
The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

DATA MIGRATION AND VALIDATION USING THE SMART PERSISTENCE

LAYER 2.0

Mariusz Trzaska

Polish Japanese Institute of Information Technology

Koszykowa 86, 02-008 Warsaw, Poland

mtrzaska@pjwstk.edu.pl

ABSTRACT
We present a new version of the Smart Persistence Layer

(SPLv2) which is a working prototype following our

approach to modern data sources. Contrary to the most

popular solutions, it does not use Object-Relational

Mappers nor relational databases. This approach

guarantees complete lack of the impedance mismatch.

The new features of the SPLv2 concern data migrations

and validations as an answer to real-world projects where

models are changing all the time. Moreover, the

conducted comparative benchmarks (db4o, Perst, MS

Entity Framework) prove usefulness of our approach. The

prototype, together with previously existing

functionalities (like transparent persistency, bidirectional

associations) makes an interesting alternative to existing

data sources.

KEY WORDS

Impedance mismatch; Databases mapping; Object-

Relational Mappers; ORMs; Persistence; LINQ.

1. Introduction

The initial release of the Smart Persistence Layer (SPL)

[1] has been designed and developed as a solution to the

impedance mismatch problem. The second version of the

tool introduces new important features, but still

reassembles the only valid approach to solve the problems

caused by the mix of object-oriented and relational

models. Before discussing the mentioned new features,

we would like present a short description of our

motivation: the impedance mismatch problem.

The modern software, especially the web one, is

usually created using two models: object-oriented and

relational. The first one is utilized in nowadays

programming languages (Java, MS C#, Ruby, etc.), where

most of the business logic is implemented. The latter is

involved in a data layer. The programmer has to deal with

two models, transforming one to another. To make it

easier, Object-Relational Mappers (ORMs) have been

developed. They map constructs from one model to

another one, mostly using some additional information

provided by the programmer. Unfortunately, even best

ORMs are not able to transparently separate a user from a

data’s relational model. The main reason of that is the fact

that probably there is no general algorithm that maps

object-oriented queries and updates into SQL and still

ensures good performance and flexibility. In fact, it does

not even matter how the mapping is to be defined: using a

configuration file, a DSL or some other way. The result is

still the same: the programmer has to spend his/her time

doing some repetitious and error-prone work.

This uncomfortable situation is caused by relational

database management systems which have currently a

dominant market share. Discussing the reasons behind the

situation is beyond the scope of this paper, but could be

found in [2].

Existing mappers, even those evolving for years, still

require significant attention from programmers. In our

opinion, this proves that the current approach has serious

limitations which probably will never be overcome. Thus,

the only promising solution is to use a single model both

for a programming language and an utilized data source.

Because of its flexibility and power we believe that we

should use object-oriented model.

The rest of the paper is organized as follows. To fully

understand our motivation and approach some related

solutions are presented in Section 2. Section 3 briefly

discusses key and new concepts of our proposal and its

implementation. Section 4 contains comparative

benchmarks. Section 5 concludes.

2. Related Solutions

In this section we would like to present solutions related

to our prototype on two different levels. The first one

describes various ways of dealing with the impedance

mismatch and the second one discusses approaches to

new features introduced by the new version of the SPL.

2.1 The Impedance Mismatch

There are different approaches to the impedance

mismatch problem. Some of them try to solve the problem

by extending programming languages with declarative

specification capabilities like JML [3] or Spec# [4].

Generally we do not accept such solutions mainly because

of the complexity, e.g., Spec# requires a dedicated

compiler.

 Another method is based on using an object-

oriented database management system (ODBMS) which

has an object model compatible to a chosen programming

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

language, e.g., db4o [5, 6] or Objectivity [7]. Both of

them are mature solutions existing on the market for at

least 10 years. However in some cases, using them could

be too complicated. For instance, the Objectivity/DB

requires dedicated class modeler, which generates classes

containing a special code. Therefore, it is not possible to

use simple POCOs (Plain Old CLR Objects). This term

means utilizing classes without the necessity of inheriting

from dedicated super classes or implementing particular

interfaces. Similar approach is employed in Perst [8]. In

order to achieve maximum performance it requires

implementing a dedicated interface. Furthermore, there is

no automatic extent management, which has to be

implemented manually as a persisted, root object. On

contrary, both db4o and our prototype do not impose such

limitations.

