
Polish-Japanese Institute of Information Technology

Chair of Software Engineering

Master of Science Thesis

Designing a device independent personal task

management solution using RESTful API

driven interfaces

by

Grzegorz Kaczorek

Supervisor: Mariusz Trzaska Ph. D.

Warsaw, 2011

Contents

1 Introduction 1

1.1 Goals . 1

1.2 Proposed solution . 1

1.2.1 Centralised RESTful API . 3

1.2.2 Ultra-thin clients . 3

1.2.3 Prototype . 4

1.3 Core concepts . 5

1.3.1 Mobile clients . 5

1.3.2 The problem of diversity in the area of client platforms 8

1.4 A short summary of the results achieved, their practical and theoretical

significance . 9

2 Problem description 11

2.1 Software engineering on multi-platform

environments, mobile devices in particular 11

2.1.1 Personal computer platform fragmentation 11

2.1.2 Main mobile platforms . 13

2.2 Current state of the art . 15

2.2.1 Solution segmentation in general 15

2.2.2 Mobile web applications . 16

2.2.3 Multi-OS native application engines 16

2.2.4 Other - Adobe AIR . 17

2.2.5 Conclusion . 17

2.3 The pitfalls of the traditional client-server

architecture . 18

2.4 Improvements suggested to the presented

technologies . 20

3 Project premises and philosophy of FEAR 21

3.1 Premises and architecture . 21

3.1.1 Prototype premises . 21

3.1.2 Application entities . 22

3.2 Functionally Extended Application Response

(FEAR) . 25

3.2.1 What is an ultra thin client . 25

3.2.2 Basic rules of FEAR . 25

3.2.3 Functional directives in FEAR 27

3.2.4 msg or event . 31

3.2.5 Summary . 32

4 RESTful APIs 33

4.1 About REST . 33

4.1.1 What is REST . 33

4.1.2 Primary characteristics of RESTful web services 34

4.1.3 Is REST a standard? . 35

4.2 Alternative conceptions . 36

4.2.1 REST vs SOAP . 37

4.2.2 API vs external RDMS . 38

5 Prototype implementation discussion 41

5.1 Tools, platform and languages used in prototype implementation 41

5.1.1 Methodology . 41

5.1.2 Back-end framework . 42

5.1.3 Front-end framework . 43

5.1.4 Mobile application – Android OS 46

5.1.5 Examples of mobile and web client interfaces 47

5.2 Alternative techniques and technology stacks 47

5.2.1 Back-end implementation alternatives 47

5.2.2 Web client tool alternatives . 51

5.2.3 Mobile application – Android + Android SDK 51

6 Lessons learned 52

6.1 Obstacles in implementation . 52

6.1.1 Entity client side updates . 52

6.1.2 Error message placement . 53

6.2 Advantages and disadvantages of the chosen

solution . 54

6.2.1 Advantages . 54

6.2.2 Disadvantages . 57

6.3 Potential applications . 58

6.4 Further development possibilities . 60

6.4.1 Clients for other platforms . 60

6.4.2 Overcoming the disadvantages . 60

Abstract

The thesis discusses the problems of developing multiple clients for applications with a

centralised back-end. In particular – the problem of augmenting a web browser interface

with multiple clients meant to be deployed on mobile devices.

The thesis describes the state of the art in the field of platform consolidation and

device agnostic web applications, concentrating on their deficiencies and inferiority to

native client applications.

The thesis then proposes a method of using the concept of a Functionally Extended

Application Response generated by the API that and introduces certain design patterns

that allow for maximum client logic reuse on multiple platforms.

A prototype of an API, web client and mobile client are all build to determine the

feasibility of the aforementioned methodology. Based on the experience of prototype

implementation the achieved results are discussed in terms of relevance to solving the

problem described in the thesis with special care of defining the parameters for applications

that will benefit from the approach presented.

1

Chapter 1

Introduction

This chapter describes in detail the goals of the thesis and defines concepts that are

fundamental to its meaning: centralised API’s, mobile clients and the problem of platform

fragmentation in the field of application development.

1.1 Goals

The goal of the thesis is to provide a conceptual framework that decreases time and costs

for developing an application that benefits from multiple clients.

This goal has to be distinguished from building an alternative to the platform development

convergence efforts described in section 2.2.2 as a way to provide a pattern in which they

can be used with greater efficiency and not superseded.

To provide a useful framework for concrete tasks, the range of the tasks in question

has to be limited. The techniques described here are most useful for one of the most

common type of software – a CRUD-activity oriented web application, mostly used by

the provided web interface. The application will also have a companion client aimed at

mobile devices and utilizing many of their features. The prototype has been described

briefly in section 1.2.3.

1.2 Proposed solution

The premise of this thesis is that a lot of client side application logic can be delegated to

the server and build a framework on the client side that parses the server responses and

respond accordingly. Put in other words there will be an abstraction layer between the

server and client that will allow the server to communicate rich messages to the client

and the client to process them and act accordingly. The additional layer is called the

1

Functionally Extended Application Response (FEAR) and is described in detail in section

3.2.

The proposed solution is oriented around some core ideas that are in themselves a

well established pattern in software development. The client-server1 architecture is a

venerable player in software engineering, although conceived in times that could not

predict the advent of mobile devices. They did however solve similar design problems:

• need of a point of data storage (FTP, HTTP),

• limited access to hardware capable of significant computing tasks (Telnet)

These two problems persist despite today’s mobile devices being orders of magnitude

faster than early mainframe computers. The need for a central data storage – in terms

of limited data storage – is less crucial now – mobile devices are capable of storing large

amounts of data (especially in text format).

A new need has arisen however – the need for synchronization. A large part of the

populace work on desktop or laptop computers, which are superior to mobile devices

on many terms. While it is conceivable that mobile devices will reach the power and

raw storage capability of contemporary “workstations”, there is little hope of rapidly

overcoming the display limitations inherent to small size2. There are also two other

recognized usability concerns that are frequent in mobile devices: limited connectivity

and inferior data entry[3].

Considering these obstacles, the conclusion is that for now, people need to use both

types of devices3. The segmentation does not mean that some of the performed tasks will

not overlap or use the same data. Personal task management and note taking are great

examples of location areas where it is comfortable to have a data gathering device on the

go, and then use a system with superior display and input devices to organize the data.

This necessitates data synchronization between all these platforms. The problem of

two-point synchronization is complicated enough without the introduction of additional

nodes [4]. This means that a central data hub is a good way of providing synchronization

abilities in a point-to-point fashion. This role is fulfilled by the RESTful API introduced

in section 1.2.1. This thesis probes the boundaries of what is feasible to centralize and

communicate through FEAR.

1It is worth noting that in terms of this dissertation the “server” part is meant in terms of a service,
not hardware, ie. a cloud computing service endpoint is by that definition a server.

2The yet to prove themselves contestants in the so called “screen-less display” field are the virtual
retinal display [1] and bionic contact lens[2].

3It is not uncommon for someone to opt for more layers of devices – for example using a powerful
mobile phone, a tablet, laptop and desktop computer. The technological gap in terms of computing
power and storage space is closing, and the distinguishing factor remains the display size.

2

This is where the concept of the ultra thin client comes in. Traditionally4 the

term “thin client” was reserved for software that filled the former role in client-server

architecture. The “thin” adjective signified that the client did not do all the work by

itself, but rather delegated most of it to the server. A brief introduction to the goals of

the ultra thin client is covered in section 1.2.2, while an in depth analysis of what signifies

an ultra-thin client and how if relates to FEARs is done is section 3.2.

1.2.1 Centralised RESTful API

The term API can be viewed in a variety on concepts. Generally, an API is defined as an

interface that grants the user access to higher level services. The term API in this thesis

is generally meant as the API built as part of the prototype. The distinguishing factors

are:

• Web accessibility – it will be accessed by the HTTP protocol on an end-point

specified by the URI.

• Language and platform independence – the procedure will be defined by the request

URI, header and body and the response will usually contain data that is represented

in a generic notation such as JSON or XML.

• Centralised application logic – the data changes, relationships between entities

and atomic action consequences will only be calculated on the client side and

communicated by FEAR to the client.

1.2.2 Ultra-thin clients

The primary goal of the thesis is to reduce client production time by providing a focal

point in which a maximum amount of data and logic will be processed be the API,

without the need of engaging the client side. This allows for deployment of multiple

client applications for different configurations with the minimum client code needed,

which in turn will bring down the costs for the client applications and, maybe even more

important, lower the cost of future upgrades of said applications.

That goal alone is already achieved by standards used in the World Wide Web –

HTTP servers and hyper-text markup languages coupled with a client in the form of a

web browser form a solid combination to build software upon. Both the data and the logic

are produced in the form of documents on the server-side and presented in the browser

(client). There are standards and best practices that even allow for varying the layout

4The term was introduced in 1993 by Oracle employee Tim Negris and popularized by Oracle founder
Larry Ellison.

3

options, sizes and almost any aspect of the presentation layer depending on the size of

the display of the devices, supported colour depths and so on.

This ideal separation is not without its cost. Lets enumerate some advantages of a

native application written for the Android operating system compared to this web-based

application[5]:

• Non-native usability – the interface of the application on the device is different that

the one in the browser. Depending on the version of the system, and hypertext

standard being used some device interface elements might be different than the

user is accustomed to.

• Hardware feature exclusion – the client device hardware (G-sensors, cameras, GPS

receivers) are unavailable to the application.

• Exclusion of native input methods – web pages are usually not designed to be

operated by touch, nor do they have the capability to respond to platform specific

device input actions (such as the “Back”,“Home” and “Menu” buttons on Android

devices).

• Impossible system integration – mobile platforms allow for many special case scenarios

for application that are not possible to achieve with server side technology (prominently

software run as a system service and home screen “widgets”).

• Large data transfer between the HTTP server and the client browser (see section 2.3).

The aforementioned flaws will put any application in the highly competitive mobile

application world at a serious disadvantage compared with their native counterparts in

terms of user experience. Hence the need for a solution that will allow for the developers

all the advantages of a mobile application without the need to replicate client side logic

for all target platforms (if it can be avoided).

1.2.3 Prototype

The prototype consists of three parts: a central API utilizing the FEAR pattern and two

ultra thin clients (described below). The system is a personal task management solution

designed to comply with a generic task management methodology, developed on an as

needed basic and whose basic premises and entities are described in section 3.1.2. This

particular type of software was chosen because of the following reasons:

• The basic CRUD operations implemented are standard enough so as other application

can directly relate to this model.

4

• The type of application is ideally suited to mobile devices, as its primary role is to

be personal and available for the user at any time.

• There are certain functions required of the client, that can utilize native mobile

device functionality (e.g.. proximity based tasks, services run on the device to

remind the user of the a given task).

1.3 Core concepts

This section defines that mobile devices are and hint at the problem of platform fragmentation.

1.3.1 Mobile clients

This section introduces the reader to the field of software applications that are of special

interest during this thesis. Because of the ever increasing impact that the mobile device

market is achieving, the thesis is aimed at lowering the costs of developing clients for

mobile devices. Mobile devices also suffer from acute platform fragmentation and are

hence good candidates for developing several disparate clients. This section describes

what said devices are, how can they be categorized and the background information on

their development and adoption.

Definition

A mobile client is any client that is run on a mobile device. Mobile devices (also called

”hand-held devices”) are ”pocket sized computing5 devices, typically having a screen

display with touch input and/or miniature keyboard”[6].

The traits of mobile devices that are fundamental for their use are[7]:

• designed to be operated outside of a standard office or home setting,

• hardware resources limited – in comparison to a average desktop or laptop computer,

• smaller in size and weight than the aforementioned.

The above characterization is, admittedly, quite subjective and fluid. However - so

is the field it describes. As with many other modern disciplines, the state of the art in

this one is drastically altered every year, leading to further developments not only in the

technology, but most importantly, in the impact it has on the whole market.

5Please note that hand-held devices that do not have computational ability (such as radios) are beyond
the scope of this thesis.

5

Multi-purpose devices Specialised devices

• Mobile computers
(laptops, netbooks, netvertibles)

• Personal digital assistant /
enterprise digital assistant

• Mobile phone, smart-phone,
feature phone

• Tablet computer

• Hand-held game console

• Portable media player

• Digital still camera (DSC)

• Digital video camera (DVC or
digital camcorder)

• Personal navigation device
(PND)

• Calculator

• Pager

Table 1.1: Categorization of mobile devices with usage specification.

Categorization

Wikipedia lists several classes of mobile devices[6], however the current list (as of the time

of writing) is riddled with inaccuracies and semantic chaos, the most obvious one being

mixing specialised devices with multi-task ones. Table 1.1 contains a more organised and

cross referenced list[8].

The mobile computer category is of particular interest. The term “mobile” is used

as a means of distinguishing them from the classic stationary computers. While laptops,

netbooks and netvertibles are fine for work and travel, they are not so mobile that most

people would consider taking them everywhere they go. Furthermore, the platforms used

on this group of devices is usually the same and their stationary counterparts with a lot

of platform fragmentation issues (mentioned is section 2.1.1 already solved and clients

being a low priority. This is why laptops, netbooks and netvertibles are not be treated

as mobile devices in this thesis.

