In further considerations in this work, we will mainly use the perigee and apogee of the orbit. A
more detailed discussion of the orbital parameters can be found in [4]. A more general description of
determining the orbits of celestial bodies by observation can be found in [3]

Another schematic figure 4.2 shows the key points of the orbit that will be of interest to us.
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Figure 4.2: Key points of the orbit, source: [4]

In the figure 4.2 apoapsis refers to the apogee in our case, similarly periapsis is the perigee in the case
of orbits around the earth. The concept of true anomaly was briefly described above in the text.

The reasoning described at the begging of the previous section is similar to the thought experiment
called Newton’s Cannonball, where throwing a stone has been replaced by firing a cannonball with
sufficient force, and the atmospheric drag force has been neglected. Newton’s original engraving is
shown in 4.3

Figure 4.3: Newton’s cannonball, (original engraving) source: [16]

In the figure 4.3 the letter V denotes the cannonball launch point, the letter A denotes the surface of
the planet, the letters F and G are variants of ballistic flight, and the letter B is a stable orbital flight.
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4.3 Newtonian Physics in relation to rigid body moving in
gravity field

In the previous sections we made an informal introduction to orbital flight, now we will introduce
some formalisms. Our stone becomes the rocket, and the throwing force becomes the thrust of the
rocket’s motor (which is also a force).

To calculate the trajectory of the rocket, we will use Newton’s second law of motion:

� In an inertial frame of reference, if the forces acting on a body are unbalanced (i.e. resultant

force F⃗res is not zero), then the body moves with an acceleration directly proportional to resultant
force and inversely proportional to body mass.

We can write the above law as formula (1.1)

(1.1) a⃗ =
1

m
F⃗res =

F⃗res

m
.

where a⃗ velocity and F⃗res resultant force are three-dimensional vectors, and m mass is a scalar value.
In our case, the resultant force F⃗res is the sum of several forces, which we can write as formula

(1.2).

(1.2) F⃗res =

n∑
i=1

F⃗i, n = 2

The first force F⃗1 is the thrust of the variable-geometry rocket engine. The final F⃗2, second force is
what we call dynamic atmospheric pressure, which requires further explanation.

The dynamic atmospheric force is a function of the rocket’s current velocity and the current altitude
above the planet’s surface. This force can be determined in equation (1.3).

(1.3) F⃗3(t) = aA(t)bv⃗(t), a, b ∈ R

Where A(t) is a scalar variable representing the altitude at time t. v⃗(t) is the velocity vector at t and
a, b are arbitrary scalar constants.

For the purposes of our simulation, we will assume that the magnitude of the gravitational force
vector is constant. The mass of the rocket is negligibly small compared to the mass of the planet,
and our orbits are not too far from the planet’s surface. For this reason, the gravitational term of the
acceleration equation should not be divided by the mass of the rocket. Our equation (1.1) takes the
form presented in (1.4).

(1.4) a⃗ = F⃗g +
F⃗res

m
.

where F⃗g is our gravitational force vector pointing towards the center of the planet.
Knowing the acceleration vector, we can calculate the velocity. From now on, we will treat all

quantities as instantaneous (∆t → 0). So the velocity and position equations of the rocket take the
form (1.5) and (1.6), respectively.

(1.5) ∆v⃗ = a⃗∆t, ∆v⃗ = v⃗t(i+1) − v⃗t(i), i >= 0, i ∈ N

(1.6) ∆r⃗ = ∆v⃗∆t, ∆r⃗ = r⃗t(i+1) − r⃗t(i), i >= 0, i ∈ N
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where ∆r⃗ is the rocket’s position change. So finally our position change equation takes the form (1.7).

(1.7) ∆r⃗ =

(
F⃗g +

F⃗res

m

)
∆t2, ∆ → 0

And the iterative equation of motion takes the form (1.8).

(1.8)

{
rt(0) = r0
rt(i+i) = rt(i) +∆r⃗, i >= 0, i ∈ N

We must remember that F⃗res in (1.7) is actually a function and must be computed for each time step.
In the following chapters we will look at the numerical solution of this equation. We introduce a simple
physics engine, an algorithmic numerical solver that is part of our simulation engine.

The reasoning in this section is based on descriptions of the laws of motion and Newtonian me-
chanics found in [1], especially in Chapters 4 and 5.

4.4 The problem of flight simulation in the context of the
flight of a simple single-stage rocket

As it turns out, equation (1.4) is sufficient to reliably simulate a ballistic (including orbital) flight of
a rocket relatively near a planet surface. Our rocket is simple rigid body with thrust vector mounted
at the one of it’s ends. Rotating the rocket changes the direction of the thrust vector. A rocket burns
fuel, so its mass decreases over time.

The main purpose of our application is to allow the user to control the rocket using programs
written by himself. For this to be possible, we must have four foundations of our application:

� Ballistic flight physics simulation.

� 3D graphics visualisation.

� A programming language and model for a virtual machine that interprets and executes user-
written programs.

� Some kind of I/O interface that allows programs written in assembly language to interact with
the racket: sending commands and responding to telemetry data.

We have briefly outlined the mathematical foundations of physics simulation. It’s time to say a few
words about the on-board computer - the virtual machine and its language.

4.5 On-board computer based on Apollo Guidance Computer

Flying a rocket is a complicated task. The problem becomes even more complex when we need to
achieve an orbit with exact parameters. Manual control becomes cumbersome and inefficient, and
sometimes even impossible. For this reason, spacecraft are usually directly controlled by machines.

One such machine was the Apollo Guidance Computer - [13] the on-board computer of the Apollo
spacecraft. It was an extremely advanced machine and far ahead of its time. Suffice to say, it had a
cooperative multitasking operating system. It could run up to 8 programs simultaneously. In addition,
it supported two programming languages: a low-level assembly-like language for most time-critical
tasks, and a high-level interpreted language for more tedious use cases. All of this in just 2048 16-bit
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words of random access memory [14]. The Apollo Guidance Computer (AGC) controlled almost every
aspect of flight: including orbital maneuvers, the moon landing, e.t.c.

The on-board computer concept developed in this paper is largely based on the AGC. For obvious
reasons, the technical execution and most of the functions differ from the original. In the next chapter,
we will discuss the detailed implementation of our on-board computer.
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Chapter 5

On-board computer model - Virtual
Machine

The on-board computer is implemented as a sub-module of our simulation application. This is called
a “Virtual Machine” with its own virtual memory, registers and instruction set. In addition, the VM
has a byte-code interpreter and a translator from assembler to byte-code. This is all written in C++
and runs asynchronously in a separate thread. The application includes a simple assembly language
code editor and offers the ability to load and save programs.

The figure 5.1 shows a general diagram of the Virtual Machine. In the following sections, we
will discuss in detail the objects shown in this figure. That is: assembly code, translator, byte-code,
interpreter, registers and main memory.

Figure 5.1: Virtual Machine Schema, source: self-elaboration
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5.1 Main memory organisation

The virtual machine contains 64 kilobytes of random access memory. Memory has no specific structure:
it is represented as single-dimensional array of bytes. The interpretation of a series of bytes in memory
depends on the context of the instruction. For example: it may be a floating point number, an integer
number, a string, e.t.c. The memory class written in C++ contains several methods that enables to
store and fetch data. Listing (5.1) shows methods for storing and retrieving double-precision floating-
point numbers. Each number of this kind is 8 bytes in size.

Listing 5.1: Fetch and store dword into memory

double Memory :: fetchDWord(unsigned int addr) {

assertConditions(addr + 8);

unsigned char result [8] = { };

memcopy(mem , result , addr , 0, 8);

double val = *reinterpret_cast <double*>(result);

leaseSemaphore ();

return val;

}

void Memory :: storeDWord(unsigned int addr , double dword) {

assertConditions(addr + 8);

unsigned char* result

= static_cast <unsigned char*>(static_cast <void*>(& dword));

memcopy(result , mem , 0, addr , 8);

leaseSemaphore ();

}

The universal function memcopy copies a series of bytes between the requested locations in memory.
Both methods use the assertConditions and leaseSematore functions, which provide multi-threaded
security in concurrent resource access situations.

