
Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

1

AUTOMATICALLY CREATING GRAPHICAL USER INTERFACES USING
EXTENDED senseGUI LIBRARY

Mariusz Trzaska

Polish Japanese Institute of Information Technology
Koszykowa 86, Warsaw

Poland
mtrzaska@pjwstk.edu.pl

ABSTRACT
Creating GUIs for data-intense application is a time
consuming task. A promising approach, saving the
developer’s time, assumes a declarative way of generating
such interfaces. In this paper we present an extended
version of our library called the senseGUI. Using simple
annotations of the source code, the library is able to
automatically generate common business-oriented
windows. As a result, an application’s user is able to
create, update or just see appropriate parts of the data
model. Moreover, the extended version of the library
gives a programmer an easy way to internationalize the
application’s interface, validate the input or create GUIs
which are not connected to a formal model (a particular
class). The simplest usage scenario requires only marking
attributes or methods for which widgets should be created.
It is also possible to define a more detailed description
including different widgets for particular data items, the
order of items, labels, etc. Contrary to many existing
solutions, our proposal does not require complicated tools.
The implemented prototype is dedicated for the Java
language but could be easily ported to other languages
like, for example, Microsoft C#.

KEY WORDS
Graphical User Interfaces, GUI, Annotations, Model-
Based Development, MBD, Attribute-Oriented
Programming.

1. Introduction

Finding a usable solution helping in creating Graphical
User Interfaces (GUI) is not an easy task. Such efforts
have been made from the very beginning of GUIs. As a
result, we have plenty of different approaches, libraries
and tools. One of the very promising solutions is based on
a declarative way. A programmer focuses on what to do
rather than how to do it. Choosing the right
implementation is a responsibility of a computer system.
Perhaps, the most successful examples of the TAK, “the”
Jdeclarative approach (however, not connected with
GUIs) is the SQL query language. A user formulates a
query and the system delivers an answer. Using the
declarative approach in the database field saves a lot of
the programmer’s effort because one complicated SQL

query could be equivalent to tenths or even hundreds lines
of the source code in an “ordinary” language (like Java,
C++ or C#). We believe that similar benefits are possible
during the process of developing graphical user interfaces.
A declarative approach to generating GUIs is also
associated with Model-Based Development (MBD) or
Attribute-Oriented Programming. Model-Based GUIs
(MB-GUI), which assume that GUIs are automatically
generated by the software system, are included in the
MBD area. Specification of the generation is described in
a model. [1] discusses different kinds of models: the
Application Model (AM), the Task/Dialog Model
(TDM), the Abstract Presentation Model (APM), and the
Concrete Presentation Model (CPM). All models are
necessary if one would like to define entire applications,
including some parts of activity specification (i.e.,
business logic). Unfortunately, such a description is quite
complex and time consuming, hence it is not very
popular in the development of commercial applications.
The rest of the paper is organized as follows. To fully
understand our motivation and approach some general
information is presented in Section 2. Next sections
briefly discuss key concepts of our research: utilization
capabilities of the senseGUI previous version (Section 3)
and its new features (Section 4). Section 5 contains a short
description of the utilized architecture and section 6
concludes the paper.

2. Related Work

A researcher designing a new library helping in GUI
development has a difficult task, especially in the area of
declarative solutions. A potential user expects that the
library will be able to create a GUI automatically as the
declarative approach promises. At the same time, the user
requires conformity to his/her needs regarding
functionality, usability, performance or even aesthetics. It
is quite obvious that such expectations could not be
fulfilled entirely. The library needs some information
defining details of the GUI. We believe that the key to
success of a given approach is a right balance between a
programmer’s engagement and universality of the
solution. The programmer has to accept that some GUI’s
facilities will be imposed by the library and will be
common for all GUIs generated by the particular solution.
Such an approach guarantees that the programmer will

Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

2

have to pass only a few parameters detailing the result.
This could be the case of many business-oriented
applications where there are a lot of similar forms.
There are a lot of systems like Teallach [2], Teresa [3],
JUST-UI [4], SUPPLE[5] which have features facilitating
creating really powerful applications. Unfortunately, most
of them work with dedicated model definition languages
(i.e. a pattern definition language in the case of [4] or
UIML for [3]) and their own platforms. It means that a
programmer has to learn something new and quite
complicated. Another drawback is the necessity to work
with a special platform or system (i.e. Teresa). This is just
opposite to our approach which is dedicated to popular
languages like Java. Sometimes, new knowledge
introduced by the systems is much more complex than the
basic problem (GUI to create) which has to be solved.
Unfortunately, most of the proposed solutions seem to be
too complicated for an average programmer and average
tasks.
There are also attempts to introduce a declarative
approach in widely used commercial solutions. One of
them is Microsoft XAML (Extensible Application
Markup Language) [6] which is heavily utilized in
Microsoft .NET 3.0, and especially in Windows
Presentations Foundation (WPF). It allows defining:
• GUI items: 2D, 3D,
• data binding,
• events,
• special effects: rotation, animation.
Particular GUI items are described using a dedicated
description language based on the XML.
<Button Content="Click me">