 The reference [9] provides the list of open source

persistence frameworks for the MS .NET platform.

Unfortunately, most of them are implemented as ORMs,

which of course introduce some level of impedance

mismatch. We have found only two tools, which do not

utilize a relational database: Bamboo.Prevalence [10] and

Sisyphus [11]. However they usually require some special

approaches, e.g., a command pattern utilized for data

manipulation for the Bamboo and the necessity of

inheritance from a special class for the Sisyphus.

 Developing an application using a platform

containing a merged database and a full programming

language is another way of dealing with the impedance

mismatch. However this kind of solutions are pretty rare,

mainly because of an insufficient number of decent tools.

Admittedly there are various DBMS supported by

languages, e.g., T-SQL, PL/SQL but they are utilized

usually with a “real” programming languages like Java,

C# or Ruby. These DB languages have imperative

functionality and PL/SQL has even some object-oriented

constructs. There are also fully object-oriented solutions

like SBQL for the ODRA platform [12]. These seem more

appropriate thanks to the more powerful and flexible

model.

 Discussing related solutions, it is worth

mentioning the NoSQL family of platforms. There are no

strict definitions, but they usually do not have a fixed

schema/model nor the support for SQL. In various cases

ACID transactions functionality is also absent. Some of

them store their data as key-values pairs or documents.

Despite not the best opinion in the research community

(e.g. because of a limited data model), they prove their

usefulness in well-known commercial projects like

Twitter, Amazon or Google. The most prominent are

Apache CouchDB [13], MongoDB [14], Berkeley DB

[15]. The utilized way of storing information, e.g. key-

value pairs, reduces the DB model to very simple

attributes which could be easily stored in a NoSQL

database. By its simplicity, the model becomes almost

transparent to a programmer substantially reducing the

impedance mismatch.

 Thus, our proposal is based on replacing both an

ORM and a database with a data source native to a

programming language. As a result, there is no impedance

mismatch at all. The approach is supported by a working

prototype for the .NET platform. The prototype provides a

persistence layer and extent management for objects of a

programming language. Furthermore, in version 2.0, we

have added support for data migration and validation.

2.2 Data Migration and Validation

Data migration is a very important aspect of every real-

world application. It is very hard to develop software

which stood without changes for years. Usually changes

affect all layers of an application, including its data

model. When users provide some data, and the model

changes, there is a problem of data migration. It is crucial

to apply changes in a way retaining all the existing data.

Typical relational databases usually deal with the

issue using SQL and a three steps procedure:

 Export existing data to a textual file,

 Apply model changes,

 Import previously exported data to the

format implied by the new model.

The procedure is straightforward only if one modifies

the model by adding some properties without

removing/changing existing ones. Otherwise this could be

really complicated and might require dedicated manual

activities (e.g. intermediate transformations) and/or

additional tools. For instance, [16] compares database

schemas (before and after applying the changes) and

deploys differences. More general information regarding

this topic could be found in [17].

Besides databases such migrations affect also Object-

Relational Mappers. The new release of the Microsoft

Entity Framework (MS EF) [18] introduces a support for

data migrations. The process is triggered by a programmer

and scans the model for changes. Then, any pending

change is applied to the database, or a special SQL script

is generated. It is also possible to customize the

transformation manually, using a dedicated API.

The db4o handles simple schema changes

automatically. Adding a new class attribute does not

interfere with reading existing values. Removing an

attribute just ignores its values in the stored data. More

advanced changes are performed via a special API. The

Objectivity/DB has similar features.

Our approach (SPL v2) to handling data migrations is

described in Section 3.2.

Another important aspect of modern data

management is validation. The purpose of this activity is

to guarantee conformation to the business rules of the

modeled world. In case of relational DBMS, the most

common approach uses constraints (e.g. required length,

text input using regular expressions, uniqueness or

number ranges) and/or triggers which can handle more

complicated cases.

MS EF performs data validation based on model’s

annotations. A programmer decorates particular model’s

elements. Another way offering similar capabilities is to

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

use a special API. The result is that only validated objects

can be saved to the data source (usually a relational

DBMS).