Because of the hight ambiguity in this field in terms of what constitutes a mobile

device, this thesis focuses on the commercially available and popular devices that first

come to mind when the term “mobile device” is uttered. The primary focus is on phones

with computation ability and also tablets (or tablet PCs). These are the devices that

are predicted by many to be to be the future of personal computing[9][10][11]. This is

the so called “Post-PC” paradigm, distinguished by switching the architecture to the

ARM processor (as opposed to the long-established desktop x86 architecture) and using

multi-touch capacitive touch screens for a more natural user interface.

6

History

The two lists in section 1.3.1 present very different device groups. They differ not only

in technical specifications, but also usage history. Specialized hand-held devices are well

established, driven by the business needs of professionals, that need a portable device to

do a very limited amount of tasks. Their goal is to maximize productivity for a given

narrow band of tasks which are not performed in the same place. The most obvious

examples would include:

• credit card terminals in restaurants,

• portable devices for getting the receiver of a package to sign for it, used by delivery

service companies

The world got a glimpse of multi-purpose hand-help tools with the generation of

Personal Digital Assistant (PDA) devices. While the combination of limited functionality

and less than ergonomic design ultimately proved to be formidable obstacles for the

widespread adoption of said devices, they were also proof of concept that a general purpose

device for mass markets was possible.

Because the role of the standard PDA were gradually transferred to the well known

mobile phone, the market share of the devices dwindled. The growing role of mobile

phones eventually sparked an interest into developing them into multi purpose devices.

There were many milestones in this adoptions, the most notable of which seems to be the

integration of the emerging standard in business communication: e-mail. A Canadian

firm called Research In Motion developed an environment to change the pull-based email

approach into a push-based one by a system called Blackberry Enterprise Services. This

system, coupled with innovative devices setting the standard for comfort, ergonomics

positioned RIM into a leader in the market of business phones (the Blackberry brand

being almost a synonym of a business oriented phone in many markets).

This however was still limited to mostly the business world. As the cost of the

technology went down - producers of standard mobile phones incorporated more and more

of the advanced computing features - most notably internet access through a variety of

channels.

A few more years had to pass for the technical obstacles to be overcome. One of the

universally acknowledged paradigm shifts in the area of mobile device consumer markets

was the release of the first iPhone by Apple in Jan 2007. The devices polished design

experience led to a new paradigm of touch-based interfaces that can be easily operated by

all people regardless of the level of computer experience. The success of the iPhone led to

an ever increasing interest of phone manufacturers. In late 2008, the first smartphone with

the Android operating system was released – the HTC Dream. This market a different

7

kind of revolution: because the system was open, there were no licensing fees and both

the manufacturers and mobile operators could make changes to the system. This allowed

for a wide range of devices to be equipped with this modern operating system, even the

low-end models, leading o a proliferation of smartphone usage that continues to this day.

Today – mobile operating system are run on both smartphones and tablet PCs. The

major ones along with the market share are presented in section 2.1.2. Whatever the

manufacturer or operating system, the fact is that mobile computing is growing rapidly,

akin to the growth of the personal PC in the 90‘s and along with it the need for mobile

applications.

1.3.2 The problem of diversity in the area of client platforms

A client is an application running on the target platform and that is used by the target

audience. When considering the case presented in the prototype section (1.2.3), such

clients are:

• web interface – the main client – due to the fact that web browsers are available

for all modern software platforms6, it is a must-have for any application,

• mobile client(s) targeted at n platforms – due to the rising popularity of mobile

devices, the owner of the application will want to provide a client that can increase

its usability on its users devices.

As described in section 2.1.2, mobile devices run on variety of platforms, four of which

are widespread enough to together make up for over 90%7 of the market. This would

mean that the clients needed to be developer to cover all the main platforms can reach

5 (including the web interface). Without any code-sharing techniques, this would mean

every new client substantially increases the amount of work needed to develop and update

cross platform support for the application.

The problem of mobile platform fragmentation bears many similarities to the fragmentation

of platforms for desktop environments8 and there are efforts to increase the amount of

code that can be shared between mobile clients. The state of the art this field is presented

and discussed in section 2.2.2, where it is also explained that those solutions are based

on the implementation level of the clients, not the conceptual layer.

6Even most mobile devices have web browsers, but these are of varying quality and can offer no
guarantee of web standard compliance, much less cutting edge feature support (like HTML5 and CSS3).

7EU market share, June 2011. A detailed analysis of market share is made in section 2.1.2.
8this has been covered in depth in section 2.1.1

8

1.4 A short summary of the results achieved, their

practical and theoretical significance

The main theme of this thesis is building and API that has as much embed application

logic as possible without sacrificing application responsiveness. Because this is such a

prevalent problem, there are many existing solution, each of which is explored in the

thesis. The proposed alternative solution is one depending on an extended response

(FEAR) from the API that can be handled by the client.

Because the problem is such of a complex nature the achieved results and lessons

learned (described in details in chapter 6) must be narrowed to the analysed circumstances

of building such an application:

• The application is not a one-time-only project

The concept is implemented with either the continuing extension of the deployed

application, in effect saving on coding for all future upgrades, or deploying similar

projects in the future using the same technologies, thus getting ready functionality

via code reuse. This is discussed at length in section 6.3.

• The application does not have an overly complicated data model.

The prototype has only a few main entities and about 20 supporting entities with

quite clear relations between them (see section 3.1.2). While it is not a simple matter

to determine how the rise of complexity would affect the aforementioned system, one

can imagine that the amount of changes that would need to be communicated by

the FEAR would rise exponentially with the rise of show entities and relationships

between them. This however should not be a problem with a decent amount of

computational power and communication bandwidth, and it the issue should occur,

can be remedied by optimization strategies.

• API connectivity must be assured.

Because the client rely so heavily on the API, the connection must be available at

all times. Is the solution requires frequent work without relying on the API, some of

the possible workarounds are mentioned in section 6.4.2. A more detailed account

on the effect in listed in section 6.2.2.

• The application can be stateless.

The application described in this thesis relies on a request-response paradigm for

most of its features. Because it’s a single user system, the system usually does not

even have to poll the server for updates because they are made by the client that

is usually being used and hence any changes are triggered by that client. This is in

stark contrast to applications that require a near direct connection to the server to

9

function optimally (chat clients and multiplayer games for example).

Barring the aforementioned provisions and disadvantages of the approach, there are

also significant advantages to its implementation. These have been described in section

6.2.1. The most significant of these are:

• Sharing business logic with decreased usual negative effects

The FEAR approach allows for centralizing logic like data validation and relationships

between entities without the increased data transfer and decrease responsiveness of

traditional approaches. This allows for more maintainable clients and better control

over data in the API.

• Added value of a ready API

There is substantial value in having a ready, tested and robust API that can be

used by willing developers to implement their own tools and augment the existing

ones. Building an application on top of an API from the beginning assures that the

quality of said is high and the exposed functionality is fully controlled.

• Emergent properties

Possibilities of implementing complex features with little effort can be uncovered.

Section 6.4.2 describes how to leverage the “change” FEAR directive group to assure

up-to-date data in clients with very little coding in the clients themselves.

The overall finding is that the FEAR approach is an interesting concept with very

direct business applicability. Due to the limited nature of the prototype and this thesis

further study is needed both theoretical and practical to better define the parameters of

projects that this approach will benefit most significantly.

Despite the provisions for the approach, the potential market reach is quite vast.

Sufficed to say that some of the biggest web applications in the world right now -

Facebook, Twitter, LinkedIn etc.. could all be implemented using this approach and

would gain some if not all of the benefits described in this thesis.

10

Chapter 2

Problem description

This chapter summarizes the motivation for this thesis and describe the concepts that are

relevant to the proper understanding to the problems posed. The first section provides

background information about the problem area. The second introduces already existing

solutions both conceptual and practical. The last two sections describe in detail the

problems with the current prevalent solutions and propose a preliminary plan of action

to improve upon those shortcomings.

2.1 Software engineering on multi-platform

environments, mobile devices in particular

This section provides the reader with background information regarding the challenges

presented to software development by platform fragmentation and introduce the main

mobile platforms.

2.1.1 Personal computer platform fragmentation

Software engineering has always faced the problem of target platform heterogeneity. In

the beginning software was written in a very low language designed specifically for one

particular hardware type. When the need has arisen for these machines to act together

and communicate, and it was obvious that the computing revolution was there to stay,

engineers have begun to write more abstract, higher level “wrappers” for the lower level

languages. These allowed for more code reuse and increased the productivity and scale

of software development.

The culmination of these hardware efforts was the dawn of the personal computer (PC)

era. Led by Apple Computers and IBM, the hardware for consumer grade computing has

been largely standardized, which brought upon massive growth for the industry. Since

11

the beginning of the PC era to this day, there were always 3 mayor software/hardware

ecosystems that counted in the field:

• Apple Inc. – Mac OS

• Microsoft – DOS/Windows

• UNIX-based and UNIX-like (i.e. Linux) operating systems

All of these platforms had supported (and still support) the most popular programming

languages. So why the fragmentation? The main reason is that the systems have different

modalities – the Mac OS and Windows families were always driven by a graphical user

interface, in contrast to the command-line driven DOS, Unix and Linux. To allow the

software to communicate with the operating system, vendors shipped a programming API

for potential software developers (usually in the most popular programming languages).

The differences if these API were large and driven by the different primary modalities

– one could not write software for all these platforms, although because they supported

popular programming languages, separate software packages could share the logic of

the application, while having to build a front end and communication schema that was

tailored to the target system.

Though roughly 30 years have passed since the birth of the PC, the problem of

platform fragmentation still persists. Cross-platform languages, virtualization and various

frameworks have made it a lot easier for software developers to write cross-platform

software, yet there are still problems that are hard to overcome.

No matter what the cross-platform development strategy applied by the developers,

there will always be subtle errors in the way the software works, which considerably

raises the amount of support the manufacturer has to offer. Another grievance is that

the developers are limited to the lowest common denominator in terms of platform

capabilities, which puts such applications at a disadvantage to native ones.

There are also subtle differences in user interface conventions that will hinder its

usability. Wikipedia provides an example[12]:

“Applications developed for Mac OS X and GNOME are supposed to place

the most important button on the right-hand side of windows and dialogs,

whereas Microsoft Windows and KDE have the opposite convention”

The similarities between the PC and post-PC platform fragmentation are worth

mentioning because they can give us a glimpse of the probable future situation in the

mobile market platform. As described in section 2.1.2, the general platform types are

quite similar in the mobile world, as are the problems facing developers. In summary:

12

• The mobile platform world faces similar challenges that the PC-era encountered in

the last 30 years. In those 30 years, the situation has been constantly improving,

although the problem has not been completely solved.

• Hardware differences coupled with modality and philosophy1 disparities between

software ecosystems will prevent standardization.

• The possible higher level frameworks, abstracting to the common denominator

can be at a disadvantage compared to native platform solutions, both in terms

of function and performance.

2.1.2 Main mobile platforms

Mobile operating systems can be categorized into two distinct groups: OEM systems and

smart device operating systems. The differences in these two categories revolve around

the computational power of the device and the range of devices they support.

OEM systems are currently the more popular category as a whole, mostly due to the

popularity of feature phones – low cost mobile devices that are primarily used as phones,

but can also perform other common tasks (such as web browsing and email access). The

most popular of these is Symbian2, developed by Nokia. Most other prominent feature

phone producers make their own OEM systems tailored to these devices.

Despite their popularity, OEM systems are not a promising area for mobile development

– the fragmentation, lack of programmer support and limited device resources prove a

formidable obstacle for would-be developers. What is more, there is a steady decline

in feature phone sales, with 2,5% feature phone users switching to smart phones every

month , the “tipping point” when the amount of users with OEM system will be less

than those with a new OS, is predicted to be in June 2012[13]. Most of the feature phone

producers have already announced the discontinuation of their proprietary systems in

favour of smart device OS.

Operating systems for smart devices are more promising for development. At this

time, there are 5 main competing operating systems in this field (in alphabetical order):

Google Android is an operating system backed by the Open Handset Alliance – a

joint effort of several companies in a diverse area of fields, from hardware manufacturers

to legal services. Android in as open source operating system based on the Linux kernel

1Platform philosophy (or guiding principles) are at least (or even more) as important as the technical
side. The Apple philosophy of ”It just works” stands in stark contrast to the heavy tinkering required
in some Linux distributions just to install the system and get it up and running.

2There is some controversy on whether Symbian should be classified as an OEM OS – mostly due
to the fact that a lot of the devices that were deployed with the systems should be described as
smartphones. Two facts however support this opinion: Symbian is used mostly in Nokia phones, and
has been discontinued, which conveniently places it in the “legacy” category with other OEM systems.

