
 500

Mavigator – a Flexible Graphical User Interface to Data
Sources

Mariusz Trzaska
Polish-Japanese Institute of IT

Koszykowa 86
Warsaw, Poland

+48 (22) 58 44 564

mtrzaska@pjwstk.edu.pl

Kazimierz Subieta
Institute of Computer Science PAS

Ordona 21
Warsaw, Poland

+48 (22) 58 44 564

subieta@pjwstk.edu.pl

ABSTRACT
We present Mavigator, a prototype of a graphical user interface to
databases. The system is dedicated to naive users (computer non-
professionals) and allows them to retrieve information from any
data source, including object-oriented and XML-oriented
databases. The system extends its core functionalities by the
Active Extensions (AE) module, which assumes a trade-off
between simplicity of user retrieval interfaces and complexity of
output formatting functions. In AE the latter are to be done by a
programmer using a fully-fledged programming language
(currently C#). Thus the retrieved data can be post-processed or
presented in any conceivable visual form. Another novel feature
of the Mavigator is the Virtual Schemas module, which allows
customization of a database schema, in particular, changing some
names, adding new associations or hiding some classes.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND
PRESENTATION]: User Interfaces - Graphical user interfaces
(GUI).

General Terms
Management, Design, Experimentation, Human Factors.

Keywords
graphical query interface, information retrieval, information
browsing, navigation, baskets, HCI, GUI, database views.

1. INTRODUCTION
The style of working with an application must be designed
regarding abilities of the target user. Retrieval capabilities of the
visual information retrieval system Mavigator have been designed
for naive users, typically computer non-professionals. Such a user
cannot deal with sophisticated retrieval methods and metaphors,
especially using keyboard-oriented, very high-level languages,
such as query languages like SQL and script languages for
formatting retrieval output. There are two options: some generic
output format (e.g. a table), which is usually too primitive for the

users, or some very attractive, user-friendly form (e.g. a function
chart), which in turn must be specialized to a very particular
application and a retrieval kind. There is a need for tradeoffs
between these extremes. Usually such tradeoffs sacrifice the
expressive power of the output formatting capabilities.

Mavigator is our second prototype. The first one, called Structural
Knowledge Graph Navigator (SKGN) [1], has been designed and
developed for the European project ICONS. In Mavigator we
assume navigational retrieval and browsing style in formatted data
sources a la XML rather than full-text retrieval in raw texts with
predefined output format a la Google. In contrast to SKGN,
Active Extensions, which are a part of the Mavigator prototype
[2], allow extending its existing functionalities by professional
programmers, on the order of end users. In contrast to Visage [3],
which uses a dedicated script language, Active Extensions are
based on a fully-fledged programming language. Due to such
solution the extensions do not restrict the form of output,
execution speed or algorithmic complexity of output formatting
functions.

A disadvantage of our solution is that end users asking for a new
output format need cooperation with a professional programmer,
who adds the new required functionalities. We believe that this
solution is inevitable if we do not want to sacrifice the expressive
power of the visual interface. Our experience has shown that in
majority of visual retrieval tasks such a mode of making changes
to end user interfaces is fully acceptable regarding both the time
necessary for the changes and the changes cost.

The Mavigator’s retrieval metaphors rely on database schema
graphs. Because such graphs can be large and sophisticated, there
is a need to restrict them and to customize to particular users. For
such purposes, database views could be used. They are subject of
research and development for long time in the database
community. However, up to now, there are few proposals for
object-oriented or XML-oriented environments, which are
implemented, powerful and easy to use. In particular, to the best
of our knowledge till now there is no proposal of views that
deliver virtual associations (in UML terms) among object classes.
Within Mavigator we have implemented such a view mechanism
within the module called Virtual Schemas.

The remainder of this paper is organized as follows. In Section 2
we discuss related work. In Section 3 we give an overview of
information retrieval capabilities. Section 4 contains information
about Active Extensions and Section 5 about Virtual Schemas.
Section 6 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI '06, May 23-26, 2006, Venezia, Italy.
Copyright 2006 ACM 1-59593-353-0/06/0005...$5.00.

mailto:mtrzaska@pjwstk.edu.pl
mailto:subieta@pjwstk.edu.pl

 501

2. RELATED WORK
Related solutions could be analysed from the three points of
views: the way of information retrieval, methods of modifying
application’s functionalities and utilization of database views.
However, because of the very limited space we will only give a
brief description of the related work. More information can be
found in [2], [4].