<Button.Margin>
<Thickness Left="10" Top="20" Right="10" Bottom="30"/>

</Button.Margin>
</Button>
<Page xmlns=http://schemas.microsoft.com/[...]

xmlns:x=http://schemas.microsoft.com/[...]
x:Class="MyNamespace.MyPageCode">

<Button Click="ClickHandler" >Click Me!</Button>
</Page>

Fig. 1 Sample MS XAML code

Figure 1 shows a sample XAML code. As it can be seen it
contains similar information to the one embedded in the
C# source code. In fact, XAML has a direct reflection in
the programming language code. Thus, a programmer
creating a GUI does not benefit from the approach too
much because s/he has to provide a lot of information.
The only difference is that the information is given using
dedicated XAML file rather than C# code.

3. Basic Capabilities

To fully understand improvements made to our library,
this section contains a short description of the existing
proposal. More information could be found in [7].
Our goal was to create a library which will automatically
generate a GUI form for an ordinary Java class. Using that

form, an application’s user will be able to enter new data,
update existing information or just see the data. For
instance, a programmer has the Person class (shown on
figure 2) and he/she does not want to manually create a
GUI for it. Our basic assumption was that the entire
process will be performed without any additional
involvement of the programmer.

public class Person {
private String firstName;
private String lastName;
private Date birthDate;
private boolean
higherEducation;
private String remarks;
private int SSN;
private double
annualIncome;
public int getAge() {//
[...]}

}
Fig. 2 Java source code of the Person class

We have created a prototype implementation illustrating
our approach as a Java library called the senseGUI. The
library needs to read classes’ structures in order to
automatically generate a GUI for them, which is possible
using a technology called reflection. This functionality is
available for all modern programming languages
including Java, C# and partially C++. Besides reading
classes’ structures, it allows instantiating their objects.
Unfortunately, it is not possible, in a generic case to
automatically discover which part of a data class should
be visualized. Hence we had to introduce some kind of
markers. The markers were responsible for tailoring the
generated GUI to the programmer’s needs. Finally, after
some research, we decided to use custom Java annotations
as markers in our library. They exist for the Java
Programming Language and MS C# and allow describing
a class or its content. We tried to make them as simple as
possible, but the number of the annotation’s parameters
grew to 11. Fortunately, all of them had some default
values and did not need to be changed each time. We
introduced two basic kinds of annotations:
GUIGenerateAttribute, GUIGenerateMethod.
The former is dedicated to marking attributes and the
latter to marking methods. Each of them has additional
parameters (with different default values):
• label. Describes a label for a widget. If it is an

empty string (default) then a name of the attribute or
the method (without a prefix get/set) will be used.

• widgetClass. Widget class which will be used to
handling editing of the attribute or method. Default
value is a JTextBox.

• getMethod. A method to read a value of the
attribute. The default value employs a standard
setters/getters approach.

Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

3

• setMethod. A method for writing the value.
• showInFields, showInTable, showInSearch

Flags telling if this item should be visible in a form
with fields, table (grid) view, search criterion view.

• order. A number defining order in a form.
• readOnly. If true, then the widget is read only.
• scaleWidget. Indicates if this widget should

change size during resizing the form.
Our generic solution is capable of working with languages
common types: numbers, strings, booleans, dates and
enumerations (enum type).
Default implementation for most of them uses text boxes,
such as widgets, with two exceptions:
• booleans work with a special version of a check box

(see further),
• enumerations are processed using combo boxes

automatically filled with all possible values (read via
language reflection).