The example in Listing 5.2 shows a VM instruction that uses the fetchDWord function to fetch a
number from memory and store it in a floating point register. We will talk about the instructions in
the later sections of this paper.

Listing 5.2: Method that load from the memory into the register

void Instructions ::fld(unsigned char* args) {

unsigned char r_src_addr = args [1];

unsigned char r_dst_addr = args [0];

unsigned int src_addr = registers[r_src_addr ];

double value = memory.fetchDWord(src_addr);

registers.fl(r_dst_addr , value);

}

There are regions of memory that have special interpretation and treatment. The figure 5.2 shows
the main memory organization.

Figure 5.2: Map of the memory, source: self-elaboration
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The initial part of the memory is used to store the translated byte-code of the currently executing
program. Usually it is from a few to several thousand bytes depending on the complexity of the
program. Byte-code is represented as binary stream of bytes and it is very compact. After byte-code
there is the “free space” where programs can store their data, e.t.c.

Counting from the end, a few dozen bytes are used to store rocket flight telemetry information.
This memory section is structured as follows:

Rotation:

z 65528

y 65520

x 65512

Velocity:

z 65504

y 65496

x 65488

Position:

z 65480

y 65472

x 65464

mass 65456

thrust magnitude 65448

altitude 65440

timestamp 65432

The last few bytes are reserved to store temporary command data sent to the rocket.

5.2 Registers organisation

The virtual machine has 16 floating point registers and 16 general purpose registers. Floating point
registers can store 64 bit double precision floating point numbers. The general purpose registers are 32
bits. So we can say that the VM has a hybrid 32/64 bit architecture and has a built-in FPU (Floating
Point Unit).

In addition, there are three special-purpose registers:

� Zero Flag Register (ZF) - is used in compare and jump instructions. When the two compared
values are equal, it takes the value 1.

� Carry Flag Register (CF) - is used in comparisons and jump instructions. When the first of the
compared values is greater than the second, the register is set to 1.

� Program Counter (PC) - used to store the address of the currently executed instruction.

All arithmetic operations, comparisons and jumps are performed only on registers. Special VM
instructions are needed to move data from memory to registers and vice versa.

5.3 Instructions set

We can divide instructions set into these seven categories:

� Data copy operations.

� Saving and loading data to and from memory.

� Arithmetic operations.

� Logical operations.
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� Comparisons and conditional jumps.

� Unconditional jumps.

� Special instructions.

We will discuss each of those groups separately. Table 5.1 lists each supported operations. Instruc-
tions with the letter “h” at the beginning operate on floating-point registers. the target register is
always specified first.

Table 5.1: List of instructions

Instruction
name

Description Arguments Arguments
size

Data copy operations

mov, fmov Moves data be-
tween two registers

ids of destination
and source registers

2 x 8 bits

set, fset Store value in the
register

id of register, 32 or
64 bit value

1 x 8 bits +
32 or 64 bits

Load and store data from and to memory

ld, fld, bld Load value from the
memory and store
it into register

id of the destination
register, id of the
register in which
address of value in
memory is stored

2 x 8 bits

st, fst, bst Store value from
the register into
memory

id of the register
in which address of
the destination in
memory is stored,
id of the register
storing source value

2 x 8 bits

Arithmetical operations

add, fadd, sub,
fsub, mul, fmul,
div, fdiv, mod

Add, subtract, mul-
tiply, divide and
modulo two values
and store result
into the destination
register

ids of the source
and destination
registers

2 x 8 bits

Logical operations

vor, vand, vxor Logical or, and, xor
on two values and
store result into the
destination register

ids of the source
and destination
registers

2 x 8 bits

vnot Logical not of single
value

id of register which
value must be
negated

1 x 8 bits

vshl, vshr Shift bits in left or
right direction

id of destination
register, id of regis-
ter in which num-
ber of bits to shift
are stored

2 x 8 bits
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Comparisons and conditional jumps

cmp, fcmp Compare values of
two registers. Sets
ZF register to 1
if values are equal,
and CF register if
second register is
greater than first

ids of registers to
compare

2 x 8 bits

jz, jnz Jump if ZF flag is
set to 1 (jz) or is set
to 0 (jnz)

id of register with
address to jump

1 x 8 bits

jc, jnc Jump if CF flag is
set to 1 (jv) or is set
to 0 (jnv)

id of register with
address to jump

1 x 8 bits

jbe, ja Jump if both ZF
and CF flags are set
to 1 (jbe) or CF is
set to 1 and ZF is
set to 0 (ja)

id of register with
address to jump

1 x 8 bits

Unconditional jumps
jmp Unconditional

jump
Address to jump 32 bits

jmpr Unconditional
jump

id of register in
which address to
jump is stored

1 x 8 bits

Special instructions
cmd Send command to

the rocket
id of register in
which command
code is stored, id
of floating point
register in which
value of command
is stored

2 x 8 bits

halt Stops Virtual Ma-
chine

5.4 Assembly language

The assembly language used by our on-board computer is a low-level language, similar in some respects
to the Z80 or C64 assembly language described in [25] and [26]. Main difference is that our language
supports floating point numbers and registers. The number of registers in our implementation is also
much larger. The assembly syntax is very simple. Each non-blank row has the following structure:

(db str)| label: |(instr (label|( idreg1 [(,) idReg2|value ])))

where

a | b means alternative

(a) means requirement

[a] means optionality

db defines string of characters

instr is instruction name
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label is any string of characters (excluding white spaces)

value is any number

idReg1 is first register identifier

idReg1 is second register identifier

As it turns out, a simple language and a set of instructions listed above is enough to code any
algorithm. This means it is Turing-Complete. Comparison statements and conditional jumps are
enough to implement branches and loops of any kind.

For example, the program in listing 5.3 copies the string “Hello world” from program code memory
to another address in VM memory.

Listing 5.3: Hello World assembly program

; store address of data in register (Hello world literal)

set r4, data

; set up registers for memory addresses

vxor r0, r0

set r1, 1

set r3, 256

print_loop:

; fetch byte from addres stored in r4

bld r2, r4

; if zero , exit the loop

cmp r2, r0

jz .end

; otherwise store byte in desired address in memory

bst r3, r2

add r3, r1

; move r4 on another character and go back

; to the beginning of the loop

add r4, r1

jmp print_loop

.end:

halt

data:

db Hello world

Lines starting with “;” are ignored and act as comments. Comments in Listing 5.3 describe the function
of each block of code. “db” is not a instruction. This is a special directive for the translator, which
means that the following string must be treated as a compact piece of memory and stored right after
the translated program byte-code.

5.5 Translator to byte-code

Virtual Machine does not run assembly language code directly. Regardless of how cryptic the reading
may seem, assembly language was designed to be used by a human, not a virtual machine interpreter.
There are a two main reasons for this:

� Assembly language written as text is still very verbose compared to other methods of storing
computer programs in memory. This is all the more important since we only have 64 kilobytes
of main memory.
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� The interpreter can become unnecessarily complicated if it has to translate and decode every
single line of code individually.

We need to translate our assembly code into something more convenient for execution by a rel-
atively simple interpreter. Therefore, our virtual machine has a supporting subsystem that is able
to generate a stream of binary data corresponding to our assembly source code. This binary data is
called byte-code.