13

supporting a very wide range of devices: phones and tablets and even intelligent home

appliances.

Android is also the operating system that is the target of one of the clients for the

prototype of this thesis (see section 5.1.4).

iOS – used by Apple Inc. in the iPhone and iPad products. Created with ease of

use and simplicity in mind, it is supported by a formidable ecosystem of applications

(available via Apple AppStore).

Windows Phone, Windows Phone 7 – a product of Microsoft, the latter is also

announced by Nokia to be their primary phone operating system

BadaOS/Tizen – BadaOS is a system designed by Samsung Electronics to provide

smartphone level support of applications to low level feature phones3. Tizen is a next

generation operating system currently in development, with first devices planned for Q2

of 2012. The system was based on MeeGo, developed by Intel and Nokia and is planned

to be merged with BadaOS.

BlackBerry OS / QNX – developed by and powering the mobile phones of Research

In Motion, these systems are especially popular with business clients. While the Blackberry

OS is an established, yet diminishing brand, the QNX is a new system developed to power

the new wave of touch screen enabled mobile devices.

Market share

Current market share for different operating systems is shown in figures 2.1 and 2.2.

The markets described therein are somewhat different in that the EU has, on average,

a consumer willing to spend more on electronics. On the other hand, the markets are

quite similar because the gap between the UE and rest of world is filled by even bigger

consumer markets like the USA, Canada, Australia and Japan. Both markets display

some similar tendencies:

• Rapid increases in Android market share, which can be traced to a massive amounts

of released hardware in every price range.

• A decrease in Symbian shares. This is to be expected and to accelerate even further,

due to the abandonment of the system by manufacturers. This trend is less prevalent

in the worldwide scale due to a large role feature-phones play in massive emerging

markets with low-price consumer demand (mainly India and China).

3After Google Inc. acquired Motorola Mobile in July 2011, Samsung covertly reinvigorated their
efforts in this mobile system for fear that the primary developer of the Android platform (Google) would
favour Motorola in terms of hardware support. Samsung has not announced any changes in their strategy
and officially plan to support the Android OS.

14

• Custom system are declining – as smartphones gain popularity, manufacturers tend

to switch from self made systems to the open source Android platform.

• The BlackberryOS is slowly declining in popularity. This can be traced to the

general decreasing satisfaction with Blackberry handsets with consumers worldwide.

Figure 2.1: Mobile OS market share in time (worldwide). Source: [14]

Figure 2.2: Mobile OS market share in time (European Union). Source: [14]

2.2 Current state of the art

This section describes the current trends in dealing with the problem of platform fragmentation.

The solutions are divided into groups of similar approaches to the problem and the most

significant implementations of these problems are introduced.

2.2.1 Solution segmentation in general

There are a few main solution groups to overcoming the problems inherent to developing

clients for disparate software platforms. Below is a summary of those approaches along

15

with the distinguishing factors and examples of popular frameworks that allow for creation

of software that uses them.

2.2.2 Mobile web applications

Building upon the swift rise in popularity of the techniques to be soon proposed in the

HTML5 standard, there are several advocates of using standard web technologies to build

cross-platform applications and using the native browser to access these applications

[15][16][17]. There are already many popular application frameworks that facilitate

creating touch optimized browser interfaces.

This is often a good choice when there is need to build a fairly consistent experience

between desktops and mobile devices. The applications will, however suffer from all

the drawbacks of non-native applications mentioned in section 1.2.2. Depending on the

solution, there can be problems with older legacy devices and systems shipped with less-

than-perfect default browsers.

The following are three of the more popular frameworks created to aid the developers

in providing a better user experience for mobile devices:

• Sencha Touch,

• jQuery Mobile,

• SproutCore.

2.2.3 Multi-OS native application engines

This group of solutions is geared towards using the framework to build several native

applications using a single code base. The companies also offer a build platform that

allows distribution of application packages without the need to compile them. Due

to the relatively small gap in philosophy of mobile device operating systems, these

solutions provide for utilizing a large subset of device functionality while keeping the

native interface and functionality, which allows them to supersede most limitation listed

in section 1.2.2.

Still – the gap between the mobile and desktop settings is apparent and despite

that some of these solutions provide the ability to build the applications for desktop

environments (i.e. Appcelerator Titanium[18]), in practice the code base has to be

versioned manually to bridge these gaps.

From the solutions mentioned below, only Rhomobile Rhodes4 uses a “non-web”

4Rhodes does use web technologies, but they are aimed to be the View of the paradigm, all of the
business logic is designed to be written in Ruby.

16

technology – the Ruby programming language – other frameworks use only a combination

of HTML, CSS and JavaScript APIs for accessing the hardware features of the devices,

which make them better suited for programmers with a web development background.

• Rhomobile Rhodes,

• Appcelerator Titanium,

• PhoneGap.

2.2.4 Other - Adobe AIR

Adobe AIR (Adobe Integrated Runtime) is a runtime environment from Adobe Inc. that

allows for building applications that can the run on any supported platform. Because the

resultant application is run in a sandbox, the consistent look is assured on all platforms.

This does come at a cost; AIR does not support native client interfaces, but does support

device hardware functionality where available (camera, GPS, accelerometers etc.)[19].

The platform was esteemed as one of the best options when the application being built

needed a custom interface due to its character – the lack of native UI elements was not

a problem then.

The sandbox and custom runtime environment however prove to be quite resource

intensive and hence are not recommended for older devices, somewhat limiting their

reach.

Also – the platform has lately been assigned a deprecated label. First, Adobe announced

that it would be no longer planning on developing the mobile version of Flash Player,

which is the internal rendering engine of the AIR platform. In late 2011 Adobe announced

that it would be instead working on developing tools and runtime environments for the

emerging HTML5 technology stack[20]. Later the company acquired Nitobi, the developer

of PhoneGap, mentioned in section 2.2.3. These moves tend to show that AIR will be

superseded by another framework based on HTML5 in the near future, however the

lack of a specific stance from Adobe might signify that the company is diversifying it’s

portfolio and will continue to support AIR as a tool in areas that the framework excels

at – delivering a consistent, media-rich user experience.

2.2.5 Conclusion

Despite all the efforts and products aimed at providing the developers with cross-platform

techniques for creating mobile applications, there are still a lot of unanswered questions

17

and unsolved problems. Coupled with the dynamic rate at which the market is changing

leads some experienced developers to doubt a reasonable solution is possible and focus

their efforts at streamlining processes for building applications for all major mobile OSes,

or just those that are expected to be the most cost-effective. These sentiments are evident

in the following words of Carol Realini[21]:

“You just get used to it. If you think the world is all about iPhone and

Android, just blink and it will be something else. It’s going to be a fragmented

environment, and it will depend on your application.”

Others offer a dissenting opinion, looking to one or more of the aforementioned

solutions as the silver bullet that will allow the developer to focus on platform agnostic

software development in the future[16][17].

This thesis proposes a solution that is a conceptual one, and hence can work with either

of the possible future states, but it is probably more valuable of a tool in a fragmented

market and also in situations where deploying additional clients to other than mobile

devices is expedient (like non web-based desktop applications).

2.3 The pitfalls of the traditional client-server

architecture

The root of the problem with traditional web page interfaces is the round-trip done

between the HTTP server and the browser to accommodate every request.

Figure 2.3 is an illustration of the standard process. Because HTTP is a stateless

protocol all the communications are self-contained and independent of each other, we

will however want to distinguish between the first user request (Rq1) and subsequent

ones (Rqn).

The process is initiated the user sends a request, usually with the GET method

indicating an action that he wants to accomplish. In the first iteration, this would be

accessing the application main page or login page. The server sends back the response,

along with 100% of the web page code. Subsequent actions from the user also get that

response. Let us assume that the user action requires the code to be changed by n percent,

where 0 ≤ n ≤ 100. Depending on the application, and the usage profile, n will vary

greatly. What that means however is the response body is (100− n) percent redundant

on subsequent requests. This means that the time is takes to send the redundant part

to the browser and render it is wasted. Also – the redundant data will lead to increased

costs in data transfer.

18

Figure 2.3: Basic browser – server communication during a web based application life
cycle

This was the motivation for developing technologies that would limit the amount of

redundant response text. The most frequently used technology currently is the use of

asynchronous requests that on return are parsed by JavaScript and manipulate the DOM

to change the affected areas. This is what’s most often referred to as AJAX. Depending

on how this is implemented, this can cause a major improvement in response utilization.

The early versions of such implementations usually handled this by replacing a whole

container element of the DOM model related with the action that the user did. This

facilitates the need to generate the markup on the server side and then replace a whole

DOM node with a new one and was an effective technique provided the page elements were

not to dependent on each other. Modern JavaScript allows for a much better utilisation

ratio because the markup is generated on the client side, and only the updated data

elements are sent by the request. Figure 2.4 shows the difference between these two

approaches. In the example the response body length for the two approaches were 170

and 92 bytes, which constitutes an almost 50% decrease.

It must be noted that it would be very hard to achieve results that are close to n.

This is because even in the most efficient ways of data transfer, there has to be some

amount of meta-data to identify the DOM elements that need to be changed.

19

Figure 2.4: DOM node markup substitution vs data substitution.

2.4 Improvements suggested to the presented

technologies

The improvements upon the traditional HTTP round-trip model described in the latter

part of the last sub chapter go a long way towards making it a more efficient standard for

building web-based applications. This thesis focuses on the more efficient data response

model as a basis for later implementations.

It does however have its own challenges:

• In order to properly handle the incoming data, there must exists a unique data

mapping contract between the server (for embedding meta-data) and the client (for

parsing said meta-data, translating it the appropriate DOM node and changing that

node). An in depth description of such a problem and an implemented solution is

presented in section 6.1.1.

• There are several other ’events’, that can happen to a data object besides updating -

it can be deleted, closed, locked for editing etc. These events need to be handled and

contracted. The basic elements, their significance and process of passing between

the API and client are discussed in section 3.2.

20

Chapter 3

Project premises and philosophy of

FEAR

This chapter lists the basic premises of the application prototype, along with a basic

architecture entities and goals.

Section 3.2 introduces the Functionally Extended Application Response (FEAR), how

can it be used to increase the server side code percentage and the example specification

of directives that it can send to a client, along with examples how are they used in the

prototype.

3.1 Premises and architecture

This section gives an overview of the application in terms of the elements that it’s meant

to manage, and the premises on which it is based.

3.1.1 Prototype premises

The following are the basic premises of the project in terms of the resultant prototype

as a software product, along with the practical aspects of their implementation and

expectations:

• The product consists of three elements: a back-end (API), a web client and a

mobile application. The first two are implemented based upon the same application

framework (see sections 5.1.2 and 5.1.3) and hence have one code base, but should

be treated conceptually as separate entities. The mobile application is completely

separate and built using the Android Software Development Kit (described in

section 5.1.4).

21

• Developed by a team of 1 programmer/web developer.

• The primary goal is be to test the assumptions of this thesis.

• There is no project timetable – it is created on an ad-hoc basic as a response to the

constraints of the thesis itself.

• Beyond the use of the product as a prototype, it will be developer further as an

open-source project that aims to fill specific needs described in other documents1.

It should be noted that the future of the project, whilst relevant to this thesis as

point of reference for future development, will only be considered when explicitly

noted.

3.1.2 Application entities

Figure 3.1 shows the relationships of the basic business entities in the system. Below

are subsections describing each of these. The descriptions do not contain relationship

information unless they go beyond the simple role of containment and categorization.

Figure 3.1: Basic entities of the prototype application, with relationships.

Next action (NA)

- the basic element of the system — it represents an action restrained in time, space and

complexity. This is the most used element of the system. All other elements exists solely

1These were created as a project on another venture and will be released in the form of a project
roadmap along with the source code

22

for the purpose of better management of these “next actions”. NAs can have 3 distinct

statuses: “current” ,“waiting for” and “future”. These statuses are used for displaying

the type of task that the user wants the see at a given time. The two statuses besides

“current” represent an action that cannot be immediately acted upon. The “waiting for”

status signifies that an action has been deferred to something beyond the scope of the

system (like some other person or occurrence), while the “future” status is given to any

task that has any incomplete dependent task.

Task dependence is a concept that allows creating a set of simple, concrete actions

leading to the desired outcome, which is one of the primary tenets of the GTD system.

All action in this chain have to belong to the same Project. An action can depend on

zero/one or many other actions.

Project

This represents an desired outcome, accomplishment of which is predicated on completing

two or more actions. Because the outcome can prove elusive even when all of the project

NA are accomplished, setting the project as completed requires a separate action from

the user.

A project may be marked as “someday maybe” to distinguish it as a low priority goal

that is set in the far future. The user should have the ability to review these projects

and be reminded to do so on a regular basis.

Tickler

This is an element that should be a reminder for events that should happen on a specific

date. One common use of such is to create a tickler for “waiting for” status NAs to

remember to follow up on a specific action. One can think of ticklers as Next Actions

with an expiration date.