Unfortunately, the object-oriented database

management system Objectivity/DB does not support data

validation at all. Thus the process has to be implemented

manually outside the tool. According to [19] (page 258)

db4o only allows for checking uniqueness of field values.

However it is possible to utilize standard .NET data

annotations (used also by MS EF) together with third-

party providers (e.g. [20]) and some additional

configuration code. In our opinion, this approach looks a

bit complicated. Our SPL follows another convention (see

section 3.3).

3. The Smart Persistence Layer 2.0

One of the strongest motivations for using a database

management system is a query language. Probably the

most popular one for a .NET platform is LINQ [21]

available in many flavors. Basically, the LINQ adds

powerful query capabilities [22] to ordinary programming

languages (e.g., C# and Visual Basic). The LINQ works

with native collections of the programming language

allowing querying them as regular databases. It is also

supported by some “real” databases and various ORM

mappers including their own solution called Entity

Framework [18]. Generally speaking, the mapper uses a

relational database for storing data which, of course,

causes some impedance mismatch (especially concerning

inheritance).

In real-world business applications data persistency is

strongly required. Unfortunately the .NET platform does

not provide such functionality. We do not take into

account the serialization mechanism because it stores the

entire graph of objects every time. To fill the gap we have

designed and developed our prototype as a transparent

complement of the query language. Such an approach

guarantees that every kind of impedance mismatch simply

disappears. Furthermore we do not want to make

programmers use any kind of super classes or

implementing special interfaces (POCO objects are good

enough).

The way we designed the prototype makes it possible

to implement it for other platforms with the reflection

capabilities, e.g., Java. In this case it would be possible to

reuse significant parts of the source code and data files as

well.

3.1 Class Extents and Bidirectional Associations

This section contains only a short overview of the

implemented functionality with emphasis on changes.

Detailed information could be found in [1].

The most basic functionality for a data source is

delivering an extent of objects belonging to a particular

class. This could be achieved using many ways. For

instance the db4o [6] uses the following code:

IList <Pilot> pilots =

 db.Query<Pilot>(typeof(Pilot));

However in our prototype we have simplified that to:

IQueryable<Pilot> pilots =

 db.GetExtent<Pilot>();

Please note that our method does not require the

parameter, but the result is still strongly typed.

Another area related to an extent, which needs a

clarification is how and when new objects will be

incorporated into extent. We have decided that every

object made persistent will be added to an extent. It is also

possible to manually execute a dedicated method. Of

course, if a programmer would like to achieve automatic

adding to an extent, then the method could be executed in

a constructor of a class.

One of the key functionality of every data store is the

ability for creating and persisting connections among

objects. In our opinion, it is especially useful if the

connections are bidirectional allowing navigation in both

directions (e.g., from a product to its company and vice

versa). Unfortunately, databases usually do not support

the feature. According to [6] the db4o does not have it

either. This is also the case of native references existing in

popular programming languages (e.g., MS C#).

The implementation of the mentioned functionality is

complicated especially if we would like to work with the

POCO (Plain Old CLR Object) objects. This approach

means that we cannot expect implementing a specified

interface or functionality inherited from a super class.

Another disadvantage of putting links into a super class

would be problems with navigation using the LINQ.

One of the approaches is generating classes based on

some templates. This is the case of one of the options in

the Microsoft Entity Framework [18] and Objectivity/DB

[7]. However, this functionality requires some kind of

support from a tool and in our opinion may not be useful

for all programmers.

As an another improvement, the new SPLv2 uses the

following simple code for creating a bidirectional

association:

ICollection<Tag> Tags = new

SplLinks<Tag, Product>(t =>

t.Products, this);

Please note that the entire construct is strongly typed

and uses a lambda expression to define the reverse

attribute name. Such a solution eliminates syntax errors

and adds IDE hints. The SplLinks class implements

ordinary .NET interface for accessing collections thus

using it is exactly the same as any other .NET collection.

Creating a bidirectional link requires only executing a

single Add method with the target object. The reverse

connection will be created automatically based on

previously defined data. Of course, all LINQ queries work

as well.

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

3.2 The Transparent Persistence and Data Migrations

Comparing to the previous release of the SPL, our

persistence mechanism has undergone some changes.