The bytecode has a relatively simple structure: each line is translated one-to-one into the following
stream of bytes:

opCode+argumentBytes

where

opCode is a numerical identifier

of the instruction

argumentBytes is a string of bytes representing

the arguments of the instruction

+ is an empty space - there is no

byte separation between

nstrCode and argumentBytes

Each pair like above is stored next to other. It produces very compact stream: considering that
each opCode is exactly one byte, length of argumentBytes is variable between 1 and 8 bytes. The
interpreter knows the length of each opCode’s argumentBytes because it uses a built-in table of
instructions similar to the list we provided in the section above.

Listing 5.4 shows an example translator method. It translates an instruction class that takes a
register identifier and a floating point number as arguments. Such an instruction could be, for example,
fset: (fset f9, -1.27)

Listing 5.4: Translate instruction

void Translator :: trnsl_fconstant_to_register(

std::tuple <unsigned int , unsigned int > instr , std:: string line) {

// decode opcode and arguments size

line = trim(line);

unsigned int opcode = std::get <0>( instr);

unsigned int instrSize = std::get <1>(instr) + 1;

// decode register number:

int pos = line.find(" ") + 2;

int pose = line.find(",");

std:: string regNumber = line.substr(pos , pose - pos);

unsigned char reg = stoi(regNumber);

// decode floating point constant number:

pos = line.find(",") + 2;

pose = line.size();

std:: string constant = line.substr(pos , pose - pos);

double cnst = 0;

if (std:: isdigit(constant [0]) || constant [0] == ’-’) {

cnst = stod(constant);

} else {

// label pointing to address

cnst = labelDict[constant ];

}

// calculate current instruction addres ,

// and copy opcode , registry and decoded number
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// into memory

unsigned int addr = instr_addr - instrSize;

code[addr ++] = opcode;

code[addr ++] = reg;

unsigned char* word = static_cast <unsigned char*>

(static_cast <void*>(&cnst));

Memory :: memcopy(word , code , 0, addr , 8);

}

The comments in the 5.4 listing describe the functions of each section of code. The sample method
in 5.4 is one of several types of decoding methods, all other types are listed below:

� trnsl constant to register similar to trnsl fconstant to register above but refers to integer num-
bers

� trnsl register to register - translate instructions that operates on two registers

� trnsl constant - translate instructions that operates only on constants or labels

� trnsl register - translate instructions that operates only on one register

� trnsl halt - translate halt instruction

5.6 Byte-code interpreter

The byte-code interpreter is a simple subsystem of the virtual machine, and on the other hand one
of the most important. It contains the main execution loop. It sequentially fetches instructions one
by one, decodes them, and executes them. The special register PC (Program Counter) indicates the
memory address of the next instruction to be executed. PC is incremented on each iteration of the
loop if there was no jump. Jump instructions can modify the PC register.

Thanks to the transfer of part of the work to the language translator, the interpreter may be
simple and fast. Execution loop method is shown in the listing 5.5

Listing 5.5: Execution loop

void VMachine :: executionLoop () {

// fetching first opcode:

threadFinished = 0;

unsigned int opcode = memory ->fetchByte (0);

while (opcode != opcodes ->getOpcode("halt") && !shouldStop) {

while (pause); // wait

// decode and execute instruction :

unsigned int args_size = opcodes ->getInstrSize(opcode);

unsigned char* args = new unsigned char[args_size ];

Memory :: memcopy(memory ->mem , args , pc + 1, 0, args_size);

instructions ->call(opcode , args);

delete [] args;

pc = registers ->pc();

if (oldpc == pc) {

// there was no jump - update program counter:

pc += args_size + 1;

registers ->pc(pc);

}

oldpc = pc;

// fetch another opcode
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opcode = memory ->fetchByte(pc);

}

threadFinished = 1;

}

Comments in the code in 5.5 describe the behaviour of the method. There is another interesting
observation: conditional and unconditional jump instructions can change the program counter (PC)
register. In this case, the execution loop method cannot increment PC - this is reflected in the “if”
statement in the method.

5.7 Input - output and ODDMA subsystem

Any computer is useless if it doesn’t have some kind of I/O subsystem. In our case, the I/O subsystem
is closely related to a specific use case: rocket flight control. To better understand this, we will use
the figure 5.3

Figure 5.3: Solution schema, source: self-elaboration
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As we can see in 5.3, the virtual machine and the main simulation loop run in separate threads.
To some extent, this fact alone represents the real world: a separate unit that is supposed to commu-
nicate with the rocket is the on-board computer. To make this possible, we need a separate thread
that handles the communication between the rocket and the virtual machine. Technically, this is im-
plemented as three separate threads wrapped in one subsystem, which we call ODDMA - Orbital
Data Direct Memory Access controller. At its heart, ODDMA has two queues: rocket status Queue
and commandBus, which is buffered and thread safe. In addition to this, ODDMA includes the three
previously mentioned threads:

� State Producer - it reads the current state of the rocket, wraps it in a compact data structure
and sends it to the rocket rocket status queue.

� State Consumer - reads data from the rocket status queue, deserializes it, and stores it in memory
as discussed in the section on memory structure.

� Command Listener - reads the command from commandBus and sends it to Rocket in a form
understandable to it.

The cmd VM instruction can write directly to commanBus. Main memory as well as both queues
are thread-safe, which means that simple semaphores are implemented to prevent complications when
accessing shared resources concurrently.

Let’s take the code snippet 5.6 as an example. This code implements the Command Listiner loop.

Listing 5.6: Command listener

void ODDMA:: commandListener () {

while (threadsStarted) {

if (commandBus ->anyCommands ()) {

RocketCommand rocketCommand

= commandBus ->getCommad(runningTime);

executeInstruction(rocketCommand.code(),

rocketCommand.value());

}

takeANap ();

}

}

void ODDMA:: takeANap (){

std:: this_thread :: sleep_for(

std:: chrono :: milliseconds (4));

}

The takeANap method simulates the inertia of the system and its non-instantaneous response time.
The while loop continuously checks if there is a command on the command bus, and if so, it delegates
its execution.
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Chapter 6

Rendering a 3D world

This chapter deals mainly with the visual aspects of the simulation. We need to place our simulation
in a believable space imitating real conditions. Therefore, our simulation world is rendered as a set
of properly lit 3D objects. The scale of the world is roughly equal to the scale of our solar system
limited by the distance of the earth from the sun. The only moving part of our 3D world is the rocket,
if we don’t include the rocket engine smoke path, trajectory prediction paths, and camera (actually:
there is no concept of camera in our simulation - more on that later). In the following sections, we
will discuss in detail how the 3D world of our simulation is built.

The application works in three main modes. These modes determine what objects are rendered on
the screen. In this chapter, we will describe these modes only briefly. A more detailed description can
be found in the chapter on the user interface.

� Simulation Mode - default application mode. In this mode, the user can load, edit, store and
run programs. The physics simulation is running and the internal clock is running. The rocket
is displayed and the camera rotates around the rocket.

� Trajectory Prediction Mode - rocket is not displayed in this mode. Instead, the application
displays the history of the rocket’s trajectory and its predictions for the future.

� Demo Mode - in this mode, the application shows a demonstration flight towards the moon.
The flight ends when the camera reaches the moon.

In all these modes, the application displays the earth and the sun. In the last mode, the application
also displays the Moon.

6.1 Technologies used to render a 3D representation of the
world

The application uses the OpenGL API to visualize 3D graphics. OpenGL has a very long history [12].
It was originally developed as a specification by Silicon Graphics, Inc. (SGI). Since 2006, OpenGL has
been managed by the Khronos Group consortium as a free and open source specification. OpenGL has
been widely used in the fields of computer-aided design (CAD), virtual reality, scientific visualization,
information visualization, flight simulation, and video games. Examples of applications using OpenGL
include: Autodesk AutoCAD, 3D Studio MAX, Blender, Google Earth, Stellarium, SciLab, Universe
Sandbox.