The used interface should treat these elements in a special way. The most important

distinction is that the Ticklers that are due on today (and those that are late) should be

easily visible to the user, to the point of being annoying. Another feature of the UI is

that it should allow for rapid rescheduling of any tickler to some date or a fixed number

of days (1, 3, 7, 14 days). There should also be an option to reschedule by a random

numer of days.

Ticklers can be recurring, with a set recurrence level (a week, fortnight, month). Upon

completion of such a tickler, a next one will come up after the defined amount of time.

Ticklers can be set only to a date, and not a time — they are not meant to be a

replacement for a day planner but rather as complementary.

23

Realm

Structural element that allows for organizing all the other entities mentioned in this

sector. It is designed as a global separation tool for areas or our lives that are completely

separate in terms of their tasks. The most common example would be the separation of

“personal” and “professional” realms.

Realms should be prominently featured in the applications UI and the enabling/disabling

of these should show/hide the elements visible on screen to only those listed in the active

Realms. This is a tool that will help the user focus on the types of Next Actions what

he can/should actually do at this time, while uncluttering the interface.

On the technical side it is worth noting that user interaction can be one of the most

intensive events, due to the large amount of elements that need to change state on screen

while toggling Realms.

Context

Defines a time, space, resources or other frequently occurring circumstance that facilitate

completion of an NA. A list of Actions for calling client would nicely fit into the “@Phone”

context. In the personal Realm, it is nice to put things in the “@Drug store” context and

bring it up next time that you are near. Coupled with some sort of geolocalization device

and list of categorized destinations we could for example have a mobile application that

alerts the user that he is within 100 meters of a drug store and he could take care of these

tasks.

Area

An important area of activity for the user. This is a totally optional element, but worth

exploring as it provides some added value in the system as a whole. The point of the

Area is to help the user live a balanced and focused schedule. This is accomplished by

first prompting the user to input the Areas of his/hers life that are deemed important.

All project and action can then be put into one or more of these Areas. The system can

then report the number of tasks completed in each of these Areas and present the NA

list with the ones belonging to the most “neglected” Areas at the top.

Areas can also prove useful in a business setting. The classic managerial roles:

Planning, organizing, deciding, motivating and controlling can be defined as Areas to

make sure that one of these is not forgotten. Further developments may lead to the user

assigning priorities to these Areas as well as having the ability to define the level of advice

the system provides automatically.

24

3.2 Functionally Extended Application Response

(FEAR)

3.2.1 What is an ultra thin client

The definition of an ultra thin client is simply this: an application that aims to minimize

business logic while maintaining a high degree of interface responsiveness.

The first and most important goal is quite clear: minimizing business logic in the

client itself, and hence maximizing the amount on the server, is a feature that will help

minimize the costs of subsequent client applications and also their further development

(upgrading).

This must be amended be a second goal: competitive interface responsiveness. The

first goal could be fulfilled with only a browser as a client with all the pitfall described in

section 2.3. This was the dominating model of web design since the dawn of the Internet

and has since been phased out by techniques that allow for a more responsive interfaces

(see section 5.1.3 for a an overview of these techniques).

The reach a point where the client is driven by the server, we should introduce an

intermediate layer. Because of the chosen software architecture and protocol (HTTP), the

communication from the server will be sent to the client only as a response to said clients

action. This response contains, in it’s body, the functional directives on what the client

has to act upon. This response will be called the Functionally Extended Application

Response and is the subject of the next sections.

Figure 3.2 represents the role of FEAR in the request/response pattern of the HTTP

protocol. The coloured nodes represent the process of generating, processing and running

the functional directives that are described in section 3.2.

3.2.2 Basic rules of FEAR

FEAR pattern/style/philosophy is a concept that entails two actors – an API (server)

and a client, where the server assumes a role wherein it is responsible for a part of the

clients execution by issuing an extended response. This response is called the Functionally

Extended Application Response or FEAR. The following are the basic guiding principles

of both the concept and the actual extended response – the FEAR instance.

Concept principles:

• Opt-in basis – the client send a response and by an appropriate header signals

that it is ready to accept a FEAR.

25

Figure 3.2: The request/response process with a functionally augmented response
characteristic.

• Directive-centric – a directive is a primary message of FEAR, conveying a specific

event, occurrence, command or suggestion.

• Customizable – the directives are application domain specific and can be customized

between them.

• Pragmatic – primary concern is achieving business goals.

FEAR(instance) principles:

• Is a response – the FEAR is transported in the body of an API-generated response

to a client request, the content type should identify the body as a FEAR

• Externally described – FEAR does not contain meta-information, it is described

in the headers of the transporting response.

• Client-interpreted – a directive provides the client information on what happened,

the client is responsible for acting on the directive and the API cannot assume

anything about the clients actions.

• JSON encoded – is encoded in the human readable and easy to parse JSON

format.

The strong suites of the style lies within its agility and ability to design software that

is more maintainable, more structured and to do so with greater code reuse.

26

3.2.3 Functional directives in FEAR

When a client makes a request to the client, there should be two possible response types

that can be generated by the API. The first is a standard response that would be generated

if no functional directives were generated by the API and thus the client should not run

the FEAR parsing engine. The content type of this response should be that which is

given according to the data (in the prototype, the JSON data mapper is used and hence

the content type should reflect that).

The second is a response that transfers one or more functional directives. The possible

directives are presented in figure 3.3 and described in some detail in the next subsections.

The figure represents a conceptual model of FEAR.

Figure 3.3: The categorization and specification of FEAR directives used in the prototype.
(Possible collections of given entities signified by trailing braces).

27

It must be noted that the structure of the Functionally Extended Application Response

presented here is just a suggested structure, not any kind of effort for standardization.

It is not only possible, but also recommended to change the structure of the response if

the application domain requires it. This is reflected in the directives themselves – some

are generic and easy to fit into any application (the msg and change groups), other are

applications specific (i.e. events group).

It is also worth noting that a document describing the elements of FEAR is a one

sided contract, much like an API service method specification. The API is obliged to

provide them, but clients can use or ignore them2. Furthermore, any client using the

same API can implement and act upon any part of FEAR .

Message (msg)

This category of functional directives contains messages that the API generates for the

user of the client. They are grouped into three categories that signify different severity

of said messages. The directive contains: the actual message content (msg), the model

name (model) and the model ID (id). The last two attributes are only set if the given

messages relates to any particular model element or collection. That way the client can

display the messages in places directly adjacent to the element that they are related to.

In special cases each message can also contain a hash table of data (data).

The sticky and header attributes are additional meta-data, the first helps the client

determine the intent of the message by signifying whether it should be a permanent

information or whether it is ephemeral and can be discarded automatically shortly after

showing it to the user. The second attribute, header, if it is set, defines an additional

title or category for the message to be displayed before it.

Please note that like all directives, these are merely notifications of what, if anything,

happened. The actual completion status of a given request is always signified via the

response status code (as stated by REST style) and that should be the primary indication

of deciding upon client actions that rely on that status.

The messages here relay any kind of communication from the API to the client user.

The client can act as a moderator for this communication channel, showing the user

messages of only a given type depending on the current modality of the interface. The

client can also suppress messages in some situations either ignoring them or saving for

later retrieval.

Some examples of situations when an API would return FEAR with a msg directive:

• validation failed – data validation for adding a new item failed. Because the

2This is in stark contrast with the status code of the response, which should be respected by the client
and acted upon accordingly

28

validation of the model failed on the API side, it should respond with one or

more messages describing the type of validation that the item failed and possibly

instructions for proper addition. Please note that the client should notice the error

in the response status code and keep the yet unsaved data. The errors from the API

should have the model name set via the model parameter and hence the client can

tie the status code and errors relating to the tried model as an indication that the

insertion operation failed, and display the resulting error messages near the data

that failed validation. The attribute array allows for the API to tie the message to

a specific attribute of the model, providing finer control and giving the client the

ability to provide more meaningful visual cues to the user.

• warning – a similar item already exists. In the example of the prototype, a user

could want to insert a Next Action with an identical name to some action that was

inserted earlier. This can easily happen due to the user forgetting about already

inserting this task. The system can warn the user of the possible duplication that

is about to take place so that he can reconsider and maybe remember the former

occurrence. The client could present this warning next to the removal button for

the newly inserted action.

• info – user has completed a set number of actions for the day. This message might

pop-up after an action has been set as completed and the threshold of tasks for the

day has been completed. This message is not related to any element, but rather

describes the global state. Please note that in such a case, the client does not even

have to be aware of the existence of such an action counting feature (thus, it does

not have to be implemented on the client side, but works from the users point of

view).

Change (change)

This directive that some changes have occurred that reach beyond the immediate scope of

the current client request. This most frequently occurs when elements are changed that

are related to element being currently operated upon. Such interdependencies between

entities in an application are subject to frequent change and are best addressed on the

server level. Please also note that this type of functional directive is a very generic

feature bound to turn up in all of but the simplest applications and hence should be

always implemented.

The change group has directives that directly correlate to the type of change that an

entity can be subjected to. All of these have target identifiers where model signifies the

model name and id is the id number of the specified element.

29

The update directive signifies that one or more of the entities attributes have changed

as a result of the current request, and the new data array specifies a list of these attributes

along with new values (if not set, the assumption should be that the whole entity should

be considered as changed). The del directive signifies that a particular entity has been

deleted, and new that one has been created.

An example of such a directive could the deletion of a particular project. Such a

request would result in a response that would consist of n change/del directives with

a model of NextAction where n is the number of Next Actions that were assigned to

the project. The client could remove these tasks from all open views despite not doing

anything directly related with deleting tasks.

Special event (event)

The special event directive is an application specific domain of directives that allow the

API to communicate that a specific circumstance has occurred that the client should

know about and be able to properly handle them.

At first glance, this can (and should) be viewed as a mechanism for introducing a new

feature and hence a bit contrary to the whole concept of the API-driven client. That is

because if there are specific, specialized types of events, the client must know in advance

of what a specific event means and what to do with it. But there are cases in which

communicating such events will save client side coding. The specific examples of such

events based on the prototype give cases studies on their usage.

There is also the possibility for some of the below events to be communicated as

common messages (directive typemsg/info), but there are reasons for considering them

as separate entities. See section 3.2.4 for an in-depth discussion of the topic.

The tickler activated special event is a way for the API to communicate to the client

that a particular Tickler has reached a state in which it should be highlighted and

displayed prominently. An alternative approach to such a notification might be to poll

the API every predefined amount of time checking for active ticklers. This technique

however saves on data sent, as the request is given only when a user action is performed

(signifying that the user is interacting with the client). The important thing to notice

is that the API controls when that directive is sent, giving the opportunity to fine tune

application behaviour without the need to modify the client.

area neglected is an event that could signify that a particular Area has reached a

threshold of negligence and that something should be done about that. Because the

process of calculating the “negligence level” can be a very complex one and very prone

to change it is again important to note that the API controls all of said mechanisms and

the client only handles the resultant actions that need to be taken.

30

3.2.4 msg or event

When considering the two directive groups of FEAR, it should be noted that they can

overlap and the decision if a given circumstance is an event or a msg is not immediately

evident.

The primary advantage of the msg directives like info is it’s generic nature and high

chance of implementation on the client. Because of that it’s basically guaranteed to be

processed and communicated. This provides a lot of flexibility for future upgrades and

the ability to convey messages about previously unforeseen features to the users without

the newest version of the client.

This generic approach however does have a drawback – it has no way on convening

data about the message itself, and therefore the client has no way on acting on a specific

message, because of the lack of perceived semantic meaning (apart from the less-then-

reliable text analysis techniques). The only meta-data the message has is its specific type

within the msg group.

Would adding meta-data to specific messages help with this? Yes and no. If the

message is generic to applications in general, it should be included in the msg group with

additional meta-data. An example of such a data-augmented message is the validation

directive. It represents a very common case in which the validation of and added or

updated entity failed on the server side. For the client to present the validation failure

messages in a meaningful and ergonomic way, it needs information on specific messages

relating the attributes. This is clear extended data related with the validation messages.

This is, however, a very common case and should be treated as a standard level

message.

To better understand the difference between msg and event groups, let us analyse the

event group directives for the prototype in terms of why they are not advisable for the

msg group.

At first glance – all of the special events seem to be messages – they all convey a

certain occurrence within the system itself, whether it is a Tickler or Context that has

become active, or the warning of a neglected Area. However, to be useful to the user these

messages in themselves need further data. Let us consider the tickler activated directive:

when a Tickler becomes active and this would be instead a msg with no additional data

beyond the text of the message, all the client could do in that situation is display the

message (that would probably suggest to the user to use the interface to reach the newly

activated tickler). If, however, the directive contains additional data about the type of

event that happened, the client can display some familiar icon depicting an active Tickler.

So – a msg group directive with additional meta-data, not unlike that of the validation

directive, would serve its purpose.