They have been mainly caused by the new data migration

feature which supports the following cases (all of them

occurs after persisting some objects):

• Adding a new attribute to the class/model. The

read object will have a default value of the new

attribute and previous values of the unchanged

attributes;

• Removing an existing attribute. In this situation,

the object will be instantiated with existing

attributes’ values (the non-existing ones will be

ignored);

• Renaming an attribute. This cannot be handled

automatically but could be resolved using special

rules, e.g. the Product class had an attribute

named Price which has been renamed to

TotalPrice (please note that the entire expression

is strongly typed wherever possible):

db.AddMigrationRule<Product>("Pri

ce", p => p.TotalPrice);

During saving objects the following data has to be

persisted:

• business content of the objects,

• location of the above,

• information about their types (classes),

• information about attributes.

All of them can change and grow during the run-time.

We have decided to use two files: the first one will hold

business information whereas the second one some

technical details. Initially we thought about three files but

the types information is usually quite small and repeatable

thus can be stored at the beginning of the second file –

after the header (Figure 1). A programmer can define

amount of the allocated space for the purpose. A default

value is 1MB, which makes possible storing about 3000

entries. It is possible to use just one file but at cost of

more complicated design and possibly worse

performance.

Types information (fixed size)

A field or
type info …

A data location
entry

A data location
entry …

Data location information (growing)

Entries
count

Header

Header
(fixed size)

Figure 1. Structure of the file storing types and location

information

The single entry regarding the location of data (the

data location entry from Figure 1) consists of:

• object identifier;

• identifier of its type;

• location in the data file where the object's

content starts. This entry is updated every time

when an object is saved;

• location in the index file where the location data

starts.

The above information also exists in the memory to

boost performance. It is saved to disk only as a backup

and for reading objects purposes.

As mentioned previously we do not persist classes

(types) in the file. Thus during an object initialization

those classes have to be accessible by the .NET run-time

(e.g., as standard DLL libraries). This rule does not apply

to attributes.

The other file, with business data of persisted objects,

can be read only using the location and types information.

It is read at the very beginning. The current prototype

reads all data to the memory. This could be a problem in

some cases but modern computers are usually equipped

with a lot of RAM. See also Section 4 for various

benchmark results.

The process of saving and reading objects intensively

uses the reflection mechanism. Currently it is able to deal

with atomic types, lists (classes implementing the IList

interface), ICollection and other types built using

these invariants (see also the sample in Section 4).

One of the problems related with links, which should

be addressed, is persisting connected objects. When we

would like to persist an object, how should we act with all

referenced objects? There are different approaches, e.g.,

db4o [7] uses a concept called update depth. This is

simply a number telling how many levels of connections

should be saved. We have decided to follow another

approach. When we save an object, all referenced

unknown (not saved previously) objects are saved, no

matter how deep they are. Thus the first execution could

be costly, but the objects have to be saved anyway. All

next updates will not save known objects. If a

programmer wants to save them, then it has to be done

directly by executing the Save method. The method

should also be utilized every time a single object is

modified (its content will be persisted in the file). This

policy guarantees that persisting objects will not be costly.

3.3 Data Validation

The SPLv2 supports data validation using custom

annotations [23]. Attributes in the model can be decorated

with various markers. Then a programmer can execute a

single method which will return errors or null otherwise.

The library is shipped with some validators, namely: e-

mail, number range, regular expression, and required. It is

also possible to easily create a custom validator by

implementing a single method:

public abstract string Validate(object

attributeValue, Type attributeType,

string attributeName);

The method’s body receives a current value of the

attribute being checked, its type and name. The method

should return a description of the problem or null if the

attribute has been validated successfully. Of course a

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

programmer can implement the method anyway he/she wants.

Figure 2. A class diagram of the sample utilized to the comparative benchmarks

4 The Comparative Benchmarks

To verify usefulness of our prototype we have decided to

perform some benchmarks. On contrary to the previous

release [1], this time we have executed some comparative

tests with the following solutions:

• The Smart Persistence Layer v2,

• Db4o v8.0

• MS Entity Framework 4.3 Code First + MS SQL

Server Express

• MS Entity Framework 4.3 Code First + MS SQL

Server Compact

• Perst v4.32

Benchmarking and comparing different tools is

always a challenge. It is not an easy task to assure that the

tests will be impartial and will not favor one solution over

another. To achieve this we have decided that all tests for

all platforms will be performed by the same program.