Technically, OpenGL is not an API: rather, it is an API specification that describes how software
and hardware work together to achieve desired results in terms of computer graphics, animation, e.t.c.
However, in this article, we will call OpenGL an API for simplicity. Since OpenGL is an open standard,
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there are several implementations in many modern operating systems. Typically, programs that use
OpenGL are written in C or C++. However, there are implementations using other languages: Java,
Rust, and even JavaScript (via the WebGL standard).

OpenGL is a low-level API, which means the developer has extensive control over the most impor-
tant, hidden aspects of the application. This includes programming the GPU directly through shaders,
transferring data from main memory to graphics card memory, sending commands from the CPU to
the GPU, e.t.c.

It may be beyond the scope of this paper to discuss programming interactive real-time 3D graphics
applications, especially when using low-level tools such as OpenGL. The simulator’s source code
contains sections that rely heavily on concurrent programming as well as the use of mathematical
concepts in linear algebra (vector spaces, quaternions, matrices, e.t.c.) and geometry (coordinate
systems, translations, rotations, e.t.c.). For this reason, a detailed discussion of these issues is not
the subject of this article. The author refers to literature items that discuss the topic in more detail.
The basics of mathematics are covered in detail in [2]. A more academic approach to OpenGL is
represented by [7]. However, we will briefly discuss more important issues specific to the application
that is the subject of this paper.

There is at least one important concept that we need to understand first if we want to talk
about graphics programming in OpenGL. This concept is the graphics processing pipeline and the
collaboration and role sharing between CPU and GPU.

Figure 6.1 sheds light on this issue.

Figure 6.1: Graphics Processing Pipeline, source [8]

Typically, the CPU prepares the basic geometry of the world: it loads the 3D models into memory,
converts them to internal, convenient data structures, determines their positions in the world, etc.
The CPU also sends the vertex data to the graphics card’s memory and sends commands to the GPU,
telling it when and how these objects are to be displayed. The GPU usually does the rest of the work:
with small programs called shaders: transforms the coordinates of the vertices between spaces (more
on that later) (Vertex Shader), creates triangles from the vertices, then triangles into more complex
shapes, and performs operations on them (Geometry Shader), and finally perform operations on a
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single pixel or group of pixels (Fragment Shader). By the way, it performs other important operations,
such as rasterization, which we will not discuss here. The aspects discussed in this section are described
in [7], [8] and [9].

Shaders are small programs written in a language called GLSL (OpenGL Shading Language) and
run directly on the GPU hardware - more specifically, on all its stream processors (e.g. CUDA cores in
NVIDIA GPUs). This means that it has its own special limits on available memory, processing power,
etc. The GPU is actually a massive parallel processor with hundreds of relatively simple cores. Vertex
and fragment shaders are mandatory and have no default implementations. The programmer has to
program them himself if he/she wants to display something on the screen. Examples of such shaders
will be shown in the following sections of this chapter. Shaders and GLSL are described in detail in
[7], [8] and [9].

6.2 3D world objects

Our simulation consists of three main groups of objects:

� Celestial bodies: this includes the planet, moon and sun. Celestial bodies are modeled as spheres.
The spheres are made of triangles. The program contains a simple generator code that creates
a set of vertices of triangles of a sphere, taking the number of stacks and sectors of the sphere
and their normal vectors. This generator code is based on [20].

� Rocket itself - 3D model loaded from obj file.

� Background objects such as trees and clouds - also 3D models loaded from a file.

The table 6.1 shows the sizes and relative positions of celestial bodies:

Table 6.1: Celestial bodies

Celestial body
name

Radius (km) Distance from the
Earth (km)

Earth 6371 0
Moon 1737 384400
Sun 1392700 149600000

In the next section, we’ll briefly discuss the coordinate systems and how world size affects the rendering
process.

6.3 Coordinate system and solution to the world’s size prob-
lem

In OpenGL, each vertex (x, y, z) that will be displayed on the screen must be in Normalized Device
Coordinates (NDC), which means that each x, y, z coordinate must be within range from -1.0 to 1.0.

Therefore, the vertices of each object must be transformed to NDC before they become pixels on
the computer screen. As stated in [8] it usually takes several steps - the vertices are transformed step
by step to intermediate coordinate systems (so-called spaces):

� Local space (Object space)

� World space

� View space (Eye space)
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� Clip space

� Screen space

We will not discuss coordinate systems in detail. There is an excellent book [8] that covers this in
the Coordinate System chapter. In this paper, we will only mention that the transformation from one
space to another is carried out by multiplying the coordinates by special matrices. The most important
of which are: model, view and projection matrix. The figure 6.2 shows the transformation process to
successive spaces.

Figure 6.2: Coordinate transformations, source: [8]

From our point of view, the transformation from local space to world space is particularly impor-
tant. In this step, our object’s local spatial coordinates are placed in the global world-size coordinate
system relative to some global origin. As we know, the size of our world is very large, and the sizes
of objects range from relatively small (rocket) to really large (planet). Therefore, very small or very
large numbers may appear int the model matrix, later - in the screen space, we get smaller values -
which actually fit on the screen.

At this point we have to make a small digression about the precision of floating point numbers -
single precision (32 bit) floating point arithmetic. Only over 4 billion different values can be stored in
32 bits. It is easy to calculate that if we take 384,400,000 (the distance of the Earth from the Moon
in meters) as the largest possible number, then the greatest possible ”resolution” of such a world will
be about 10 cm. With a rocket size of several meters, this means a completely unstable image and
simulation. The problem is of course more serious at even greater distances.

Today’s popular GPUs do not support double precision operations (except maybe professional
CPUs like NVIDIA Quadro). In the normal case: in the processing pipeline, the GPU takes over the
space transformations described above in this chapter.

One of the solutions to this problem is to transfer from the GPU to the CPU the matrix multi-
plication operations associated with transformations to successive spaces. This approach was adopted
in this work. Modern CPUs have the ability to do matrix multiplication quickly using FPU SIMD
operations such as AVX. And the library used for this at the software layer (instead of the hardware
GPU) is GLM [11]. The code snippet in Listing 6.1 shows an example of such use.

Listing 6.1: Rendering method
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void ObjectRenderer :: renderWithRotation(

glm::dmat4& projection ,

glm::dmat4& view ,

double size ,

glm::dvec3 position ,

glm::dvec3 rotation) {

shader ->use();

shader ->setFloat("logDepthBufFC", logDepthBufFC);

glm::dmat4 model = glm::dmat4 (1.0);

model = glm:: translate(model , position);

// calculate rotations :

model = glm:: rotate(model ,

glm:: radians(rotation.x), glm:: dvec3 (1.0, 0.0, 0.0));

model = glm:: rotate(model ,

glm:: radians(rotation.y), glm:: dvec3 (0.0, 1.0, 0.0));

model = glm:: rotate(model ,

glm:: radians(rotation.z), glm:: dvec3 (0.0, 0.0, 1.0));

model = glm::scale(model , glm::dvec3(size));

shader ->setMat4("model", glm::mat4(model));

// calculate transformation matrix and

// and passing it to the shader program:

glm::mat4 transformation

= glm::mat4(( projection * view * model));

shader ->setMat4("transformation", transformation);

[...]

}

The rendering method in 6.1 takes the projection and view matrices as parameters. Creates a model
matrix and performs calculations according to the position and rotation of the model. Finally, multiply
all three matrices and pass them to the shader. All these operations are performed by the CPU in the
main rendering thread.

6.4 Camera movement

OpenGL does not have the concept of a camera in the common sense. We can only simulate the
behavior of the camera by moving all objects in the scene in the opposite direction to “we” (or rather
the simulated camera). There are basically three types of camera movement in our simulation:

� Free run - in trajectory prediction mode.