31

That is the reason for the other criterion: such messages should be taxonomically

separated if their messages resides in the specific application domain. The first reason for

this is that such messages can easily be distinguished from the basic lower level messages

belonging to the msg group. A second reason: events do not always have to be messages

that should be displayed to the user; they can be events that only the client should

respond to and the user does not participate in such a communication.

Another, more distant reason is that such a separation can be used in the future to

build a generic FEAR level specification, where the event group would be the only name

space that is open to modifications by the application.

The summary of the above decision process is illustrated in figure 3.4.

Figure 3.4: Partial directive classification decision process.

3.2.5 Summary

The FEAR philosophy is a pragmatic, simple concept with potential advantages if used

correctly and for the tasks that it was supposed to accomplish. This chapter has introduced

the basic tenets of FEAR and provided with a skeleton specification of the directives that

can be used in the prototype, along with the rationale for including them that can be

used as a starting point to building further specifications.

32

Chapter 4

RESTful APIs

This chapter gives an overview on the crucial architectural style underlying the FEAR

pattern – REST – what is it, where does it come from and how it can be leveraged to

build APIs. There is also a discussion on the benefits and disadvantages of building a

REST API compared to other competing technologies and concepts.

4.1 About REST

This section is be about the REST architecture: what is it, and what it means when an

API is “RESTful”. There is also a discussion of whether the API implemented as the

prototype strictly adheres to the REST guidelines.

4.1.1 What is REST

Representational State Transfer (REST) is an architectural style devised by Roy Fielding

in 2000 and formed by applying a set of constraints to elements within the architecture.

The basic1 constraints defined in Fieldings dissertation are [22]:

• Client – server architectural style

The concerns of the client and server are separated, improving the portability of

the client and decreasing the complexity of the server components. It also allows

the

• Stateless Each request from client to server must contain all of the information

necessary to understand the request. There should be no need for the service to

keep users’ sessions; in other words, each request should be independent of others.

1The optional “Code-On-Demand” constraint is omitted as not relevant to this thesis.

33

• Cache The underlying infrastructure should support caching, preferably at different

levels. Data within the response should be labeled as cacheable or non-cacheable.

This allows for increased efficiency and client-perceived performance by limiting the

time of a series of interactions.

• Uniformly accessible elements Every resource should have a unique, identifying

address and can be modified through its representation. Furthermore, messages

should include enough meta-information to allow for their processing.

• Layered System The system architecture can be comprised of several hierarchical

layers, which should be invisible to client so that it just accesses one layer.

4.1.2 Primary characteristics of RESTful web services

Below is a list of “practical” characteristics of an API designed in the REST style.

Resource URIs

All resources should be available via a location specified by the URI. A resource URI

in REST loosely translates into Model in the MVC pattern. Resources can also be a

specific collection of models of the same type or a specific variant of model. For example,

the prototype exposes Next Action models under the ⇒ /next actions URI while also

exposing them under the ⇒ /next actions waiting URI, the second URI points to a

list of models that have their status set to ‘waiting’. Because of the routing role of the

Controller in MVC, it is responsible for generating a response from the URI.

The REST style does not provide any strict guidelines as to how these URI should be

constructed, but there is a de facto standard that has emerged amongst the applications

implementing the style. The popular convention is shown in table 4.1.2.

The URI can be used as a way if signifying which resource should be operated upon

while the request method signifies what should be done with it. The rows in table 4.1.2

signify the type of operation mapped the standard HTTP request methods.

Using HTTP standard status codes

When a client sends a request it expects a response depending on the status of the

operation sent. When not using REST, this is often done by sending a response with

data about in the body that specifies the status of the request. RESTful APIs use the

standard HTTP response code to convey the status of the request. Additional response

data can be sent in the body, but it’s generally a description of what happened rather

then whether something actually happened (the status of the response).

34

Resource Collection URI, such as
http://app.url/next actions

Element URI, such as
http://app.url/next actions/1

GET List the URIs and perhaps other
details of the collection’s members

Retrieve a representation of the
addressed member of the collection,
expressed in an appropriate Internet
media type.

PUT Replace the entire collection with
another collection.

Replace the addressed member of
the collection. If it doesn’t exist, this
will fail!

POST Create a new entry in the
collection. The new entry’s URL
is assigned automatically and is
usually returned by the operation.

Treat the addressed member as
a collection in its own right and
create a new entry in it.

DELETE Delete the entire collection. Delete the addressed member of the
collection.

Table 4.1: Performance at peak F-measure:. Source: [24]

Meta-data in headers

A REST API should be agnostic to the content type that it can serve provided the

content can be transmitted by the protocol. Also, single resources can have multiple

representation types. In the prototype, some resources can be transmitted as HTML

markup or pure data in JSON format. The client should therefore specify the type of

content that it accepts and also the type that the response is in. These standard tasks

are achieved by standard HTTP request headers, for example by setting a “Content-type:

text/html” or “Content-type: application/json” to the response by the API in response

to an analogously set ”Accept“ header. There are several other standard headers that

are used in APIs, a reference of which is the HTTP standard (RFC 2616)[23].

Besides standard headers, there are also tendencies to append additional custom

headers to requests and responses. These are usually prefixed by ”X-” and are to be

used to convey meta data in the communication between API and client. An example of

such a custom header would be to indicate the version of the API to be used by sending

a ”X-API-Version: 1.0” header. The custom header approach is sometimes considered

to not be reliable due to the fact that custom headers can be stripped by proxy servers

between the client and the API.

4.1.3 Is REST a standard?

Due to the widespread interest that Fieldings dissertation has drawn REST has become

a “buzzword”. On one hand there are many web services that claim REST compliance

despite not conforming to the constraints defined in section 4.1.1. On the other hand,

35

some people try to “fine tune” the claim made in the dissertation as a logical consequence

of said claims. Both of these approaches are chastised by Fielding as violating the spirit

of his work[25][26].

There are voices in the discussion that suggest making REST into a standard, to be

able to better control which implementation can actually use the acronym and what that

constitutes. Fielding himself is opposed to this idea, because “To the extent that such

a document is possible for an architectural style, that document is my dissertation [...]”

and “you will get is a committee that has some vague notion of what they consider to

be design to write down the least common denominator of misinformed “best practice”

based upon whatever Microsoft chose to implement in its last release”[25].

These discussions have repercussions for this thesis. Based on the explanations

Fielding has given over the years, clarifying the statements from the dissertation, it

is apparent that he wants to keep the definition of REST as an architectural style as

strict as possible. There are some elements of the API proposed in this thesis that might

be contrary to Fieldings vision. Some of the controversial features (or lack thereof) are

fixed resource names.

Fixed resource names are not currently supported because the version of the API

given does not have a feature that would allow it to instruct clients on how to construct

appropriate URIs. Fielding considers this to be a domain-specific standard, equivalent to

server-client coupling[26], which he deems to be in a serious violation of one of the base

premises: the “Hypermedia as the engine of application state”. These features might be

implemented to the API in a later iteration, but the Agile methodologies for the project

set working software as a priority, and hence will be delayed until there will be practical

reason for adhering to the rules devised by Mr Fielding.

That is why, with respect to the opinions of the author of REST principles, the API

built as a prototype for the use of this thesis cannot be formally described as RESTful,

but rather built in a style that is built upon REST. For simplicity however and due to

the fact that at some point in time, the prototype is to be compliant with the above

described principles the thesis continues to refer to the API as RESTful.

4.2 Alternative conceptions

This section focuses mostly on the differences between alternatives to the choices presented

in this thesis. These are:

• Choosing a non-REST web service API implementations.

• Choosing an alternative back-end strategy, including the client-only strategy.

36

4.2.1 REST vs SOAP

Most of the advantages that are described in this thesis when talking about a back-end

REST API also apply to any web service that can respond with a FEAR message. The

most popular standard for building web services besides REST is SOAP. The subsection

gives a quick overview of the two and provide reasons for choosing REST in this thesis.

Let us first focus on the shortcomings of REST in comparison to SOAP.

SOAP is a protocol that is an acknowledged standards and has established guidelines

for creation of web services. REST is more of a philosophy with a wide range of potential

applications, often misunderstood (see section 4.1.3). Due to SOAPs status as a de facto

industry standard, and also due to the predictable nature of web services built upon it has

a thriving ecosystem of software, tool chains and supporting standards. REST services

are more heterogeneous and hence cannot be supported in a similar fashion.

When building an API in REST, the more advanced features of the system are usually

designed and implemented onto the system by the programmer using an established

pattern[27]. The example for this would be securing web services. SOAP has the

advantage of having an open source server that support the WS-Security standard out

of the box. With Apache Axis2, SOAP services can be secured in a standard and widely

understood way. A REST API could also use the features provided by Axis2, but it would

undermine some of its most significant advantages, and would be a path less travelled and

hence more cumbersome. A more standard way of securing REST services is by using

two-legged OAuth. This however is more of a pattern that an industry standard and

hence the programmer is left with implementing it himself or using a third-party library.

Another scenario when SOAP is better than REST in when the service model is

oriented around a large amount of complex data types. The WDSL standard and various

tool chains allows the developer to easily disclose the available data types and services

that operate on them. The client applications can then be developed using tools that

generate code from this WDSL, giving the developer a framework to work on. REST does

not have such a standard for service data exposure and hence has to be supplemented

with documentation.

In this thesis however we are focusing on systems that are quite different from the

ones usually built with SOAP. The proposed system:

• has a relatively simple data model

• is meant generally as a private solution and hence does not need enterprise level

security

• is meant to be operated chiefly by the web interface and not to act as a standalone

web service

37

The simple data model allow for transfer of data through a lightweight data mapper:

JSON, which has very little meta-data overhead. Other data required for operation is

sent through the standard protocol headers. This makes for very efficient transfer of data

between the server and client, which is very important when designing an API that is

not just a web service but also a back end supporting constant communication between

server and client.

The development of clients for SOAP services can be cumbersome when doing it

on a platform that does not support standard tool chains. Usually when building SOAP

clients, the framework code is generated by a tool from the service WDSL and then worked

on by a programmer. When the tool chain is missing, the task becomes cumbersome.

A more serious problem could be that not every client development platform has

libraries to support sending SOAP requests and parsing the results. Writing a proprietary

driver for SOAP due to its complex nature can be a time consuming task, while a JSON

parser can be implemented fairly easily (there will probably be no need for that – the

JSON web page provides links to JSON parser libraries for all non-niche programming

languages[28]).

For all these reasons, the prototype API is built using the REST style and not the

SOAP protocol. However, when building the application it is important to consider the

particular application and weigh the options and applied to that application in particular.

Table 4.2.1 provides a simple comparison between the two techniques used to build

web services.

4.2.2 API vs external RDMS

When considering how to build a central data store, the option of an external database

management system is an option. The central storage would be a database management

system, such as MySQL, PostgreSQL etc. The clients would all be connecting to the

database and operating on it without any intermediate layer.

The first limitation that comes to mind is the lack of and object oriented programming

language on the server side. This would mean that all the application logic that cannot

or isn’t feasible to be implemented in the database would have to be implemented in the

clients themselves.

Depending on the RDMS in question, the amount of application logic that can be

implemented will vary. For example, while SQLite allows for only a simple amount of

programming logic (like “views”) while Oracle supports functions, methods and object

oriented interfaces that would allow for implementing a large amount of said logic.

The amount of logic implemented in the database itself is inversely proportional to

the amount that will later be coded into the clients themselves. This means that every

38

Feature REST SOAP
Type software architecture style protocol
Message
format

Usually JSON is used as a data
mapper.

XML

Transport
protocol

Any. Usually HTTP. HTTP – less frequently SMTP, JMS,
AMQP or UDP.

Data overhead Format dependent – usually
lightweight format like JSON
with very little overhead

Large – data and procedure calls
are encoded by XML. Furthermore,
messages have non-optional wrapper
XML nodes like Enveloper, Header
and others.

Security
additions

None / implementation
dependant.

WS-Security is an established
standard for securing web services.
Due to the widespread adoption
of SOAP in enterprise scenarios
WS-Security is a good option when
there is need for end-to-end security
(message level security).

Incompatible
services
models

Stateful service model,
complex custom data types.

None.

Service
description
standard

None. WDSL.

Table 4.2: Comparison of REST and SOAP

39

unit of application logic implemented on the server side will save n units of client creation

and maintenance time later on where n is the number of clients.

The problem with the aforementioned approach lies in the limit that the database can

handle application logic. Because databases are designed to handle data manipulation

logic and not application logic as a whole, there are several areas of development that the

database cannot implement. This would mostly involve binary file processing, invoking

external processes and connecting to external data source. Some good examples for a

task management system would be:

• sending emails with reminders about tasks,

• creating reports in binary file formats (PDF, PNG),

• connecting to and external geolocalization web service to get potential places for a

task context

Another problem with that approach might be the limited availability for database

drivers for all the client platforms. The extent of this problem is determined by the

platform and the RDMS.

Therefore, while it would be possible for a limited number of simple approaches when

using a fairly mature and feature reach RDMS, this approach is not a reasonable solution

for most applications.