This became possible by designing common interfaces

implemented by particular solutions. The interfaces define

two kind of information: a business model and

benchmarks itself.

The business model utilized for the test is presented

on Figure 2. It could be summarized as follow:

• Products have various properties including: a

name, a price and a list of supported languages;

• Every product can be described using various

tags;

• A company manufactures many products, but a

product is related to a single company;

• A product is supervised by many persons and a

single person can supervise many products;

• There are various kinds of products with

different properties. Printers contain information

about utilized print technology and laptops store

a screen size.

Although the presented case is quite simple, it

contains different kinds of business information. Thus it

allows comparing different data sources in common

activities.

The diagram from Figure 3 shows structure of the

program executing the tests. The base class

PerformanceBase contains all necessary methods.

However, some of them are abstracts and have to be

implemented in particular subclasses. Basically all of

them are responsible for opening a data source, generating

some data and validating it by executing test queries.

Different kind of tests inherits from the base class. For

instance the PerformanceTest2 class, besides

generating necessary data, defines the following activities

(all of them utilize LINQ to query data):

• Check the products count,

• Find a product having particular tag and not

being a laptop,

• Find a product having particular tag and not

being a printer,

• Find a product of particular company and having

specific number of tags,

• Find a product supported by a given number of

languages,

• Validate a person, who supervised a product,

• Count laptops,

• Find a laptop with specific tag,

• Verify manufacturer of a laptop,

• Count printers,

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

• Validate a printer’s company,

• Count persons,

• Check number of supervised product by a

particular person,

Figure 3. Class diagram for benchmarks structure

• Find youngest person,

• Count laptops with a particular price.

As mentioned before, due to the flexible architecture,

all tests are executed by the same program against

different data sources and various amounts of data. A

single data source is accessible through the IDatabase

interface (see Figure 3). The interface declares all

properties (e.g. class extents) and methods (e.g. for

creating objects) necessary for working with various data

sources.

Each benchmark started with generating and

persisting various amounts of data (see Table 1). Then the

generated data has been validated by executing previously

mentioned queries (Table 2).

After that a data source has been closed and all data

removed from the memory. Next the data source,

containing the generated data, has been opened. In case of

the SPL2 it also meant reading all objects to the

computer’s memory (see Table 3) causing quite long

times. Fortunately it is performed only once, when a

program opens the SPL2.

Table 1. Generating and persisting data [s] (less is better)

Total

objects

SPL

v2

DB4o v8 Perst

V4.36

EF CF

4.3

+ SQL

Server

CE

EF CF

4.3

+ SQL

Server

Express

 48,000 14.67 7.50 0.42 6,607.96 5,169.50

 330,000 98.86 54.75 2.30 cancelled cancelled

 1,650,000 465.85 319.62 10.80 cancelled cancelled

Table 2. Validating generated data [s] (less is better)

Total

objects

SPL

v2

DB4o v8 Perst

V4.36

EF CF

4.3

+ SQL

Server

CE

EF CF

4.3

+ SQL

Server

Express

48,000 0.22 25.09 0.44 0.74 0.48

330,000 1.35 183.19 2.80 cancelled cancelled

1,650,000 6.37 916.37 13.17 cancelled cancelled

Finally, with an opened data source, the data has been

validated using the same queries (see Table 4).

Table 3. Opening a data source and optionally reading all

objects [s] (less is better)

Total

objects

SPL v2 DB4o v8 Perst

V4.36

EF CF

4.3

+ SQL

Server

CE

EF CF

4.3

+ SQL

Server

Express

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

48,000 16.57 0.05 0.04 0 0

330,000 112.21 0.05 0.13 cancelled cancelled

1,650,000 545.42 0.25 0.84 cancelled cancelled

Table 4. Validating data (after reading from a data source)

[s] (less is better)

