
Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

1

senseGUI – A DECLARATIVE WAY OF GENERATING
GRAPHICAL USER INTERFACES

Mariusz Trzaska
Polish Japanese Institute of Information Technology, Koszykowa 86, Warsaw, Poland

mtrzaska@pjwstk.edu.pl

Keywords: Graphical User Interfaces, GUI, library, tools, Model-Based GUIs.

Abstract: A declarative way of creating GUIs is also known as model-based generation. Most of existing solutions
require dedicated tools and quite complicated knowledge from the programmer. They also use special
languages. In contrast, we propose a method which utilizes annotations existing in present programming
languages. The method greatly improves generating common GUIs for popular languages. Annotations
allow the programmer for marking particular parts of a source code defining class structures. Using such
simple annotations, the programmer can describe basic properties of the desired GUI. In the simplest form it
is enough just to mark attributes (or methods) for which widgets should be created. There is also a way to
define more detailed description including labels, the order of items, different widgets for particular data
items, etc. Using a generated form, the application user can create, edit and see instances of data objects.
Our research is supported by a working prototype library called senseGUI (Java).

1. INTRODUCTION

According to (Basnyat, 2005), the Model-based
development (MBD) is a developing trend in the
domain of software engineering that advocates the
specification and design of software systems
through declarative models. A part of this approach
are Model-Based GUIs (MB-GUI) which assume
that GUIs are automatically generated by the
software system. Specification of the generation is
described in a model. (da Silva, 2000) discusses
different kinds of models. All the models are
necessary if one would like to define entire
applications, including some parts of activity
specification (i.e., business logic). Unfortunately
such description is quite complex and time
consuming, hence it is not so popular in the
development of commercial applications.

Generally, developers utilize three main
approaches to creating graphical user interfaces:
§ Defining GUIs using manually written source

code. Every popular programming language
has its own dedicated libraries. In case of Java
it could be Swing (Walrath, 2004) or SWT

(Guojie, 2005). C# developers have
WinForms (Sells, 2006);

§ Utilizing dedicated visual editors (designers)
which allow for “drawing” a GUI and for
generating an appropriate source code. The
quality of such generators varies considerably.
Some of them allow for round-trip
engineering (i.e. (Jigloo, 2008)). In contrast,
there are also solutions which act as pure
generators;

§ Using a special declarative approach including
MB-GUI. The idea is to focus on “what to do”
rather than “how to do it”. A recent,
commercially used example of such an
approach is MS XAML. Particular GUI items
are defined using a dedicated programming
language (or a description language).

Unfortunately, all of the presented approaches
require quite serious involvement from the
programmer. Starting from the first one, which is the
most time-consuming (and needs also specified
knowledge), through the second one, which of
course saves time but needs a lot of attention, up to
the last one which cuts some effort, but a little bit.
Hence our idea was to develop a solution which is
very easy to use yet powerful and does not require
so much programmer’s effort. Our research is

Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

supported by a working prototype implemented for
the Java language as a library, called senseGUI. The
library could be applied to any program written in
Java. It is worth mentioning that following our
concepts it is possible to create implementations for
any language which supports reflection.

The rest of the paper is organized as follows. To
fully understand our motivation and approach some
general information are presented in section 2. Next
sections briefly discuss key concepts of our research:
utilization capabilities (Section 3) and technical
overview (Section 4). Section 5 concludes.

2. RELATED WORK

In general terms, an ordinary application’s user
needs a Graphical User Interface as an:

§ Input. To fill a data (model) elements with
some content. To achieve this, a programmer
creates widgets (i.e. text box) and connects
them with data. When a user enters some data
to the widget, a dedicated part of the program,
writes them to the model;

§ Output. To show a content of data or a model.
To accomplish this, a programmer writes a
code which reads a part of the application’s
model and writes it to a widget.

The most common way of fulfilment
input/output needs is utilizing a GUI library
delivered with a given programming language. Most
of Java’s GUIs are implemented using Swing
(Walrath, 2004) or SWT (Guojie, 2005) libraries.
The following listing contains definition of a simple
Java class:

public class Person {

private String firstName;
private String lastName;
private Date birthDate;
private boolean higherEducation;
private String remarks;
private int SSN;
private double annualIncome;
public int getAge() {// [...]}

}

In case of creating GUI for the class, we need to

write a source code performing the following steps
(aside adding necessary “model” methods):
§ Create an empty form;
§ Add a layout manager;
§ For each needed attribute add a widget which

will show its content and will allow edition;

§ For each widget add a describing label;
§ For each widget add a code which will read

the value of a particular attribute and will put
it into the widget;

§ Add “Accept” button which will read widgets’
contents, update appropriate attributes and
will hide the form;

§ Add “Cancel” button hiding the form.
Implementing the above steps means writing a

few tenths lines of code (7 attributes multiplied by 5
to 10 lines per widget plus handling layout, control
buttons, etc), which are quite similar to each other.