40

Chapter 5

Prototype implementation discussion

This chapter describes the implementational details of the various elements of the prototype

and provide the reasoning behind choosing specific technologies, tools, platforms and

programming languages.

5.1 Tools, platform and languages used in prototype

implementation

The section gives a detailed account of the project managements methodology behind

the implementations of the prototype, as well as the implementation tools for all the

prototype parts.

5.1.1 Methodology

The decision in terms of software development methodology should be first considered

between the two major general groups of software methodologies: heavyweight and

lightweight (agile)[29]. Considering the premises of the prototype described in section

3.1.1, we can observe several elements that would suggest that adopting a lightweight

methodology would be the proper step[30][31]. Those are:

• Project documentation is redundant because of the combination of the following:

– the client, project manager and developer roles are all fulfilled by the same

person,

– the implementation phase encompasses a relatively short time period (a few

months),

41

– to the extent that the prototype needs to be documented, this thesis fulfils

that need.

• Requirements for the features, implementation details and priorities are prone to

changes depending on the current state of the thesis.

• A working prototype is crucial for evaluating certain claims on a regular basis

(which correlates with the frequent, working software as a measure of progress

philosophy[32][31]).

After choosing the lightweight methodology group, a reasonable approach would be to

review the available methodologies in that group, choose the most appropriate one, and

make additions/alterations for project-specific aspects. When browsing and comparing

the different methodologies [32][33] it is apparent that almost all of the distinguishing

factors between them relate to areas that are irrelevant for this projects. These differences

relate to the following areas:

• communication between teams, members and clients,

• responsibility for various aspects of the product,

• organising teams,

• timetable rules.

Considering the above, we assume a methodology that is a simple implementation

of the Agile Manifesto[32]. Fine grained techniques and rules on developing the project

might be implemented later as the project evolves.

5.1.2 Back-end framework

Application framework - Ruby on Rails

Rails a modern web framework based on the Ruby programming language. Since it’s

creation in 2003 it gained widespread adoption as a productive, intuitive and comfortable

framework. It’s main features are:

• strict MVC pattern compliance1 – due to the multi-platform assumptions for this

project, it is very important to be able to provide different views for the same data.

1It must be noted that it is possible to violate the MVC pattern by putting business logic in a
Controller or View. Rails does not strictly enforce the MVC pattern – it provides a set of tools that
allow for comfortably working with the pattern, but also to break it when the need arises

42

• REST as the underlying pattern – this is the main reason this framework was

chosen. Rails uses the MVC pattern where the Models and Controllers are used

for back-end development while the Views are used only when there is the need to

build a web client. REST is a vast topic and is discussed at length in chapter 4.1.

• Convention over configuration – this is a development pattern that places speed of

developing standard components over the pattern of comprehensive configuration.

Rails provides “sensible defaults” for file paths, class names, ORM mapping and

basically every other feature of the platform. Coupled with a complete set of tools

for generating basic elements of the framework, it allows for building standard,

working APIs and web applications in just minutes – the developers role is to

provide the added value for such an application.

• Created for Agile Development – Rails provides a set of tools that gave it the

opinion as the ideal tools for developing with adherence to rules mentioned in the

Agile Manifesto, merits of which for this project were mentioned in section 5.1.1.

Database management system - MySQL, PostgreSQL, SQLite3

Development is based on “Active Record” – the Rails ORM hat allows for using the

application with a wide range of database systems. The supported databases are MySQL,

PostgreSQL and SQLite3, and hence are recommended for maximum stability. Other

database systems are also known to work well on Rails.

5.1.3 Front-end framework

The front end for the web application is built using a collection of tools, languages and

frameworks.

Rails

The Rails application framework comes with default HTML views that make it easy to

develop a “traditional” web application (see section 2.3 for a definition). This feature also

allows for multiple Views (with the use of the Controller), that can be used for various

uses. In this case, we use the Views feature for embedding Backbones.js templates.

CoffeeScript

CoffeeScript a language that compiles into JavaScript. The goal of the language was to

make programming JavaScript more concise, clean and to make it more productive and

43

akin to that of modern programming languages (it was heavily inspired by Ruby and

Python)[34]. The most important features of the language are:

• indentation specific syntax – enforces proper coding style,

• context isolation – helps avoid problems with implicit global variables,

• classes and inheritance – allows for defining class constructs in a more concise

manner similar to other programming languages

• loops and comprehensions – implements mechanisms known from Ruby and Python

to assure more concise and expressive syntax for iterating over collections

Because the Rails framework from version 3.1 up supports CoffeeScript as a default

client-side scripting language, its usage is a natural choice for this project.

Backbone.js

Backbones.js is a JavaScript based framework designed to bring structure into client-side

application logic and to enable writing REST API backed single page applications. Due

to the differences in usage, this does not directly translate to the MVC model used in

the back-end. Below is a summary of the most important classes supplied by backbone,

their relation with the MVC pattern and their role in this project:

• Models – maps to the Model in MVC. Backbone’s philosophy states that this object

could contain application logic, validation etc. In this projects, models usually

contain only dynamically assigned data (hence there is no predefined data schema,

which would force the need for synchronizing the back- and front-end Models), and

to used as an element of a Collection (see below). The Model is also responsible for

sending proper requests to the assigned URL in case the models need to synchronize

state, which gives it the responsibility usually reserved for the Controller in MVC.

• Collections – collections of Models in the MVC pattern are usually handled by

the Model itself, usually with class-level (as opposed to object-level) methods like

find, findAll in the Active Record pattern; in backbone, such responsibility lies in

Collections. This element, akin to the Model, also has some responsibility of the

Controller, because given a proper URL and Model class it will generate a collection

of these Models. The Backbone library also provides many utility functions for

handling common collection operations (sort, filter, compare).

• Routers – maps into the Controller in MVC. It is important to understand the

distinction between the role of Router in Backbone, which is to call certain actions

based of the path in the URL (be it a proper path or hash-marked string) and

44

to change the given URL based on set criteria. The role of the Router is not to

communicate with the back-end API 2, which is handled by Backbone Models and

Collections.

• Views – map directly to Views, these are usually rendered by Router actions.

A View object will usually contain a Model or Collection with the data, and the

template name to be rendered by inserting proper data into it. Backbone provides

a flexible template system, which can also be augmented by external template

engines. On this project, the standard Backbone templates will be used.

The typical flow of application logic for a backbone based application is shown in

figure 5.1.

First – the application entry point is reached, at which point the back-end API

processes the response depending on the headers. Because we are describing the client

application flow, we will assume that the request will accept HTML markup. The

back-end generated the HTML markup and embed JavaScript code that will set up

the application by first initializing classes and then objects of the Backbone elements:

Models, Routers, Views, Collections. The API will then get the necessary data required

to display the initial elements, usually in the form of Models and Collection being fed

database data.

The generated elements are then ready to begin the client side parsing, the Models

and Collection are passed into Views and the main application Router calls the Views

render method to display the proper markup to the user. Embed in Views and Routers

are the rules for handling user interactions in the work phase.

The “work phase” is the time span between the first application display and the end

of the interaction with the application and constitutes a series of user actions. An action

in this example could be a simple request confirming a data update. Upon this action,

the Model or Collection should interact with the API in order to synchronize the data on

both sides. This is accomplished by sending an asynchronous request to the API, with a

REST compliant resource URI and appropriate method.

The API processes the request and generates a response with appropriate data.

Usually this will contain the status of the operation using a standard HTTP code and

the data (if any) that should be updated on the side of the client.

The response data is then processed by the Router, updating the affected Views. The

Views might defer some update logic to the Model or Collection when there is something

beyond the standard update of markup (generating new elements for example)

.

2Which is the reason the Backbone team changed the name of this class – it was named “Controller”
in earlier versions of the framework

45

Figure 5.1: Backbone.js based application life cycle

The key innovation in this thesis in the application flow is not in the cycle itself, but

in the extent of data that the API returns and how it is parsed by the client side. This is

referred to as the Functionally Extended Application Response (FEAR) and is explored

in depth in section 3.2.3.

5.1.4 Mobile application – Android OS

The mobile application part of the prototype is built as an application for the Android

operating system with the use of the standard Android Software Development Kit. The

mobile application is designed for Android version greater than or equal 3.2, which

provides the ability to use all modern system features and programming libraries. For an

explanation for these choices please refer to section 5.2.3.

The only external library used in the prototype is GSON – a JSON-Java data mapping

library for communicating with the API.

The application provides a large subset of the web client functionality, most notably

managements of Next Actions, Projects and Ticklers. It is however worth noting that

maximizing functionality is not the aim of this client, as it is a companion. A minimal

version of the client was considered in the preliminary analysis, one that would allow

only limited management of only one entity – the Next Actions. This concept was

rightly abandoned due to the possibility of insufficient complexity for discovering certain

architecture characteristics.

The mobile application as of yet does not make use of any device specific functionality

(camera, GPS, accelerometer etc.).

46

5.1.5 Examples of mobile and web client interfaces

Figures 5.2 and 5.3 provide sample interface views of the clients compared. The figures

do not present an accurate representation of the size of said interfaces, because of the

different pixel densities that the devices operate upon and the general modality differences

of a web browser and mobile operating system.

Figure 5.2: Next Action list interface as seen in the web client (left) and mobile client
(right).

.

.

5.2 Alternative techniques and technology stacks

This section introduces and briefly describes the alternative implementation options

considered and the process in which they where eliminated. The last subsection touches

upon the tools used in working with the user interfaces of the web client and if they

should be analysed for alternatives.

5.2.1 Back-end implementation alternatives

As alternatives to the solution chosen in the thesis, the following technologies, languages

and frameworks were researched:

47

Figure 5.3: Next Action edit interface as seen in the web client (left) and mobile client
(right).

• PHP and Zend Rest or Slim

• C#/C++ and Asp.net – OpenRasta or plain

• Python and Django, Pylons

• Ruby and Sinatra

All of the aforementioned can be compared to the advantages of the Ruby+Rails

combination described in section 5.1.2. The below subsections define them and describe

them at length. It is worth noting however that the investigation for choosing an

implementation technology was not convened in any objective way and was based mostly

on discussion on the Internet, with the added filters of personal prejudice and technological

curiosity.

Implementation was not crucial to the solutions introduced in this thesis, and although

it used as a tool to measure its feasibility and overall introduced results the particular

should not lie upon the chosen technologies.

The following are the main themes that were present in Ruby on Rails that promised

gains in terms of development time and flexibility.

REST support

One of the premises of the prototype was an REST API back-end. Choosing a framework

that has native support and is aimed towards REST based APIs would substantially

decrease the development time needed to develop the API. Ruby on Rails does a great

48

job at this, because from the very beginning it was aimed at creating a combination of a

RESTful API back end and a web-enabled client. All generated scaffolding is developed

in such a manner that the default web client interface is just a client for the underlying

back-end. In the end, most of the view portion provided by the framework was ignored as

the user interface was built with Backbone, but the in place mechanisms for connecting

models and exposing them as JSON data under a specific URI has proven very helpful.

Standard entity operation support

In any project involving any kind of long-term persistent data storage there will need to

be code designed for interfacing the application entities with the given storage engine.

The prototype was written with standard relational databases in mind, but also, given

its future as an open source project, to be able to run on as many database engines as

possible.

Due to the fact that there already exists a variety of ORM libraries for any programming

language, it would be suboptimal to not use one of these solution when the needs of the

application are not beyond common database use cases. Rails has a built in ORM out-

of-the-box which is also connected with other framework features, such as generating

scaffolding (Model-View-Controller set).

By using these mechanisms, it is extremely easy and efficient to generate boilerplate

code and hence decrease development time.

Test framework

Considering that the project is built as a prototype and also considering its future as

an open source project, it is safe to assume that will undergo a lot of refactoring and

structural changes in its lifetime.

In the prototype phase, the project has been substantially restructured during its

lifetime to accommodate changes that arise in the course of thesis development. Also

– some changes were artificially implemented to check whether a given solution to the

problem is better.

In the later stages of the project its development will be continued on a “as needed”

basis, adding and changing features to better accommodate the needs of the users.

All these changes lead to a lot space for instability and errors in execution. An ideal

solution for this is the development of code that tests the usage cases for the application.

These tests will then be run on a regular basis to check that the changes made have

not had a bad influence of existing code. Unit testing, when used properly, is a widely

recognized technique for increasing code quality in projects that are especially susceptible

49

to changes[35][36][37].

Rails provides a built in testing framework, test generators and support for Continuous

Integration tools. All this allows for quickly building, running and integrating tests.

Availability of external libraries

The characteristics of the project suggest, that the application will have to quite versatile

in the assortment of tasks it will be required to handle. Even the basic web interface

shown in the prototype requires the following features:

• CoffeScript support – because it is a compiled language, the set-up for development

with its use would require setting up command line tools that compile files that

changed since the last compiling, copy then into the required directories and so on.

• Backbone support – including the Backbone library into the project

• Twitter bootstrap – the web client uses Twitter bootstrap project to have a nicely

looking and usable set of components.