Total

objects

SPL v2 DB4o v8 Perst

V4.36

EF CF

4.3

+ SQL

Server

CE

EF CF

4.3

+ SQL

Server

Express

48,000 0.16 27.61 0.74 40.36 5.42

330,000 1.29 205.08 5.62 cancelled cancelled

1,650,000 6.58 1,095.26 26.62 cancelled cancelled

As it can be seen from Tables 2 and 4 queries times

vary significantly. The worst results have been achieved

with the MS EF (both with the server’s small edition

(Compact) and the “real” one). This could be caused by

the necessity of translating queries to SQL. Such

translation is not always possible, e.g. when a

programmer would like to query against a method (e.g.

find all people older than 30 years; when an age is

calculated by a property or a method). The same problem

could be partially caused the way we have benchmarked

(common interfaces, methods, etc.). In such cases, the

mapper throws an exception saying that is not able to

translate the method/property. The result is that a

programmer needs to convert the extent to a list (which

instantiates all objects) and query the list without SQL

optimizations. However, we have no clue why generating

objects (Table 1) by MS EF took so long.

The best results in querying were achieved by our

prototype (SPLv2) due to the way it works. All data is

kept in the memory which boost all queries but for the

price of reading them at the start (Table 3). The remaining

systems do not read the data at the beginning thus the

opening times are really tiny.

It also could be interesting to compare files’ sizes

storing exactly the same (generated) data (see Table 5).

Table 5. Files‘ sizes storing the same (generated) data

[KB] (less is better)

Total

objects SPL v2
DB4o

v8

Perst

V4.36

EF CF

4.3

+ SQL

Server

CE

EF CF

4.3

+ SQL

Server

Express

48,000 5,706 11,100 7,168 6,420 NA

330,000 34,358 80,794 48,624 cancelled cancelled

1,650,000 169,574 444,217 237,826 cancelled cancelled

Table 6. Detailed information about numbers of generated

objects

Total

objects

Products Tags Persons Companies

48,000 7,000 35,000 3,000 3,000

330,000 70,000 200,000 30,000 30,000

1,650,000 350,000 1,000,000 150,000 150,000

Table 6 presents detailed information about numbers

of generated objects.

Some other remarks regarding the procedure and the

results are enumerated below:

• The test computer configuration: Intel Core i7

2.93GHz, RAM: 8GB, Windows7 x64;

• Due to significantly long execution times for the

MS Entity Framework we have decided to

perform tests only for the smallest extents;

• On contrary to the SPLv2, the db4o and Perst do

not have native bidirectional associations. Thus

they have been created manually;

• The Perst [8] system does not follow the pure

POCO approach. According to the tutorial, the

best results can be achieved when all model

classes implement a dedicated interface or

extends a provided class. We employed the

second solution (a common super class). But yet

the Perst performance surprised us in a very nice

way.

The benchmark results clearly prove that even

significant number of objects (more than one and a half

million) could be processed by storing them all in a

memory on a modern computer. This solution guarantees

the best query performance outperforming the second

place by 3-4 times (Table 4).

5 The Conclusion and Future Work

We have presented our approach to working with data

which is supported by the new version of the Smart

Persistence Layer (SPLv2). The SPLv2 together with an

existing query language (LINQ) could be an interesting

alternative to existing data sources (object-relational

mappers or object databases). Of course it requires a lot of

The 16th IASTED International Conference on Software Engineering and Applications (SEA 2012)

November 12 – 14, 2012. Las Vegas, USA

work to leave a prototype stage and compete with well-

established tools. However, during the comparative

benchmarks proved that, despite storing all data in the

computer’s memory (1.5m+ objects), is able to work

efficiently wining the query tests.

The contribution of this paper is based on new

functionalities delivered by the SPLv2, namely: data

migrations and validation. They make easier developing

real-life systems, where model still evaluates and existing

data needs to be compatible with a future meta data. The

validation feature introduces an easy way for verifying

objects using existing or custom annotations.

Another valuable input of the paper is comparative

benchmarks with popular solutions (db4o, Perst,

Microsoft Entity Framework). It seems that in general

existing modern tools outperformed tested Object-

Relational Mapper. Moreover the mapper (similarly to

other ORMs), trying to reduce the impedance mismatch,

still is not able to hide the relational database (e.g. queries

against objects’ methods/properties).

We hope that researching area of alternatives to

existing relational databases we will be able to promote

new approaches reducing or eliminating the impedance

mismatch.