Our sample code (the Person class), modified using our
approach is shown on figure 3. Notice that all we had to
do was add annotations telling which parts of the class
should have their own GUI.

public class PersonAnnotated {
@GUIGenerateAttribute
private String firstName;
@GUIGenerateAttribute
private String lastName;
@GUIGenerateAttribute
private Date birthDate=new Date();
@GUIGenerateAttribute
private boolean higherEducation;
@GUIGenerateAttribute
private String remarks;
@GUIGenerateAttribute
private int SSN;
@GUIGenerateAttribute
private double annualIncome;
@GUIGenerateMethod
public int getAge() { // ...}

}
Fig. 3 Annotated Person class

The library has a few public methods, some of which get
an instance of the annotated class. After a single method
call, a programmer can show a generated GUI presented
on the figure 4. Using the GUI an application’s user is
able to update the data or just see it.

Fig. 4 A form automatically generated for the code

from the figure 3.

As can be seen, using annotations with only default values
could lead to improper overall form visualization (labels,
order, widgets). Thus, a programmer should utilize some
of the annotation parameters. A sample source code using
annotations with modified parameters is shown on the
figure 5.

public class PersonAnnotated {
@GUIGenerateAttribute(label = "First
name", order = 1)
private String firstName;
@GUIGenerateAttribute(label = "Last name",
order = 2)
private String lastName;
@GUIGenerateAttribute(label = "Birth
date", order = 3)
private Date birthDate = new Date();
@GUIGenerateAttribute(label = "Higher
education", widgetClass=
"mt.mas.GUI.CheckboxBoolean", order = 5)
private boolean higherEducation;
@GUIGenerateAttribute(label = "Remarks",
order = 50, widgetClass=
"javax.swing.JTextArea", scaleWidget
=false)
private String remarks;
@GUIGenerateAttribute(order = 6)
private int SSN;
@GUIGenerateAttribute(label = "Annual
income", order = 7)
private double annualIncome;
@GUIGenerateMethod(label = "Age",
showInFields = true, order = 4)
public int getAge() { // ...}

// Standard getters/setters methods
}

Fig. 5 The Person class annotated with modified
parameters

And the result of generating a form for the code from the
figure 5 is presented in the figure 6.

Fig. 6 A form automatically generated for the code

from the figure 5.

A few things should be noted:
• All widgets have proper labels,

Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

4

• An age value is read-only which means that a user is
not able to edit the text field,

• Information about higher education is presented using
a check box, rather than a text box,

• All widgets are placed in an order explicitly defined
by a programmer,

• The current value of the item is automatically placed
in the widget,

• The remarks area could have many lines and is
properly scaled during resizing the form.

Besides working with basic types and enumerations, our
library supports more advanced data types and data-
intense operations. The senseGUI library together with
our another prototype called senseObjects support a
programmer in important data management areas:
• managing the class extent. Every instantiation of the

data class is automatically added to the proper extent.
Moreover, the instance is added to all extents of super
classes, i.e. programmers – employees – persons.

• links between objects. It is possible to create a
bidirectional link using just one method call.
Furthermore, there are also possibilities of creating:
o compositions,
o qualified links,
o links with the {xor} constraint,
o links with the {subset} constraint.

• persistency of the classes’ extents including all
existing connections. It is just one method call to save
or load all extents to or from a given file.

More information could be found in [7].

4. New Features

We thought that there are some important aspects of the
Graphical User Interfaces which were not covered by our
library. Hence we have decided to improve it in the area
of:
• internationalization (i18n),
• validation of the entered data,
• GUIs which do not need a dedicated model and are

necessary for an application.
The following sub sections describe each aspect of the
extended library in details.

4.1 Internationalization

There are many approaches to introducing
internationalization (i18n) to an application.
Internationalization applies to various aspects of an
application such as:
• Messages, labels, texts shown to a user,
• Culturally-dependent data like dates, currencies,

numbers formats, sorting order, etc.
Each programming language or framework has its own
solution. The same situation is for the Java language, for

which our prototype has been developed. Hence we have
decided to follow the Java rules.
The new version of the prototype library focuses on
translating GUI items like labels, messages, etc. Our goal
was to introduce the new functionality to the library in
such a way that backward compatibility will be preserved.
As Java designers suggest we used a ResourceBundle
class, which is some kind of a mapper between a key (i.e.
name of the label) and its value (the label’s translation in
the particular language). An instance of the class is passed
to the overloaded method which creates a GUI. If the
method detects an invalid resource bundle then there are
no changes in the label’s processing. However, if the
passed bundle is valid, then the label parameter is
specially processed. Text entered as a label is treated as a
key in the bundle, which means that the translated value is
retrieved and used in the GUI. Such an approach
guarantees that previously written programs will work
with the new feature.