The Ruby Gem repository is a directory of plug-ins that are developed by the Ruby

community as packages to fulfil a specific function. Because of the vast numbers of these

“plug-ins” there is a big chance that the functionality that we seek to implement in the

project already has been implemented as a Gem. The three basic features mentioned

above were all available as Gems, so that their implementation was limited to a one line

statement in the Rails “Gemfile” and, if needed, configuration. This has tremendously

limited the amount of time needed for their implementation.

And the features described above are quite simple ones where the time saved is not

that impressive. In the future planned functionality will encompass some to all of the

following features that can be implemented by Gems:

• PDF, image and chart generation for reports on tasks,

• connection to a geolocalization API (e.g. Open Street Maps),

• user authorization,

• connecting to social media engines.

By utilizing these ready for deployment feature sets, significant programming effort

can be saved.

50

5.2.2 Web client tool alternatives

The tools used to build the web client, particularly Backbone and CoffeScript can obviously

be used with other back-ends as well. The tools were chosen mostly on the basis

of familiarity and also general consensus that they are solid platforms for web client

development. Because CoffeScript is more of a utility than a framework (it only provides

a syntax for JavaScript that some feel superior) it an be omitted altogether without any

consequences.

There are some JavaScript application frameworks very similar in design to Backbone.js.

The most popular are “Spine”, “Knockout.JS” and “Batman.js”. The differences in these

tools mostly exist in what kind of data the project is working with and what kind of

support the developer needs. This thesis does not further discuss these tools, as the

specifics regarding the implementation of the web client are not that important to the

overall results.

5.2.3 Mobile application – Android + Android SDK

The choice of platform was based upon the authors personal preference, knowledge and

logistical readiness for developing for that system, the lack of which could generate a lot

of attribution errors during the development process. In other words – the pre-existing

experience of the author with development on this platform provides a maximum level

of variable isolation due to the fact that the FEAR paradigm is the only distinguishing

factor between this and previous development projects.

A similar reasoning process led to choosing the Android SDK. The alternative choices

were already explained in section 2.2.2 and one of the more popular operating systems, all

of the alternatives mentioned there support Android development. However due to the

fact that the author has not had any prolonged experience with any of those solutions,

the best choice is to use the default development tool kit.

51

Chapter 6

Lessons learned

This chapter contains the description of the process of testing the proposed solution of the

thesis on the developed prototype and it’s consequences. During the testing process there

were several unforeseen obstacles and problems that had to be overcome. Developing a

prototype also led to a clear list of advantages and shortcomings of the proposed solutions.

Section 6.3 focuses on possible consequences of this thesis in the aspect of software

that can benefit from the solution described within it.

The last section gives a summary the possible development of this thesis and the

proposed solution by describing some of the subject vectors that would benefit from

further exploration.

6.1 Obstacles in implementation

This section describes the obstacles that are relative to the solution proposed in this

thesis that have been encountered during the implementation of the prototype.

Where applicable it also briefly describes the chosen solutions devised to solve these

problems, along with the rationale behind them.

6.1.1 Entity client side updates

FEARs are used to alert the client of changes made in the data that are out of the

immediate scope of the current client operation. A good example of this is notifying the

client of the changes to the entities made by the latest client request.

In the prototype a next action can be displayed in many places at the same time. The

client should only update the view that caused the change in the first place – all other

changes are handled by the FEAR parser.

This leads to a problem of multiple entities that need updating. The client using

52

Backbone.js does have a model/view separation, but JavaScript language limitations and

construction pragmatism1 lead to the entity being instantiated multiply in many forms

– usually a few models, collections and representational elements in the form of DOM

nodes.

The chosen solution to this problem was the update only the DOM elements relating

to the entity. In the prototype every such node was generated from a Model by a View.

To know that a particular node relates to a particular entity, data regarding the model

and the id is attached to it upon creation by the View.

When a fear response notifies the application of a change in the given entity, the client

parser seeks out any DOM elements with the matching model type and ID. Thanks to

the embed data about the View that created the node the whole creation process can

be repeated: a new View of specified type is created. it is injected with a new Model of

specified type and data passed down by FEAR. Lastly, the node is replaced by the result

of rendering the View – the new up-to-date DOM node.

This obstacle is less of an issue in the mobile client due to different programming

paradigms. Contrary to a web page, where DOM nodes are the primary means to display

entities and have to be artificially augmented with programming constructs (as in the

above solution), Android interfaces are structured Java objects of specific definable classes

that are held in memory when they are displayed and are also easily augmented with

arbitrary data.

6.1.2 Error message placement

When an error occurs of the side of the API, there is the natural tendency to try to use

the API to display the error in the relevant place – to minimize the client-side code. But

such behaviour can lead to overcomplicated data structures that are be of limited use

and require a significant amount of coding on the client side.

The question of what is feasible to centralise is a constant theme in this thesis and as

in most cases, the answer is not clear.

The case study of the error placement paradigm presents us with an argument against

to much centralization and is presented below.

Let us consider a very common occurrence – data validation. When an data model

is sent to the API, and the server-side validation fails, presenting an error to the client,

what should happen? How do we mark the places that would need to be changed by the

API in order to display the corresponding error messages.

1It must be noted that a carefully thought out architecture may limit or even eliminate the extent of
this problem, but it may come at a cost that would be not worth pursuing.

53

The answer would probably involve some kind of identification data that would be

sent by the client to the API and then said data would be sent back. This round-trip data

would allow for loose coupling in terms that the client would be able to ”fire-and-forger”

the request, trusting that the API would give sufficient data back to re-construct a view

in which the validation errors should be displayed.

The potential gain of such an approach would be the ability for the client to handle

more logic on it’s own, while maintaining consistency with the API. This would be

especially useful in that the client could send a request to the API and then act as

if the request was a success, without waiting for the response. This would allow for a

more responsive design when connectivity in an issue or if response generation takes an

unusually long time.

The problem with this approach lies within the framework that needs to be written

on the client-side to handle arbitrary generic events sent from the API. The alternative

approach is to just wait for the response and wait accordingly. In both the web client and

mobile application, the latter is the preferred approach. There are however differences.

The web client has the added advantage that a lot of interface elements are displayed at

a time and the user is not forced to wait until the request has finished to start interacting

with the client. Mobile applications due to screen limitations usually present one view

at a time, and hence blocking said view is equal to blocking a whole application. This

can be circumvented by a combination of specific platform abilities (the AsyncTask and

Intent classes provide the necessary framework in Android).

6.2 Advantages and disadvantages of the chosen

solution

This section provides a list of the conceptual and empirical characteristics that define

applications developed using the fear solution in terms of their strengths and weaknesses.

6.2.1 Advantages

Tested, ready API for developers

One of the primary reasons for creating an API for a given application is to provide

independent developers and clients a way to access the data and services offered in a way

of their choosing. This is often a process that is an “add-on” to the original application

and is quite costly to the developer. Despite the resources needed for building additional

APIs – it is done very often. There are several business reasons for building APIs.

54

By allowing people to easily augment the application with the functionality they miss,

the total feature set of the application increases with every feature added by an external

application. By monitoring this process, the original developer can get a good feel of

what the original application need to fulfil the needs of the users.

Interest in the service as a way to implement other feature sets can lead to an explosion

of following and a major marketing advantage, as was the case with Twitter[38].

If the application API is commercial and the user needs to become a client to use it

– such additional applications translate directly into sales.

Also – if there is a platform that the original developer does not want to make a

client application for (due to lack of expertise or resources), the API can be an indication

to other developers that it will be easy to implement it themselves, thus increasing the

possible number of uses for the application. This is especially important for open source

projects.

The aforementioned reasons compel companies and organizations to add APIs to their

existing products despite the effort needed, not only for development, but also testing

and maintenance. In the prototype, because the API is built as a foundation for the base

client application, it is already tested and hence needs no additional resources.

Isolation and decoupling

Isolation of specific application modules – decoupling – is a very desirable software metric.

Decoupling is a prerequisite for unit testing and allows for entities to be operated on with

no knowledge about other entities in the system. The level of decoupling reached by

exposing RESTful resources allows for some interesting options.

One ability that comes to mind is the construction of specialized lightweight client

applications. In the prototype, we could imagine a super compact client that only works

on a small subset of the application ecosystem – the Next Actions (see %ref%). It is

perfectly feasible to build such a client that operates on only one resource, ignoring the

attributes that are not used 2. This client would only display current actions and allow

the user to mark them as completed.

This is in stark contrast with, for example, sharing the model as part of a library in

a programming language. Because the Next Action entity is connected with many other

entities, the client would have to at least the definitions of these dependent entities and

then work around the built in behaviour that the relationship brings.

In the RESTful API – the client decides what to do with the resources and the

relationships between them, with completely ignoring them as a viable options. The web

2In order to further save bandwidth, it is possible for the API to generate a stripped down version of
the resource when the client dispatches a specific accepted content type, i.e. ’x-json-next action-min’

55

client in the prototype uses all of the entities in the system, but it is possible to build a

client with a completely arbitrary set of these entities without modifying the API at all.

Decreased data transfer

Because of the reasons specified in section 2.3 the data usage generated by the client

application is far less than the comparable traditional approaches. Minimizing data

usage is crucial in scenarios where transfer speed becomes a bottleneck and the cost of

data is prohibitively high.

Because of the way the application is structured, it needs constant communication

with the API. Every second spent on the request-response mode can translate into a

second of lost responsiveness of the application, which leads to decreased user experience.

These repercussions can be mitigated by using appropriate techniques (like asynchronous

requests in HTML/JavaScript) but these require additional attention and resources.

Also, with the still high prices of mobile data transfer mobile phone users are starting

to monitor the data usage of their applications and deleting those that generate the

most costs. This once marginal phenomenon is spreading its influence due to the rising

consciousness of users and new built in system tools, like the ones introduced in Android 4.

Viewed in that light, a mobile phone application developer can have substantial financial

gains by minimizing the data transfer the application generates.

Transparency and interoperability – databases, languages, platforms

Because of the language independent data notation (JSON), the client using the API has

only two technical limitations: it must be able to make HTTP requests and parse the

standard HTTP response and the JSON body of it. Because these standards have almost

total coverage over different programming languages, a client can be built for virtually

any known platform.

The other side of this point is that the general concepts outlined in this thesis regarding

the API can be implemented on any platform, thus making it a very versatile and robust

solution.

Modular – easily extensible

Due to the loose coupling of the particular parts of the system, elements can be added

into the API without breaking backwards compatibility on the side of the client.

If we would decide, that the prototype needs to be extended with an entity Person,

that can be attached to a Next Action to signify that the action has been delegated to

a particular person, let us examine the needed steps. First, the API would have to be

56

augmented with the necessary model and controller for the new item. Then, the Next

Action model would have to be modified to accept a relation with Person. This would

amount to a new attribute in the model: ’person id’, that would be null by default. At

this point, the new version of the API is ready and can be exported to production.

The web client, oblivious to the existence of the new entity would not be ready

for its management, bot nor would it become unusable. This is important because

many models of client distribution have considerable delays between user updates. If

the change would not be backwards compatible and break the client, the API would have

to provide a versioning strategy, which would need additional resources to do. It must

be noted that the model presented here does not completely protect against breaking

backwards compatibility, but it does limit the occurrence of such and hence lowers the

costs associated with them.

6.2.2 Disadvantages

Building client-side frameworks

Let us consider what happens, when the client receives the FEAR. Depending on the

content of said response and ability of the client, the range of tasks that must be done by

the client will vary up to the range described in section 3.2.3. All such supported tasks

must be implemented in the client, which needs additional effort.

Depending on the complexity of the API and the resultant amount of entity data

transported by FEAR, this can lead to overhead of code just to parse and process the

FEAR.

The prototype described in this thesis is very far from reaching the complexity limits

imposed by FEAR, and hence does not provide us with the necessary data for accurately

describing the consequences of reaching such limits.

Slow connection issues

Because of the need for constant communication between the API and client, slow and

unstable connection are the most serious problems that arise from the fear based solution.

Furthermore – this technical difficulty cannot be solved without undermining all the

fundamental benefits that come from the approach described, as any attempt to remedy

the situation will invariably lead to adding some functionality to the client and hence

increasing the cost of it’s development. Some of these are described in section 6.4.2. The

positive aspect is that solutions therein described can be applied on a as-needed basis.

That is: having a central API and making 3 clients (one web client, one desktop client,

57

one mobile client) there is probably only need to apply these optimization on the mobile

client, because the other two settings are not designed to work without internet access).

Connection issues can lead to the following detrimental user experience elements:

• Low application responsiveness – because the application needs to connect to the

API at any action that the user requests, it will the unusable at that time. The client

developer should take note of this and design interfaces accordingly (for example

sending requests in the background).

• Data loss – if the client sends the given information and the API does not respond

due to a temporary loss of connection, the client should save the request to a later

time – in another case, the data submitted will be lost leading to user frustration

and lack of trust.