Different approach has been utilized in the GUI
editors concept. One of them is Jigloo GUI Builder
working with the Eclipse IDE platform. Using the
editor one can visually draw a form by placing
appropriate widgets. An example, for our sample
Person class, is presented on fig. 1. For the figure,
the editor has generated 105 lines of Java code. This
number is without a code needed to read/write
values from/to the data instance, which should be
written manually. Comparing to hand coding GUI,
using an editor is a big facilitation. However, the
programmer has to spend some time on placing
widgets in a window, adding “data code” and
handling resizing the window (which is not always
easy to achieve).

Figure 1: A sample form designed using Jigloo GUI editor

We believe that, in the case of typical graphical
user interfaces, i.e. forms for editing or entering
data, the most promising approach is the declarative
one. The reason is that a programmer focuses on
defining what he/she would like to achieve, rather
than how to do it.

Systems like Teresa (Mori, 2004), JUST-UI
(Molina, 2002), SUPPLE (Gajos, 2004) support a
declarative approach and have features which
facilitate creating really powerful applications. Most
of them work with dedicated model definition
languages (i.e. pattern definition language in case of
(Molina, 2002) and their own platforms. It means
that a programmer has to learn something new and
quite complicated. Sometimes, the new knowledge
introduced by the systems is much more complex
than the basic problem (GUI to create) which has to

Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

be solved. Unfortunately, most of the proposed
solutions seem to be too complicated for an average
programmer and average tasks.

3. senseGUI CAPABILITIES

Our goal was to create a library which will
automatically generate a GUI form for an ordinary
Java class. Using that form, an application’s user
will be able to enter new data, update existing
information or just see the data. For instance, a
programmer has the Person class and he/she does
not want to manually create a GUI similar to the one
in fig. 1. Our basic assumption was that the entire
process will be performed without any additional
involvement of programmer. To make sure if our
library is useful we have decided to create a working
sample of a typical business application: a software
for a video store.

We had to solve three main problems:
• how to read a class content (structure)?
• what kind of widgets should be generated for

particular class items (attributes)?
• how to connect generated widgets with data?
The first problem was quite easy to solve. We

have decided to employ technology called reflection.
This functionality is available for all modern
programming languages including Java, C# and
partially C++. It allows reading classes’ structures
and instantiating their objects.

Answers to the rest of the questions are
presented in the next sections.

3.1 Basic usage

Roughly speaking it is not possible, in a generic case
to automatically discover which part of a data class
should be visualized. Hence we had to introduce
some kind of markers. The markers were responsible
for tailoring generated GUI to programmer’s needs.
The open question was how to connect the markers
with a program, framework and a working GUI?
There were some options like configuration files (i.e.
XML or Java-properties) or passing parameters to
the library. Finally, after some research, we decided
to use another approach: annotations. They exist for
the Java and MS C# and allow describing a class or
their content. We tried to make them as simple as
possible, but during the implementation of our
sample application, the number of annotation’s
parameters grew to 11. Fortunately, all of them had
some default values and did not need to be changed
each time. We introduced two basic kinds of

annotations: GUIGenerateAttribute,
GUIGenerateMethod. The first one is dedicated to
marking attributes and the later to marking methods.
Each of them has additional parameters (with
different default values):
§ label. Describes a label for a widget. If it is

an empty string (default) then a name of the
attribute or the method (without a prefix
get/set) will be used.

§ widgetClass. Widget class which will be
used to handling editing of the attribute or
method. Default value is a JTextBox.

§ tooltip. A short text presented to the user
when a mouse cursor hovers over the widget.

§ getMethod. A method to read a value of the
attribute. Default value employs a standard
setters/getters approach.

§ setMethod. A method for writing the value.
§ showInFields, showInTable,

showInSearch Flags telling if this item
should be visible in a form with fields, table
(grid) view, search criterion view.

§ order. A number defining order in a form.
§ readOnly. If true then the widget is read

only.
§ scaleWidget. Indicates if this widget should

change size during resizing the form.
Our generic solution is capable of working with

languages common types: numbers, strings,
booleans, dates and enumerations (enum type). For
objects see section 3.2.

Default implementation for most of them uses
text boxes as widgets with two exceptions:
§ booleans work with special version of check

box (see further),
§ enumerations are processed using combo

boxes automatically filled with all possible
values (read via language reflection).