4.2 Validation of the input

Verifying data entered by a user is an important aspect of
almost every graphical user interface. Of course, it could
be performed on the model level (i.e. inside the setter
method) but this solution could mean problems in
communicating with the GUI. It is better to assume that
the validation will be on the GUI level before the data
is/are passed to a model.
Designing a right validators’ architecture implies finding
answers to the following questions:
• how to define validation rules?
• how to connect the rules with a particular widget and

its data?
Because one of the goals in designing our library was ease
of use, we decided to use an ordinary programming
language (Java) for describing the rules. A programmer
does not have to learn special validation languages or
platforms. All he/she has to do is implement a very simple
interface (see figure 7) in a validator object.

public interface Validator {
public String isInvalid(String labelName,

String enteredData);
}

Fig. 7 Java interface for validators objects

The interface has only one method which returns a
message describing the invalidated data, or null if the
entered data is correct. Initially the method had only one
parameter passing the just entered data. But we have
found out that it is useful to use the passed label names in
the message because we can create more generic
validators.
Another issue which had to be solved was connecting
implemented validators with appropriate parts of a model
and the widget. At the beginning we plan to introduce a

Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

5

dedicated parameter for the annotation. The parameter
would have type of the Validator interface.
Unfortunately, Java’s annotations parameters could be
only of primitive types, String, Class, enum or array of the
above types. Hence our idea is not implementable
directly. Of course, we could pass the name of the class as
a string and utilize the reflection to instantiate the object.
But how to define additional parameters for the
validators? For instance, we would like to limit a
number’s range and we need to provide minimum and
maximum values which will be different for various
classes. Using just strings seems very complicated.
In that situation, we have changed our approach and have
abandoned the idea of using annotations for validating
input. Instead, we have introduced a map containing
labels’ names as keys and validators as values. The
validators could be added in two ways:
• by passing a map to the method showing a GUI (we

made another method’s override just like in the case
of internationalization),

• by calling a method in the class defining the
generated GUI (returned by the above method).

Such an approach ensures a high level of flexibility
because simple validators could be created using
anonymous types (figure 8) and more sophisticated ones
could be reused.

SingleObjectPlusFrame personFrame =
GUIFactory2.getObjectFrame(person, resourceBundle);

// Add an ad-hoc custom validator
personFrame.addValidator("firstName", new Validator() {

@Override
public String isInvalid(String labelName, String enteredData)
{

if(enteredData == null || enteredData.length() < 1) {
return labelName + " must be provided!";

}

return null;
}

});
Fig. 8 Adding a validators using anonymous types

We have implemented a few sample validators checking
if an input is not empty, is a number, a number is within a
given range or a string conforms to a given regular
expression. The figure 9 shows utilization of such a
validator.

personFrame.addValidator("annualIncome", new
ValidatorRange(20000, 100000));

Fig. 9 Adding a predefined validator

The validation procedure is started before updating the
model. If it fails appropriate message is shown to the
application’s user describing all validation problems. The
model is only updated if the user’s input is successfully
verified.

4.3 Ad Hoc GUIs

Usually we need a GUI for a model or part of the model.
This kind of GUI could be automatically (based on
annotations) generated by the first version of our library.
But sometimes there is a need to get some information
from a user for which we do not have a complete model.
For instance, our system needs to connect to an outside
database and we need a way to provide its location and
port. Such GUIs we call Ad Hoc GUIs and we have
created a dedicated functionality to work with them. The
functionality is available via a simple method (which has
a few overloaded versions), with two main parameters:
• an array of strings describing widgets to create. Each

description contains a label and optional default
value. It is worth mentioning that labels also support
the new internationalization feature of our library.

• an instance of the AdHocActionPerformed
interface (figure 10).

Similarly to our previous interfaces, this one is also very
simple and contains only one method.

public interface AdHocActionPerformed {
public void Accept(Map<String, String> enteredData);

}
Fig. 10 The Java interface utilized by Ad Hoc GUIs

The method is called when a user clicks the first button
(with a customized label) of a generated GUI and passes
the entered data. The body of the method should contain
some actions working with the entered data. The second
button simply cancels/hides the window.

String[] definitions = {"Database.addres",
"Database.port:3306"};

SingleObjectPlusFrame adHocFrame =
GUIFactory2.getAdHocFrame(definitions, "Database
information", "Connect", new AdHocActionPerformed() {

@Override
public void Accept(Map<String, String>
enteredData) {

String enteredDbAddress =
enteredData.get("Database.addres");

// Do something with entered data, i.e.
connect to the database

}
}, resourceBundle);

// Add validators
adHocFrame.addValidator("Database.addres", new

ValidatorNotEmpty());
adHocFrame.addValidator("Database.port", new

ValidatorRange(0, 65535));
Fig. 11 The code for creating a sample Ad Hoc window

The figure 11 contains a sample Java code with a method
which will be called when an application’s user clicks the
“Connect” button. The generated GUI is presented on the
figure 12.

Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA’08),
November 16 – 18, 2008, Orlando, Florida, USA. pp. 112-118. ISBN: 978-0-88986-776-5.

6

Fig. 12 The Ad Hoc GUI generated automatically for

the code from the figure 11

A few things should be noted:
• There is access to entered data inside the provided

method. Entered values are available via the map
based on the labels.

• Ad Hoc GUIs work also with validators (bottom part
of the code from the figure 11) as the rest of the
senseGUI library,

• The form’s title and the button’s label are
customizable.

5. Design and Implementation

The senseGUI library contains more than 30 classes so
this section describes only a small part of the overall
architecture. Figure 13 shows a simplified view of the
components constituting the senseGUI typical window.
The window consists of:

SingleObjectPlusFrame
SingleObjectPlusPanel

ControlPanel

Label atr1 widget atr1

Label atr2 widget atr2

public class JavaClass{
@GUIGenerateAttribute(
label = "Label atr1", order = 1)
private String atr1;

@GUIGenerateAttribute(
label = "Label atr2", order = 2)
private String atr2;

[...]
}

Fig. 13 A simplified view of the components
constituting the senseGUI typical window

• an instance of the SingleObjectPlusFrame
class which describes the generated window,

• SingleObjectPanel storing all generated labels
and widgets for annotated parts of the model (class).
The panel could be utilized independently, which
greatly improves reuse and customization of the final
window. The panel works with methods:
o reading class structure,
o getting initial values from associated model,
o validating entered data,
o updating the model.

• an object of the ControlPanel class which
contains typical buttons like “Accept”, “Cancel” and
associated business logic.

It is worth noting that we tried as much as possible to
follow the Java guidelines. Such an approach makes
easier using and modifying the library by a developer
already familiar with the Java platform.

6. Conclusion

We have presented new capabilities of the senseGUI
library. The library allows automatic generation of forms
for typical business-oriented applications. The GUI is
generated for the Java classes annotated with simple
markers. The markers (annotations) have some parameters
which allow tailoring the result. A developer is able to
show such a form using just one method call. Thanks to
our library, an application’s user is capable of seeing data
and modify them.
The new features significantly extend the senseGUI’s
existing functionality, namely:
• internationalization allows preparing different

translations of the GUI,
• validation performs verifying data entered by a user.

The process has been designed to be straightforward
yet powerful (a programmer needs to implement only
one interface with one method),

• Ad Hoc GUIs make possible creating forms for
entering or modifying data which do not have a
formal (a class) model. With one simple method call,
passing fields definition and method to execute, a
programmer is able get input from a user.

Our future work will continue on researching declarative
ways of creating Graphical User Interfaces because we
believe that there is a bright future for the approach.

References

[1] P. da Silva, User interface declarative models and
development environments: a survey. Proceedings of
DSVIS 2000, Limerick, Ireland, 2000, 207–226.
[2] T. Griffiths, P. Barclay, et al, Teallach: A model-based
user interface development environment for object
databases, Interacting with Computers, vol.1, 2001, 31-
68.
[3] G. Mori, F. Paterno, C. Santoro: Design and
Development of Multidevice User Interfaces through
Multiple Logical Descriptions, IEEE Transactions on
Software Engineering, 30(8), 2004, 1-14.
[4] P. Molina, S. Meliá, O. Pastor, JUST-UI: A User
Interface Specification Mode, Proceedings of CADUI
2002, Valenciennes, France, 2002, 63-74.
[5] K. Gajos, D. Weld, SUPPLE: Automatically
Generating User Interfaces, Proceedings of IUI'04,
Funchal, Portugal,2004, 83-100.
[6] M. MacDonald, Pro WPF in C# 2008: Windows
Presentation Foundation with .NET 3.5 Second Edition
(Apress, 2008).
[7] M. Trzaska, senseGUI – a Declarative Way of
Generating Graphical User Interfaces. Proceedings of the
Third International Conference on Software and Data
Technologies (ICSOFT 2008), ISBN: 978-989-8111-51-7,
Porto, Portugal, July 5 – 8, 2008, 71-76.