• Decreased client location coverage – The client will not be able to function in places

bereft of data coverage. This can be an important factor. In an example for the

usage of a hypothetical mobile client for the prototype API, we could imagine

someone wanting to work with the application while travelling on the underground

railway. Because there is no mobile coverage there, the user will not be able to do

that.

6.3 Potential applications

This section explores the repercussions of this thesis by defining a set of characteristics

that facilitate a proper implementation of the fear based solution. These characteristics

are grouped into those relating to the application model (the data, relationships, use

cases) and the technical details (i.e. resources, platforms).

Repetitive development

The very philosophy of FEAR presupposes that application development is not a one-time

unique event. It it were, then all of its superlatives could be achieved only with using

a RESTful API. Worse still - there would be additional effort required to implements

some of the FEAR elements that might not be used on the particular application being

developed, even in the “standard” set of response directives. Consequently, there are

two ways in which the fear response can save on development time: repeated application

development and continuous upgrades.

The first of these applies in a situation in which the developer builds more than one

application in a language that was used in an earlier project. The time saved comes from

58

the fact, that if the developer followed good coding style, the part of the application

related to parsing FEAR and reacting to the more standard events can be reused. In

a hypothetical scenario of building another prototype application for this thesis, the

following files from the code appended to this thesis could be reused:

• /taskage/app/assets/javascript/fear.js.coffee – could be used in most web

clients

• /ataskage/src/model/Fear.java – can be used in Android applications.

This would give the developer some standard functionality, like handling validation,

only for the cost of embedding the objects into the requirements of the given projects.

This of course assumes that the given project would adhere to other conceptual and

technical compatibility requirements from this chapter.

The other option for the optimal usage of the fear pattern has already been voiced in

this thesis. It is the assumption that the application as a whole evolves with time. In

this case, the approach can become especially valuable for building mobile and desktop

clients, because of the inherent uncertainty of the update procedures of these clients. If

appropriate care is taken, the application can be ready for a certain set of changes in

functionality that will arise of the side of the API. This becomes more important when

considering the fast face of development of today’s businesses (and the popularity of the

Minimal Viable Product approach) and also considering that the basic mechanisms of

fear can allow for a certain level of communication with the user (messages, validation

failure due to outdated software etc.).

Stateless communication

Because of protocol limitations, the application should mostly rely on pull based communication.

REST is a stateless architecture style and was not designed to handle direct, sustained

communication between the two tiers.

This means that a large portion of applications relying on small but frequent data

transfer that has no discernible primary direction (i.e. when the server should initiate

the communication). Such applications include multiplayer games, chats, collaborative

editing tools and any application that has to synchronize the states between several clients

in a manner as rapid as possible.

However, due to the proposed WebSockets standard [39], if such components are only

a small part of the application as a whole, nothing stands in the way of combining the

two technologies to use the strong suited of both. There is even the possibility of sending

a fear body over WebSockets, but that would entail problems ot its own.

59

6.4 Further development possibilities

6.4.1 Clients for other platforms

A natural consequence of this thesis would be to develop more clients targeted at both

mobile and desktop devices. The implementation of said applications could give rise

to problems and solutions not encountered in the clients implemented as part of the

prototype and hence increase the understanding in which the FEAR method is a viable

design pattern for applications.

6.4.2 Overcoming the disadvantages

Offline work and impaired connectivity

There are several techniques that can be applied to the client application that increases

the user experience in cases of inferior API connectivity.

Augmenting client-side logic is the most obvious one. This leads to hard-coding

the logic that the application should receive though a FEAR. It is the simplest but also

most costly due to neutralising the benefits of such a technique. This is advised only

when the client in question is limited scope and needs to be able to cope with limited

connectivity.

Creating a request queue is a technique that involves dispatching requests into

as queue and then to the API. When there is no connection with the API, the requests

are not sent – they wait for the connection to be re-initialized. In the meantime – the

client runs is “offline mode” with the user being able to interact with a subset of the

functionality (or even all of it). Of course, the changes that are usually handled by the

fear are not processed and hence the client can have a visible state that is not up-to-date

with the one that it should have.

The request queue technique can also lead to data loss when working on the same data

from different clients. Example – the user changes an action name on a mobile client,

which has lost connection. The request is saved in the queue and the user forgets about

it. The user then changes the action name again in a web client. Sometimes after this,

the mobile client regains connectivity and sends the older requests. If care is not taken

by the API to take the request time into account, the user will end up with “old”, which

will surely be disturbing. This is represented in the figure 6.1.

Also the queue technique is not appropriate for all applications. In the client has a

lot complex, intertwined elements, it will become very confusing for the user if he will be

able to interact with the application but not get desired results (inconsistent data). In

these cases it might be better to just notify the user that connectivity has been lost and

60

Figure 6.1: Possible data corruption in data synchronization.

the client is not usable.

Synchronization – client side state management

It is possible, it not expected, that the data on the API side can be updated by multiple

clients at a time. In the case of the prototype application such a case might be rare,

because the system is a personal task management solution. In this system, the only way

to do that is to use the web client and mobile application at the same time, which is an

artificial situation due to the fact that they fulfil the same function and the user should

have no need for that sort of behaviour.

But if we imagine a shared environment, in which several users can share tasks between

each other, the scenario becomes obvious. In this case, we would need to develop a system

that informs the client of the changes made to the underlying data. The traditional way

is just to set up the client to poll the API with a request in set time intervals. This

makes certain that the latest data is requested regardless of user interaction. Another

way would be to “piggy-back” the change information with the usual user requests, when

the client sends any request to the API, it automatically attaches said information as part

of the response. Because the responses are standardized in the FEAR pattern, adding

information would not break any response parsing logic on the client-side.

Please note that the described changes would require a minuscule3 amount of changes

on the client side with the first approach, and absolutely no changes with the second.

This is because the change directive group, when implemented, should handle all the

possible changes in data.

For the above mechanisms to work, there needs to be a way for the API to determine

what particular client is issuing a request, when did it last issue a request and what

3Can be done in a few lines of JavaScript in the case of the prototype web client.

61

datasets have changed since then. This can be achieved in multiple ways. In the case of

the prototype a possible approach would be:

• in the API - make sure that all crud operation on the database regarding the

traceable entities are saved in a transaction log

• in each client - generate a unique token during start-up, save that token as the

client session id.

• For each request from the client –

– poll the transaction log for elements that have a creation date that is larger

that the last request time for a given client, then transform these events into

proper FEAR directives

– save the time of request along with the client id,

– output a FEAR

The little amount of effort needed to implement this shows the advantages of the

FEAR approach.

62

Bibliography

[1] A. Strak, “Retinal display technology for future mobile applications,”

[2] W. Lin, A. Dezieck, and M. Aufrecht, “Visions of bionic lenses: Foresight for the

future,”

[3] D. Zhang and B. Adipat, “Challenges, methodologies and issues in the usability

testing of mobile applications,” International Journal of Human-Computer

Interaction, vol. 3, no. 18, pp. 293–308, 2005.

[4] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with nearly optimal

communication complexity,” Information Theory, IEEE Transactions on, vol. 49,

no. 9, pp. 2213–2218, 2003.

[5] A. Charland and B. Lerous, “Mobile application development: Web vs. native.,”

Communications of the ACM, vol. 54, no. 5, pp. 49 – 53, 2011.

[6] Wikipedia, “Mobile devices.” [http://en.wikipedia.org/wiki/Mobile devices].

[7] O. Buyukkokten, O. Kaljuvee, H. Garcia-Molina, A. Paepcke, and T. Winograd,

Efficient Web browsing on handheld devices using page and form summarization.

ACM Transactions on Information Systems, 2002.

[8] M. Mi losz, Informatyka Gospodarcza: 8. Systemy mobilne, vol. 4, p. 211.

C.H. Beck, 2010.

[9] J.-S. Lee, S.-H. Yoo, and S.-J. Kwak, “Consumers’ preferences for the attributes

of post-PC: results of a contingent ranking study.,” Applied Economics, vol. 38,

no. 19, pp. 2327 – 2334, 2006.

[10] R. Goldsborough, “Mobile devices on rise, but death of PC is greatly exaggerated.,”

Community College Week, vol. 23, no. 13, p. 17, 2011.

[11] R. Goldsborough, “Is the PC really dying?.,” Tech Directions, vol. 70, no. 8, p. 14,

2011.

[12] “Cross-platform.” [http://en.wikipedia.org/wiki/Cross-platform].

63

[13] “Smartphone vs. feature phone ’tipping point’ coming.”

[http://www.itpro.co.uk/634816/smartphone-vs-feature-phone-tipping-point-

coming].

[14] Statcounter.com, “Statcounter.com.” [http://gl.statcounter.com].

[15] R. Padley, “HTML5 - bridging the mobile platform gap: mobile technologies in

scholarly communication.,” Serials, vol. 24, pp. 32 – 39, 2011.

[16] S. J. Vaughan-Nichols, “Will HTML5 restandardize the web?.,” Computer, vol. 43,

no. 4, pp. 13 – 15, 2010.

[17] B. Korkmaz, R. Lee, and I. Park, “How new internet standards will finally deliver a

mobile revolution.,” McKinsey Quarterly, no. 3, pp. 47 – 53, 2011.

[18] M. Obcena, “Rich cross-platform desktop applications using open-source titanium.,”

Linux Journal, no. 185, pp. 54 – 59, 2009.

[19] “Adobe air – features.” [http://www.adobe.com/products/air/features.html].

[20] “Flash to focus on pc browsing and mobile apps.”

[http://blogs.adobe.com/conversations/2011/11/flash-focus.html].

[21] M. Creeger, “ACM CTO roundtable on mobile devices in the enterprise.,” in

Communications of the ACM, vol. 54, pp. 45 – 53, 2011.

[22] R. T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures.

PhD thesis, University of California, Irvine.

[23] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, “RFC 2616: Hypertext transfer protocol–HTTP/1.1, june 1999,” Status:

Standards Track, 1999.

[24] “Representational state transfer.” [http://en.wikipedia.org/wiki/Representational state transfer].

[25] R. T. Fielding, “REST APIs must be hypertext-driven.”

[http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven].

[26] R. T. Fielding, “RFC for REST?.” [http://tech.groups.yahoo.com/group/rest-

discuss/message/6735].

[27] J. Udell, “Two approaches to services.,” InfoWorld, vol. 27, no. 11, p. 35, 2005.

[28] “Json.” [http://www.json.org].

[29] “Software development methodology.” [http://en.wikipedia.org/wiki/Software development methodologies].

[30] “Toward agile: An integrated analysis of quantitative and qualitative field data on

software development agility.,” MIS Quarterly, vol. 34, no. 1, pp. 87 – 114, 2010.

64

[31] D. Mishra and A. Mishra, “Complex software project development: agile methods

adoption.,” Journal of Software Maintenance and Evolution: Research and

Practice, vol. 23, no. 8, pp. 549 – 564, 2011.

[32] M. Fowler and J. Highsmith, “The agile manifesto,” Software Development, vol. 9,

no. 8, pp. 28–35, 2001.

[33] U. A. K. Asif Irshad Khan, Rizwan Jameel Qurashi, “A comprehensive study of

commonly practiced heavy and light weight software methodologies,” IJCSI

International Journal of Computer Science Issues, vol. 8, no. 4, pp. 441–550,

2011.

[34] “Coffeescript.” [http://coffeescript.org/].

[35] G. Myers, C. Sandler, and T. Badgett, The art of software testing.

Wiley, 2011.

[36] J. Link and P. Fröhlich, Unit testing in Java: how tests drive the code.

Morgan Kaufmann Pub, 2003.

[37] M. Levesque, “A metamodel of unit testing for object-oriented programming

languages,” Arxiv preprint arXiv:0912.3583, 2009.

[38] K. Makice, Twitter API: Up and running.

O’Reilly Media, 2009.

[39] I. Fette, A. Melnikov, Google Inc., and Isode Ltd., “Request for comments: 6455,”

Status: Standards Track, 2011.

65

List of Figures

2.1 Mobile OS market share in time (worldwide) 15

2.2 Mobile OS market share in time (European Union) 15

2.3 Basic browser – server communication during a web based application life

cycle . 19

2.4 DOM node markup substitution vs data substitution. 20

3.1 Basic entities of the prototype application, with relationships. 22

3.2 The request/response process with a functionally augmented response characteristic. 26

3.3 The categorization and specification of FEAR directives used in the prototype.

(Possible collections of given entities signified by trailing braces). 27

3.4 Partial directive classification decision process. 32

5.1 Backbone.js based application life cycle 46

5.2 Next Action list interface as seen in the web client (left) and mobile client

(right). 47

5.3 Next Action edit interface as seen in the web client (left) and mobile client

(right). 48

6.1 Possible data corruption in data synchronization. 61

66

List of Tables

1.1 Categorization of mobile devices with usage specification. 6

4.1 Performance at peak F-measure:

. Source: [24] . 35

4.2 Comparison of REST and SOAP . 39

67