� Orbiting around the rocket - in simulation mode

� Moving along a straight line - in demonstration “Flight to the Moon” mode

In our case, we’ll start with the ”free run” camera type and derive two other types of camera
movement based on that. We need to take a closer look at the view space concept mentioned briefly in
the previous sections. The view-space transformation matrix transforms all world-space coordinates
into view-space coordinates. When we talk about view space, we mean the coordinates as seen from
the camera’s perspective. Again, an excellent book [8] covering it in detail in the Camera chapter.
This book mentions that we need four vectors to define a camera:

� vector describing position of the camera - position
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� vector describing front of the camera - front

� vector describing up of the camera - up

� vector describing the right side of the camera - right

There is another interesting vector - the vector describing the direction of the camera, which is
simply the difference between the camera position and the vector pointing to the target.

We can summarize what we said above with figure 6.3

Figure 6.3: Camera axes, source: [8]

Knowing all the needed vectors, we can derive the view transformation matrix. Fortunately, we
don’t have to do it manually. The GLM library provides the lookUP function. This function takes
the camera position, target position and camera up vector as parameters. In our case, the call of this
function might look like the 6.2 listing.

Listing 6.2: Camera view matrix

glm::dmat4 Camera :: getViewMatrix () {

return glm:: lookAt(position , position + front , up);

}

When we want to “walk around” with the camera, all we need to do is modify the position vector,
but “looking around” is much more complicated. To look around the scene, we need to modify the
vectors front, up, and right according to the pitch and yaw angles. Pitch and yaw are numbers (scalars)
and represent: pitch - how much we look up or down, yaw - how much we look left or right. Using
school trigonometry and vector algebra in (6.1) we can compute the vectors we need.

(6.1)

f⃗x = cos(α)cos(β)

f⃗y = sin(β)

f⃗z = sin(α)cos(β)

r⃗ = f⃗ × w⃗, u⃗ = r⃗ × f⃗

where α is yaw, β is pitch, f⃗ is a front vector, r⃗ is a right vector, u⃗ is a up vector, and × is a cross
product of two vectors. The corresponding code in C++ using GLM library is in the listing 6.3. The
method is based on the solution described in [8].

Listing 6.3: Camera vector recalculation

void Camera :: updateCameraVectors () {

glm::dvec3 front;

front.x = cos(glm:: radians(Yaw)) * cos(glm:: radians(Pitch));

front.y = sin(glm:: radians(Pitch));
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front.z = sin(glm:: radians(Yaw)) * cos(glm:: radians(Pitch));

Front = glm:: normalize(front);

Right = glm:: normalize(glm:: cross(Front , WorldUp));

Up = glm:: normalize(glm:: cross(Right , Front));

}

where WorldUp is a vector that points to the up direction of the world - in our case (0, 1, 0).
In our application, the position vector of the camera is controlled by the keyboard (wasd keys)

and the ”look around” (pitch and yaw angles) is controlled by mouse movement.
All this gives us the ability to freely move the camera around the scene. This camera guidance is

used in trajectory prediction mode to conveniently move the camera to view the trajectory graph. In
simulation mode, the position of the camera is closely related to the position of the rocket. In addition,
in this mode the camera automatically ’orbits’ at a certain distance around the rocket. Achieving this
effect is quite simple if we have a solution to the problem of free camera movement. We need to add
a function 6.4 that will be called periodically.

Listing 6.4: Update camera position

void Camera :: updateCamPosition(glm:: dvec3 newRocketPosition ,

double rotationAngle ,

float radius) {

double camX = cos(glm:: radians(rotationAngle)) * radius;

double camZ = sin(glm:: radians(rotationAngle)) * radius;

rotationPosition = glm::dvec3(-camZ / 2.0, camX , camZ)

+ newRocketPosition;

position = newRocketPosition;

}

where newRocketPosition is the current position of the rocket, rotationAngle is the camera rotation
angle (increased periodically), and radius is the distance between the rocket and the camera. The
result of rotationPosition is the new position of the camera.

Finally, we need to change the behavior of getViewMatrix as shown in listing 6.5.

Listing 6.5: Camera view matrix alternative version

glm::dmat4 Camera :: getViewMatrix () {

return glm:: lookAt(rotationPosition

+ glm::dvec3 (0.016 , 0.0, 0.012) , position , up);

}

where position is the position of the rocket, rotationPosition is the position of the camera, and
glm::dvec3(0.016, 0.0, 0.012) is the initial distance between the camera and the rocket. And that’s it
- we have a camera orbiting the rocket.

The last mode of our application is a special presentation mode that takes the camera on a journey
towards the moon. In this mode, we use the overloaded updatePosition method of the Camera class,
with a fixed angle and radius set to 0.020, to change the distance between the rocket and the camera
step by step. We need to calculate the direction vector from the rocket to the moon (the toTheMoon
vector) and using it as a “guide” iterate through the distance until we meet the moon. The code in
listing 6.6 solves the problem of iteratively updating the camera position.

Listing 6.6: Presentation mode camera movement

if (presentationMode) {

[..]

toTheMoon = SolarSystemConstants :: moonPos - rocket ->getPosition ();

camera ->updatePosition(rocket ->getPosition () + (toTheMoon * radius),
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rocket ->getRotation ());

if (radius < 0.52) {

step *= 1.005;

} else {

step /= 1.005;

}

radius += step;

}

6.5 Illumination and shaders

We use a combination of ambient and diffuse lighting in our application. Ambient lighting is a global
illumination caused by the reflection of many rays of light from surfaces in the environment. This
gives more or less even illumination from all sides. In more advanced applications, the global lighting
system (or ambient occlusion) takes local environmental conditions into account. In our case, a simple
uniform light is enough.

Diffused lighting is more interesting. Diffused lighting makes objects brighter the greater the angle
ϕ between the surface of the object and the light source.

Figure 6.4: Diffuse illumination, source: [8]

As we can see in the picture 6.4 to calculate the angle ϕ we need normal vectors N⃗ for the surface
of each object. The normal vector is a vector perpendicular to the surface. Typically, normal vectors
come with 3D models. For other objects, normal vectors are computed by internal algorithms. In
our case, these are only spherical objects (planets, points on trajectories, smoke ”clouds”), which
are generated programmatically - normal vectors are calculated for each of them. Regardless of the
method, the normal vectors and vertex coordinates are transferred to the fragment shaders, where the
actual illumination is computed as a mixture of ambient and diffuse illumination. An example of this
shader written in GLSL is shown in listing 6.7, which is based on the solution in [8], chapter Basic
Lighting.

Listing 6.7: Fragment shader - illumination, based on: [34]

#version 330 core

out vec4 FragColor;

in vec3 Normal;
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in vec3 FragPos;

[..]

uniform vec3 lightPos;

uniform vec3 lightColor;

uniform vec3 objectColor;

void main() {

// ambient

float ambientStrength = 0.1;

vec3 ambient = ambientStrength * lightColor;

// diffuse

vec3 norm = normalize(Normal);

vec3 lightDir = normalize(lightPos - FragPos);

float diff = max(dot(norm , lightDir), 0.0);

vec3 diffuse = diff * lightColor;

vec3 result = (ambient + diffuse) * objectColor;

FragColor = vec4(result , 1.0);

[..]

}

As we can see, the GLSL syntax is very similar to C/C++. On the output 6.7 the fragment shader
returns FragmentColor which is nothing but the color of the pixel. As input parameters, our shader
takes the Normal vector and the FragPos vector, which is the position of the currently processed
pixel.

Figure 6.5 shows that proper lighting is an important aspect of 3D visualization. This adds another
level of depth to 3D scenes and sometimes makes them look quite realistic.