Our sample code (the Person class), modified
using our approach is shown below. Notice that all
we had to do was adding annotations telling which
parts of the class should have their own GUI.

public class PersonAnnotated {

@GUIGenerateAttribute
private String firstName;
@GUIGenerateAttribute
private String lastName;
@GUIGenerateAttribute
private Date birthDate=new Date();
@GUIGenerateAttribute
private boolean higherEducation;
@GUIGenerateAttribute
private String remarks;
@GUIGenerateAttribute

Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

private int SSN;
@GUIGenerateAttribute
private double annualIncome;
@GUIGenerateMethod
public int getAge() { // ...}

}

The result of calling appropriate (single)

senseGUI method showing the generated window is
shown on fig. 2

Figure 2: A form generated automatically by the senseGUI

As it can be seen, using annotations with only
defaults values could lead to improper overall form
visualization. Thus, a programmer should utilize
some of the annotation parameters. Part of the
appropriate sample code is shown below and its
result frame is presented on fig. 3.

@GUIGenerateAttribute(label =

"First name", order = 1)
private String firstName;
@GUIGenerateAttribute(label =

"Higher education", widgetClass=
"mt.mas.GUI.CheckboxBoolean", order
= 5)

private boolean higherEducation;
@GUIGenerateAttribute(label =

"Remarks", order = 50, widgetClass=
"javax.swing.JTextArea", scaleWidget
=false)

private String remarks;
@GUIGenerateMethod(label = "Age",

showInFields = true, order = 4)
public int getAge() { // ...}

A few things should be noted:
§ All widgets have proper labels,
§ An age value is read-only,
§ Information about higher education is

presented using a check box,
§ All widgets are placed in an order explicitly

defined by a programmer,
§ Current value of the item is automatically

placed in the widget,
§ Remarks area could have many lines and is

properly scaled during resizing the form.

Figure 3: A form generated automatically by the senseGUI
based on modified annotations.

3.2 Advanced possibilities

We have mentioned that our library works with
some common data types (including the basic ones).
What if a programmer would like to show the
content of a custom defined type embedded in
another custom type (i.e. person has a job
information described using a dedicated class)?
Generally speaking, there are two ways of achieving
such a functionality.

The first one takes advantage of another
capability of our solution. As we said, a programmer
can generate an entire window for a class in just one
method call. However, behind the scene, the call
utilizes other methods. One of them is a method
which creates a panel containing all data widgets.
Then, the panel is merged with some other control
widgets and embedded inside a window. The
window is shown to a user, allowing performing
requested operations. The idea is based on utilizing
just the widget panel and embedding them in a
custom designed window.

Another approach requires cooperation with our
other library called senseObjects. The library is a
result of our research regarding supporting common
data management using a solution native for a
particular programming language (i.e. without using
a database). Similarly to the senseGUI, the current
prototype is developed for the Java and requires
minimal programmer’s involvement. In order to use
it, a programmer has to:
§ inherit his/her data objects from a particular

class,
§ call the constructor from the super class.

The senseObjects library supports a programmer
in important data management areas:
§ managing the class extent. Every instantiation

of the data class is automatically added to the

Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

proper extent. Moreover, the instance is
added to all extents of super classes, i.e.
programmers – employees – persons.

§ links between objects. It is possible to create a
bidirectional link using just one method call.
Furthermore, there are also possibilities of
creating: compositions, qualified links, links
with the {xor} constraint, links with the
{subset} constraint.

§ persistency of the classes’ extents including
all existing connections. It is just one method
call to save or load all extents.

Going back to our problem with presenting in
one window information described using another
class (i.e. jobs “within” a person’s window), we can
link instances of Job class with our Person object.
Thanks to this approach it is possible to utilize the
part of the senseObjects functionality, which is
dedicated to managing links.

The data management library (senseObjects)
together with the senseGUI add an extra automatic
functionality regarding links. Using a special
annotation (similar to the one dedicated to attributes)
it is possible to manage links between data objects
using automatically generated GUI. Special
annotation (@GUIGenerateAssociation)
describing class’s connections consists of an array
with definitions of particular links. We had to use an
array because a class could have many associations.
Each of the link’s definition contains the following
elements:
§ Name of the role (UML semantic),
§ Name of the reverse role,
§ Cardinalities,
§ Qualified name of the target class,
§ Information if a link is read-only.

Note that the PersonAnnotated class inherits
from the senseObject class and calls the
constructor from the super class.

The following code (without attributes) allows
generating a form presented on the figure 4.

@GUIGenerateAssociation(definitions=

{"Employer; Employee; 1; *; mt.paper.
example01.Company; readOnly=false"})

public class PersonAnnotated
extends SenseObject {

public PersonAnnotated() {
 super();
} // Attributes with annotations

}

Using buttons generated by the library it is

possible to modify information about the
connections:

§ Select an existing target object,
§ Add a new target object (create it),
§ Edit target object’s information,
§ Remove a selected link.

Figure 4: The generated window with links management.

Another useful functionality provided by the
library is a table (grid) view of a group of objects.
The dedicated method, which provides an access to
the function works with just two parameters:
§ a collection containing objects to show,
§ a class definition object (subclass of the Java

Class class).
A sample window showing information about

instances of the PersonAnnotated class (see
previous source codes) is presented on the fig. 5.
The window has been shown using only one line of
Java code. It also supports selecting a particular
object (from the shown ones) which could be
processed later.