References

[1] Trzaska M.: The Smart Persistence Layer. ICSEA

2011: The Sixth International Conference on

Software Engineering Advances. October 23-29,

2011 - Barcelona, Spain. ISBN: 978-1-61208-165-6.

pp. 206-212.

[2] Objectivity, Inc.: Hitting The Relational Wall.

http://www.objectivity.com/pages/object-oriented-

database-vs-relational-database/default.html. Last

accessed: 2012-06-15.

[3] Chalin, P., R. Kiniry, J., T. Leavens, G., and Erik

Poll. Beyond Assertions: Advanced Specification and

Verification with JML and ESC/Java2. In Formal

Methods for Compo-nents and Objects (FMCO)

2005, Revised Lectures, pages 342-363. Volume

4111 of Lec-ture Notes in Computer Science,

Springer Verlag, 2006, pp. 342-363

[4] Barnett, M., Rustan K., Leino M., and Schulte W.:

The Spec# programming system: An overview. In

CASSIS 2004, LNCS vol. 3362, Springer, 2004, pp.

144 – 152

[5] Paterson, J., Edlich, S., and Rning, H.: The Definitive

Guide to Db4o. Springer (August 2008), ISBN: 978-

1430213772

[6] db4o tutorial,

http://developer.db4o.com/Documentation/Reference/

db4o-8.0/net35/tutorial. Last accessed: 2012-06-15

[7] The Objectivity Database Management System.

http://www.objectivity.com. Last accessed: 2012-06-

16

[8] Perst - An open source, object-oriented embedded

database. Last accessed: 2012-06-16

[9] Open Source Persistence Frameworks in C#.

http://csharp-source.net/open-source/persistence. Last

accessed: 2012-06-16

[10] Bamboo.Prevalence - a .NET object prevalence

engine. http://bbooprevalence.sourceforge.net/. Last

accessed: 2012-06-15

[11] Sisyphus Persistence Framework.

http://sisyphuspf.sourceforge.net. Last accessed:

2012-06-16

[12] Adamus, R., Daczkowski, M., Habela, P.,

Kaczmarski K., Kowalski, T., Lentner, M., Pie-

ciukiewicz, T., Stencel, K., Subieta, K., Trzaska, M.,

Wardziak, T., and Wiślicki, J.: Overview of the

Project ODRA. Proceedings of the First International

Conference on Object Databases, ICOODB 2008,

Berlin 13-14 March 2008, ISBN 078-7399-412-9, pp.

179-197.

[13] Lennon J.: Beginning CouchDB. Apress, 1 edition

(2009), ISBN: 1430272376.

[14] Plugge E., Hawkins T., Membrey P.: The Definitive

Guide to MongoDB: The NoSQL Da-tabase for

Cloud and Desktop Computing. Apress; 1 edition

(2010). ISBN: 1430230517.

[15] Yadava H.: The Berkeley DB Book. Apress; 1 edition

(2007). ISBN: 1590596722

[16] RedGate SQL Compare. http://www.red-

gate.com/products/sql-development/sql-compare/.

Last accessed: 2012-06-14

[17] Morris J.: Practical Data Migration. British

Informatics Society Ltd (2006). ISBN: 1902505719

[18] Lerman, J.: Programming Entity Framework:

Building Data Centric Apps with the ADO.NET

Entity Framework. O'Reilly Media, Second Edition,

ISBN: 978-0-596-80726-9 (2010)

[19] Versant Corporation: Db4o 8.1 Reference Manual.

http://www.db4o.com/. Last accessed: 2012-06-16

[20] Hibernate Validator.

http://www.hibernate.org/subprojects/validator.html.

Last accessed: 2012-06-16

[21] Pialorsi P., Russo M.: Programming Microsoft LINQ

in Microsoft .NET Framework 4. Microsoft Press,

ISBN: 978-0735640573 (2010)

[22] 101 LINQ Samples.

http://code.msdn.microsoft.com/101-LINQ-Samples-

3fb9811b. Last accessed: 2012-06-16

[23] Creating Custom Attributes. http://msdn.microsoft.

com/ en-us/library/sw480ze8(v=vs.100).aspx. Last

accessed: 2012-09-26