Figure 6.5: Usage of diffuse illumination, source: self-elaboration
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6.6 Rocket orientation and rotation

It is important to ensure the correct starting orientation of the racket. We have to place the rocket
on the surface of the planet in the chosen place. Since the surface of the planet is a sphere, we need
to rotate the rocket at the right angles. To do this, we provide a method called pointAboveTheSurface
in the listing 6.8. This method is a member of the CelestialBody class. An instance of an object of a
class inheriting from CelestialBody is our planet.

Listing 6.8: Point above the surface method

glm::dvec3 CelestialBody :: pointAboveTheSurface(double theta ,

double phi , double distance) {

// theta - polar angle

// phi - azimuth angle

double r = diameter / 2.0 + distance;

double x

= r * cos(glm:: radians(theta)) * sin(glm:: radians(phi));

double z

= r * sin(glm:: radians(theta)) * sin(glm:: radians(phi));

double y

= r * cos(glm:: radians(phi));

glm::dvec3 result = position + glm::dvec3(x, y, z);

return result;

}

This method takes the angles theta and phi as parameters. These angles correspond to the polar
and azimuthal angles of the celestial body, starting from one of the planet’s poles. The method then
calculates the position of the point ”above” the surface based on the distance (height) from the surface,
the position and diameter of the planet itself.

In the second step, the method described above is used to calculate the so-called “towards” point
and the initial position of the rocket. The “towards” point is a point below the surface of the planet
(negative distance parameter) about 50 kilometers. This point is now used to calculate the rocket’s
direction of rotation as a three-dimensional vector. Then the direction vector is represented as a
single quaternion representing a rotation in three dimensions. And in the last step, this quaternion is
converted into a rotation vector expressed as the so-called Euler angles. This rather complicated chain
of transformations is written in the following lines of the Listing 6.9. The conversion to a quaternion
is done using the helper function Geometry::gLookAt with quite complicated math behind described
in the literature [2].

Listing 6.9: The rocket’s rotation calculation

glm::dvec3 direction

= glm:: normalize(rocket.getPosition () - towards);

glm::quat qlook

= Geometry :: gLookAt(direction , glm:: dvec3 (0.0 ,1.0 ,0.0));

glm::dvec3 rotation

= glm:: eulerAngles(qlook) * 180.0f / 3.14159265f;

thrustVector = direction * thrustMagnitude;

[..]

rocket.updateRotation(rotation);

Listing 6.9 shows a fragment of code, that calculates the direction vector, the described quaternion
qLook, the rotation and the thrustVector vectors.

These transformations give us two things:

� the rotation of the rocket expressed as a vector of euler angles (x - angle along the x axis, y -
e.t.c...), coupled with:

37



� the direction of the thrust vector.

The rotation of the rocket along any axis should entail the rotation of the thrust vector along the
same axis. The rotation of a thrust vector can be done with a relatively simple function in the listing
6.10

Listing 6.10: Rotate vector method

glm::dvec3 Geometry :: rotateVector(glm::dvec3 v,

glm::dvec3 k, double fi) {

fi = glm:: radians(fi);

return v * cos(fi)

+ glm::cross(k, v) * sin(fi)

+ k * glm::dot(k, v) * (1.0 - cos(fi));

}

where fi is the rotation angle, v is the vector to rotate, and k is the vector representing the rotation
axis (e.g. (1.0, 0.0, 0.0) means that we rotate along the ’x’ axis)

6.7 The 3D Model Loader

The 3D model is represented as a collection of meshes. Each mesh is a set of vertices. The software
described in this article uses the Assimp [30] library to load obj files into in-memory data structures
and convert them to a convenient representation of meshes and vertices. A snippet of such code
displays listing 6.11.

Listing 6.11: The model loading method, based on: [35]

void Model:: loadModel(std:: string path) {

Assimp :: Importer importer;

const aiScene* scene = importer

.ReadFile(path , aiProcess_Triangulate

| aiProcess_GenSmoothNormals

| aiProcess_FlipUVs

| aiProcess_CalcTangentSpace);

// Error handling

[...]

directory = path.substr(0, path.find_last_of(’/’));

processNode(scene ->mRootNode , scene);

}

void Model:: processNode(aiNode* node , const aiScene* scene) {

for (unsigned int i = 0; i < node ->mNumMeshes; i++) {

aiMesh* mesh = scene ->mMeshes[node ->mMeshes[i]];

meshes.push_back(processMesh(mesh , scene));

}

for (unsigned int i = 0; i < node ->mNumChildren; i++) {

processNode(node ->mChildren[i], scene);

}

}

The method uses the importer.ReadFile function to load and build a data structure that represents
the in-memory representation of the loaded object. The recursive helper method processNode creates
a collection of meshes. A detailed discussion of loading 3D models can be found in [8].
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6.8 Chapter summary

Three other aspects of 3D world rendering have not been covered in this chapter: texturing, sky area
generation, and object instantiation. These problems are very important in the visualization subsystem
and have a huge impact on the final appearance of the program, but their solutions are quite typical
and can be easily found in the literature.

The visualization of our application is by far the most complex part of the solution. Although this
is not the central point or the main goal of this work. Everything we said in this chapter was just
scratching the surface and picking out the most important and interesting aspects of visualization. A
more detailed discussion of the topics covered in this chapter can be found in the literature: [2] [7] [8].
The source code of the simulator itself can also provide extended explanations about the issues raised.
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Chapter 7

Rocket flight physics
implementation

In the first chapter of this work, we derived the equations of motion. In this chapter, we will discuss
a simple implementation of the physics solver in our application. At this stage of implementation,
the solver (or engine) supports only one rigid body - the rocket, but there are plans for further
improvements - we will discuss them in the summary chapter. Our solver is simple enough to be
implemented in its entirety instead of using external tools like Bullet Physics Engine e.t.c.

7.1 Numerical integration of the equation of motion

For convenience, let’s recall our equations of motion from Chapter 1:

(1.2) F⃗res =

n∑
i=1

F⃗i, n = 2

(1.7) ∆r⃗ =

(
F⃗g +

F⃗res

m

)
∆t2, ∆ → 0

(1.8)

{
rt(0) = r0
rt(i+i) = rt(i) +∆r⃗, i >= 0, i ∈ N

First of all, we need to find all the forces, so we’ll start with Equation 1.2. In our computer program,
there is a addForce method that adds force to an internal collection.

Listing 7.1: Add force

void addForce(glm::vec3 force);

This method is used in two methods of our solver:

Listing 7.2: Main methods in the solver

\begin{lstlisting }[ language=C++]

unsigned __int64 calculateForces(
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unsigned __int64 timeInterval

);

void calculateAtmosphericDragForce ();

The first of these methods calculateForces is used to determine all “internal” forces acting on the
rocket. By internal we mean all forces that are independent of external physical conditions (e.g.
atmospheric pressure, gravity, e.t.c.). We only have one such force: it is the thrust vector force that
can be driven by the programs executed by our Virtual Machine described earlier.

In addition, this method calculates several variables such as deltaPosition and calls the updates-
Physics method with the calculated time interval, and finally calls the calculateAtmosphericDragForce
method. A code snippet of the key operations that are performed in calculateForces is shown in the
listing 7.3.

Listing 7.3: Fragment of the calucalte forces method

[...]

updatePhysics(MS_PER_UPDATE / 1000.0f);

timeInterval -= MS_PER_UPDATE;

deltaP = rocket.getPosition () - lastPos;

lastPos = rocket.getPosition ();

[...]

calculateAtmosphereGradient ();

calculateAtmosphericDragForce ();

[...]

The variable timeInterval should be understood as ∆t from our equations of motion. The method also
calculates the change in the position of the rocket - the deltaP variable.

The second method mentioned above is calculateAtmosphericDragForce, this method determines
the dynamic pressure of the atmosphere acting on the rocket during flight and must be calculated at
each time step. The method will be discussed in the next section.