Figure 5: The table window generated by the library.

The last (but not least) capability of our solution,
which is worth mentioning, is automatic searching
of objects based on a parameters entered by a user. It
is really easy for a programmer to show a dedicated
dialog which allows inputting values of searched
items. We use the term “item” rather than an
attribute, because it is also possible to search within
results of a method (if they were properly annotated
– they have own widgets). During the search
process, which could be time-consuming, an
application’s user see an animated progress bar.

We would like to emphasize that from a
programmer’s point of view, all of these
functionalities have been run using only a few

Proceedings of the Third International Conference on Software and Data Technologies (ICSOFT 2008). Porto,
Portugal, July 5 – 8, 2008. ISBN: 978-989-8111-51-7. pp. 71-76.

simple annotations in data classes and a couple lines
of Java code (needed to show the generated form).

4. DESIGN AND
IMPLEMENTATION

From the very beginning, our solution has been
designed as a generic one. It means that most of the
functionality could be utilized with any Java classes.
Moreover, our approach may be implemented for
other languages supporting reflection, i.e. MS C#.

One of the problems which had to be solved, was
exchanging data between class items (attributes and
methods) and widgets. After some research we
decided to use the following approach:
§ For every annotated attribute, there must be a

read method named as the attribute with get
prefix, i.e. getLastName(). Annotated
attributes could be of any basic type, Data,
String or enumeration.

§ If the marked attribute is writeable (not read-
only), then there must be a similar method but
with a “set” prefix, i.e. setLastName(...)
with an appropriate parameter.

§ The above rules could be modified by
explicitly defined methods.

§ A widget used to visualize/modify the item
has to have methods: setText(...) and
getText() with parameter and return types
of String. The methods are used to set and
read widget’s state (based on the states of the
connected item). Most of existing widgets (i.e.
JTextField) work that way. However, if a
widget does not have the methods a simple
wrapping must occur. This is the case of
boolean type and JCheckBox. We have
provided a new class CheckBoxBoolean
which simply overrides the mentioned
methods.

§ A special case are enumerations. We have
created a generic widget (ComboBoxEnum)
which automatically works with all
enumerations defined by a programmer.

The similar situation occurs for generating GUI
for methods (GUIGenerateMethod annotation).

5. CONCLUSION

We have presented the result of our research
regarding automatic generation of Graphical User

Interfaces for business applications. The generated
GUI is based on annotations of data items processed
by a developed application. A programmer chooses
which attributes or even methods should be reflected
as widgets and writes only a couple of source code
lines. Then, our library automatically generates
windows for creating, editing or presenting data.

Our contribution could be evaluated from two
points of view. Firstly, our approach could work
with popular technologies (i.e. it works with Java
and Swing) and would not require any dedicated
systems or sophisticated interface description
language. Secondly, the working prototype has been
developed for the Java language and Swing GUI
library. It is possible to develop similar libraries for
other programming languages supporting reflection.

Our future work will focus on formal usability
and performance tests. However, informal
benchmarks show that the performance is good
enough for small and medium size systems.

In our future work we would like to focus on
improving our approach, because, in our opinion, the
declarative (model-based generation) way of
creating GUIs has a big potential which could save a
lot of programmers’ time.

REFERENCES

Basnyat S., Bastide R., Palanque P.: Extending the
Boundaries of Model-Based Development to Account
for Errors. MDDAUI '05. 2005.

da Silva P.: User interface declarative models and
development environments: a survey. Proceedings of
DSVIS 2000, 2000,pp. 207–226.

Gajos K., Weld D.: SUPPLE: Automatically Generating
User Interfaces, in Proceedings of IUI'04, Funchal,
Portugal,2004, pp.83-100.

Guojie J. L.: Professional Java Native Interfaces with
SWT/JFace. ISBN: 978-0470094594. Wrox. 2005.

Jigloo SWT/Swing GUI Builder:
http://www.cloudgarden.com/jigloo/.

Molina P., Meliá S., Pastor O.: JUST-UI: A User Interface
Specification Mode, in Proceedings of CADUI 2002,
Valenciennes, France, 2002, pp.63-74.

Mori G., Paterno F., Santoro C.: Design and Development
of Multidevice User Interfaces through Multiple
Logical Descriptions, IEEE ToSE, 30(8), 2004, pp.1-
14.

Sells Ch., Weinhardt M.: Windows Forms 2.0
Programming. ISBN: 978-0-321-26796-2. AWPddison
Wesley Professional. 2006.

Walrath K., Campione M., Huml A., Zakhour S.: The JFC
Swing Tutorial (2nd Edition). ISBN 0201914670.
Prentice Hall. 2004.