Finally, when we have established all the necessary forces, we can calculate the position and velocity
of the rocket, i.e. solve equation 1.7 and its iterative form 1.8. The updatePhysics method in the 7.4
list is quoted in its entirety.

Listing 7.4: Update physics method

void PhysicsEngine :: updatePhysics(double deltaTime) {

glm::dvec3 velocity = rocket.getVelocity ();

glm::dvec3 position = rocket.getPosition ();

glm::dvec3 gravityForceVector

= glm:: normalize(rocket.getPosition ()

- celestialBodyCenter(celestialBodySize)) * GConst;

glm::dvec3 sumOfForces = glm::dvec3 (0.0);

for (unsigned int i = 0; i < forces.size(); i++) {

sumOfForces += forces[i];

}

velocity += (gravityForceVector

+ (sumOfForces / rocket.getMass ())) * deltaTime;

position += velocity * deltaTime;

rocket.updatePosition(position);

rocket.updateVelocity(velocity);

resetForces ();

}
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With the combined power of C++’s operator overloading and GLM, our key method code looks similar
to real equations and needs no further explanation. It is important to understand that the solver runs
continuously in the main simulation loop and is based on the deltaTime calculated since the last time
the forces were calculated.

7.2 Atmospheric pressure simulation

There is one more force we must consider:

(1.3) F⃗3(t) = aA(t)bv⃗(t), a, b ∈ R

As we mentioned earlier, dynamic atmospheric pressure is a function of rocket velocity and altitude
above the ground. Below is a fragment of the calculateAtmosphericDragForce method that solves this
problem. The method shown in the 7.5 calculates the force from equation 1.4

Listing 7.5: Fragment of the method calculating the drag force

if (glm:: length(rocket.getVelocity ()) > 0.0) {

glm::dvec3 forceDirection = glm:: normalize(rocket.getVelocity ()) * -1.0;

double velocityMagnitude

= vFactor * glm:: length(rocket.getVelocity ());

double altitudeMagnitude = 1.0 / (altitude * aFactor);

if (altitude > hLimit) {

altitudeMagnitude *= 1.0 / altitude;

}

glm::dvec3 dragForce

= forceDirection * velocityMagnitude * altitudeMagnitude;

[..]

}

aFactor and vFactor are constants taken into equation 1.3 (a, b ∈ R). By default they are 1.1 and
1.2 respectively. So as we can see, the velocity factor in the equation is a little more important than
the altitude. In addition, starting from hLimit height, the method changes the way the drag force is
calculated - from then on, the force drops off sharply. (simulates the upper atmosphere)

7.3 Trajectory prediction mode

Our application includes one more special feature that is closely related to the physics solver. We give
the user the opportunity to see the future forecast of the current rocket trajectory. This is done by
some king of sample-and-holding method. When a user requests a trajectory prediction, our algorithm
stores the rocket’s current position and velocity and removes all forces except gravity. Now, using a
similar solver described in the section above, the application calculates all the future positions of the
rocket. The code in listing 7.6 performs the deltaTime calculation used for each prediction step.

Listing 7.6: Demo mode delta time calculation

elapsedTime /= 1000;

int n = 512;

double currentTime = 4000.0 - elapsedTime;

double deltaTime = (double)currentTime / n;

As you can see, the prediction takes place in 512 steps and a maximum time span of up to 40,000
seconds. elapsedTime is the elapsed time since the simulation started. This gives the user a prediction
of the free ballistic trajectory and whether orbit has already been reached or how far away it is. The
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visual aspect of the trajectory prediction mode and other functions of the application will be discussed
in a separate chapter.

Figure 7.1: Trajectory prediction mode, source: self-elaboration (screenshot)

In 7.1 we can see an example plot of the predicted trajectory (red) and the route traveled so far
(green). The example is for ballistic flight.
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Chapter 8

Technologies and tools used

The selection of appropriate technologies was the subject of long-term research. In this chapter, we
will discuss the reasons for choosing certain tools over others.

8.1 Usage of C++ and OpenGL

The most important tool used in the project is the C++ language. Before starting work on the
implementation, the author compared the capabilities of various programming languages and libraries.
The following combinations were considered:

� C++ and OpenGL. Strong language, open, mature and cross-platform API.

� C++ and DirectX. Same as above, but a little easier to use API.

� Java and OpenGL. Easier to use language.

� JavaScript and WebGL (with a high-level ThreeJS library). Possibly the easiest combination to
use, but with strong undesirable features: huge memory and performance overhead.

� Rust and OpenGL: Recently fashionable and rapidly gaining popularity language with perfor-
mance similar to C++, but putting more emphasis on security.

Ultimately, the author decided to use C++ and the OpenGL API. The following features of this
combination have proven particularly useful:

� Easily accessible documentation and support. C++ is a very popular and mature language. As
well as the OpenGL API. A lot of proven and very valuable software has been written in these
technologies.

� Independence from the operating system. Programs written in C++ and OpenGL (if written
correctly) can be compiled and run on various operating systems: Windows, Linux, MacOS,
FreeBSD. This is not possible when combining C++ or C# and DirectX.

� Excellent integrated development environment - Visual Studio 2022 and Visual Studio Code.
Among other languages, only Java has an IDE at a similar level. The use of a modern visual
debugger made the work much easier.

� Operator overloading. This feature of the C++ language allowed you to write code that reflected
mathematical equations in a more elegant and easy to understand way.
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� A promise of higher performance than languages like Java or JavaScript. Although we have to
admit that with modern hardware capabilities it matters less than it used to. However, in the
author’s opinion, it is still important, especially if this software is to be used in schools.

Operator overloading and other advanced C++ features used in this paper are described in [6].
The use of pre-build game engines such as Unreal Engine or Unity was also considered. Unfortu-

nately, none of them can successfully create a world of the size we need [27]. It is possible, but difficult,
and requires “hacking” the existing mechanisms of the engine [28]. Therefore, the author decided to
write his own low-level 3D visualization engine. The issues related to this process were described in
the previous chapter.

8.2 Other important libraries

In addition to OpengGL, the following libraries were used during development:

� OpenGL Mathemacics (GLM) - linear algebra (matrix-based operations) and other math func-
tion libraries extensively used in 3D visualization and physics calculations.

� Dear ImGui - A graphical user interface library for drawing a window layout in the main appli-
cation window. Several controls are used, including: buttons, menus, text boxes, e.t.c. [29]

� Assimp library - Open Asset Import Library - a tool for reading 3D models of objects such as:
rocket, clouds, trees, e.t.c. [30]

� STB Image library - stb image.h. A single file header library used to load textures and other
images into memory [31].

8.3 Assets used

All fallowing assets were shared as free of charge and free to use for everyone.

� 3D model of the rocket in obj format [22].

� Models of clouds, trees and launch tower. Models taken from the library included with the free
(comes with Windows) program from Microsoft called 3D Builder.

� Planet surface textures and sky space textures [23] [24].

8.4 Integrated Development Environment

In the initial phase of the project, when there was time to experiment and test various tools, the
prototype was written in the gcc compiler under the Linux operating system. IDE was Code::Blocks.
However, as the work progressed, the need for an advanced application building system became more
and more visible. Therefore, the author decided to temporarily switch to the Windows operating
system and start using Visual Studio 2022. Currently, the plans are to use the CMake build automation
system to create a universal project that will target both the Windows MSVC compiler and the Linux
gcc compiler.
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Figure 8.1: Visual Studio 2022
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Chapter 9

Application from the user
perspective

The user interface of the application has been designed to be as ergonomic and informative as pos-
sible. However, thanks to the use of the ImGi library and simple but effective techniques such as
texturing and dynamic lighting, we also managed to achieve a fairly aesthetic overall appearance of
the application.

9.1 Graphical User Interface

The application is organized as a multi-window application within one “main” program window. The
screenshot 9.1 shows the main application window and most of the available internal windows.

Figure 9.1: Application main window

On this screen we can see several important windows that correspond to the functions of the ap-
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plication, which will be discussed below. Each of these windows can be enabled or disabled in the
main menu of the application. The main 3D visualization appears under the application windows (as
a background): depending on the application mode, it will be a simulation, trajectory prediction or
demonstration.

9.2 Functions and possibilities

In the following sections, we will cover the key features of the application.

9.2.1 Simulation control

Figure 9.2: Simulation control panel

In the simulation control window, the user can start, pause and stop the simulation. Clicking the stop
button will restart the simulation and save the program written in the code editor window to disk.
One of the more useful features is time compression: clicking the “forward” button several times will
speed up the simulation clock up to 16 times.

9.2.2 Source code editor

Figure 9.3: Source code editor
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In this window, the user can view and edit the source code of the currently loaded flight program.
Programs written or edited in this window are executed by the virtual machine after being translated
into byte-code.

9.2.3 Telemetry data window

Figure 9.4: Telemetry window

This window dynamically displays the most important flight parameters of the rocket. This includes
the perigee and apogee of the orbit (if orbit has been reached).

9.2.4 Telemetry plots

Figure 9.5: Telemetry plots

The Telemetry plots window displays the history of selected telemetry data in a graphical form.
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9.2.5 Executed commands list

Figure 9.6: Executed commands history

This window shows the history of executed commands. Each entry begins with a timestamp that
indicates the exact execution time.

9.2.6 Orbital programs loader

Figure 9.7: Program loader

The Loader gives the user the ability to load created programs from a specific directory.

9.3 Examples of the Virtual Machine programs

Three demo flight programs are provided with the application.

� The first program is the control program for simple ballistic flight, the highest phase of which
is above the atmosphere.

� The second program controls orbital flight. The orbit is highly eccentric and unstable. In the
flyby phase near the perigee of the orbit, the rocket enters the upper atmosphere, which causes
the rocket to gradually decelerate. The apogee and perigee of the orbit decrease with each
successive orbit - the rocket will eventually fall to the Earth.

� The third program is a modification of the second program. At some point before reaching
apogee, the control program inverts the rocket and start the main engine again. This causes a
significant deceleration of the rocket (the so-called de-orbit maneuver). Eventually, the rocket
fails to reach orbit and crashes into the ocean.
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Listing 9.1 displays short ballistic program written in the Orbital Flight Simulator assembly lan-
guage.

Listing 9.1: Ballistic program

; wait one second before starting the engine:

fset f2, 1000

set r1, 65432

wait_1_second:

fld f1, r1

fcmp f1, f2

jc wait_1_second

; set the engine thrust value and send the command to the rocket:

fset f3, 0.24

set r8, 1

cmd r8, f3

; wait for the rocket to reach an altitude of 1.5 km:

check_altitude_loop:

set r3, 65440

fld f1, r3

fset f2, 1.5

fcmp f1, f2

jc check_altitude_loop

; set the register values needed to execute

; the trajectory change commands:

set r3, 3

set r1, 2

set r4, 20

set r5, 1

set r2, 0

; a loop responsible for sending a series of commands

; to the rocket about changing

; the direction of the thrust vector:

change_trajectory_Y:

fset f9, -1.27

cmd r3, f9

sub r4, r5

cmp r4, r2

jnc change_trajectory_Y

; a series of instructions responsible for

; waiting 120 seconds:

set r1, 65432

fset f2, 120000

wait_120_seconds:

fld f1, r1

fcmp f1, f2

jc wait_120_seconds

; after exceeding the time , sending a command

; to cut off the ignition

; (in practice , reducing it to the value of 0.001):

fset f3, 0.001
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set r8, 1

cmd r8, f3

; the last loop waiting for the altitude to exceed 100 km ,

; after exceeding it , the program stops:

set r3, 65440

fset f2, 100

finish_check_altitude:

fld f1, r3

fcmp f1, f2

jc finish_check_altitude

halt

Comments in the program code describe the actions of individual sections of the code. The idea of
this program is to use short loops that send commands to change the rocket’s trajectory or allow the
program to wait for external conditions to occur. Trajectory changes occur at exact points in time or
at exact points in altitude. The current altitude and time points are read from the main memory from
specific addresses. These addresses are described in the memory organization section of this article.

The other two demo programs work in a similar way. However, there are more critical points in
time and space to consider in their case. Rocket flight programming is often limited to checking the
occurrence of certain conditions and, if they occur, performing appropriate calculations in order to
decide on the commands transmitted to the rocket. The key elements to make a decision are: the
real-time clock and telemetry data saved in real-time in the memory of the virtual machine.
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Chapter 10

Summary

Orbital Flight Simulator - the software described in this paper is the result of research and development
work motivated by the desire to create a tool useful for learning programming and physics for people
interested in rockets and space exploration. The author believes that the provided prototype can be
used in high schools or by hobbyists. A working application has potential for future development. In
this chapter, we will discuss possible applications and directions of development.

10.1 Discussion of educational aspects of the application

We can think of this solution as a development environment combined with a physics simulator. The
target group of application users is to be high school students interested in physics, programming and
computer architecture. As well as anyone interested in programming in a more low-level way.

Integrated assembly language is a low-level language: that is, it provides only the most basic
instructions (so-called orders) that translate almost directly into VM op-codes. The consequence of
this is that the programmer has to write much more code to achieve similar results as in higher-level
languages. This approach has its positive and educational aspects. This type of programming teaches
the user to better understand the architecture of the computer and better break down the problem
into very small steps. On the other hand, the assembler included in the application, as well as the VM
architecture itself, are relatively simple - much simpler than the architecture of modern computers.
This gives a relatively smooth learning curve.

The included demo programs are quite simple, for example: one launches a rocket into an eccentric,
asymmetric orbit. Writing programs that launch a rocket into an any orbit is much easier than
launching a rocket into an orbit with specific parameters. This requires a better understanding of
Newtonian physics and more advanced mathematical calculations. Our application naturally enables
this because it contains a sufficiently accurate simulation of real-world physics. Therefore, the software
that is the subject of this work may be suitable for use in physics lessons in high school.

10.2 Future improvement plans

The Orbital Flight Simulator featured in this paper can be quite a useful application, but there are
some areas for improvement. In this section, we will discuss the author’s plans for future improvements
to the application.

� Physics simulation improvements. Adding some chaotic behaviour to the atmosphere simulation.
This includes: winds, turbulence and weather simulation. The upgrade can also include rocket
physics. At the moment it is a one-piece rigid body. In the future, it may be a system of connected
rigid bodies with uneven and time-varying mass distribution.
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� Addition of simulation of the entire solar system instead of just the earth, moon and sun. This
includes calculating the actual orbits of celestial bodies and their own rotations. Any celestial
body should obey the same laws of physics as a rocket. Therefore, the physics simulation engine
should be extended to include all rigid bodies. This opens up completely new possibilities: e.g.
writing interplanetary mission programs.

� Adding the ability to change the parameters of the rocket (mass, size, aerodynamics, e.t.c.) and
the parameters of celestial bodies in the solar system.

� Adding higher-level languages than assembly language. Although these languages do not have
to be that complicated, a good example in the author’s opinion is the PL/0 language extended
with the ability to define functions. Another interesting example would be the use of a high-level
visual language built on algorithm flow diagrams.

� Improvements to the visual aspect: adding dynamic shadows and more believable atmosphere
visuals.

� Adding procedural generation of planet surfaces or preparing 3D models of planets in software
such as Blender. Considering the very large size of the planets and the need to model their
surfaces with sufficient detail, a solution with procedural generation may turn out to be better.

� Adding usage of the CMake automatic build system. This will allow user to build the project us-
ing compilers other than MSVC under the Windows operating system. Finally creating versions
for Linux, MacOS and Windows.
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