Roughly, visual metaphors to information retrieval can be
subdivided into two groups: based on graphical query languages
and graphical browsing interfaces. The subdivision is not fully
precise because many systems have features from both groups. An
example is Pesto [5] having possibilities to browse through
objects from a database. Besides browsing, Pesto supports quite
powerful query capabilities. It utilizes the query-in-place feature,
which enables the user to access nested objects, e.g. courses of
particular students, but still in the one-by-one mode.

Typical visual querying systems are Kaleidoscape [6] and
VOODOO [7]. Both are declared to be visual counterparts of
ODMG OQL thus graphical queries are first translated to their
textual counterpart and then processed by an already implemented
query engine. The first one uses an interesting approach to deal
with AND/OR predicates. We find it very useful and intuitive thus
we have adopted it to our metaphor.

The most hard and universal method of modifying application’s
functionalities is generating a completely new system based on
some existing framework. Depending on the designing/developing
method, this approach is dedicated for particular groups of users
(usually however not naive ones). DRIVE [8] is an example of a
user interface to a database development environment. The system
dynamically interprets a conceptual object-oriented data language
with active constructs. The specification of the interface is made
in the textual language called NOODL. The model framework
includes the following main class categorisations: user, data,
interface, and visualisation classes. Thanks to separation of data
and interface, each data item could have associated multiple
interface components. Each user could have own set of user-
specific views and access privileges. Visual programming
facilities help in creating queries, constraints, and other retrieval
options. Although DRIVE has been designed as an easy-to-use
graphical development system it is disputable if a typical casual
user will be able to accept it.

Visage [3] is an example of another approach. The user interface
itself contains some navigation methods for retrieval. Moreover,
each data visualization component, called frame, could be
modified by attaching a special script. Similarly to Mavigator,
scripts are written by programmers. In contrast to our approach,
Visage utilizes a scripting language similar to Basic.
Unfortunately the language interpreter overhead limits the dataset
size that can be manipulated with no significant delays. That is
one of the reasons for using in Mavigator a fully-fledged
programming language.

One of the most advanced examples of views’ uses in visual tool
is AMOS [9] and its graphical browser GOOVI [10]. This system
uses mediators, which are counterparts to views. In contrast to
Mavigator, GOOVI browser is an independent tool, which only
collaborates with AMOS. In the other words, browser does not
have views capabilities, but only works with the system, which
supports them.

In the Watson [11] browser the term views is used in a different
sense and context. In our terms, their views are some states of
extensional navigation, i.e. some number of objects, which are
connected by various links. Watson’s views have little in common
with a database schema and database views.

3. INFORMATION RETRIEVAL
CAPABILITIES
Mavigator employs three key metaphors: intensional navigation,
extensional navigation and baskets. It allows also for traditional
querying via SBQL, an object-oriented query language in the SQL
style.

Figure 1. Mavigator during intensional navigation.

3.1 Intensional Navigation
Intensional navigation (Figure 1) utilizes a particular virtual
schema, which consists of the following primitives:

• Vertices, which represent classes or collections of
objects. With each of them we associate two numbers:
the number of objects that are marked by the user (see
further) and the number of all objects in the class,

• Edges, which represent semantic associations among
objects (in UML terms),

• Labels with names of association roles.

The user can navigate through vertices via edges. Objects, which
are relevant for the user (candidates to be within the search result)
can be marked, i.e. added to the group of marked objects. There
are a number of actions, which cause objects to be marked:

• Filtering through a SBQL predicate based on objects’
attributes. The action is analogous to the SQL select
clause.

• Manual selection. Using labels it is possible to mark
particular objects manually.

• Navigation from marked objects of one class, through
a selected virtual association role, to objects of
another class. An object from a target class became
marked if there is an association link to the object
from a marked object in the source class. This activity
is similar to using path expressions.

 502

• Basket activities. Dragging and dropping the content
of a basket on a class icon causes some operation on
the marked objects of the class. A new set of marked
objects taken from the basket can replace the existing
one, can be summed with it, can be intersected with it,
or can be subtracted from it (equivalents to OR, AND
and NOT).

• Active extensions. In principle, this capability is
introduced to process marked objects rather than to
mark objects. However, because all the information on
marked objects is accessible from an Active Extension
source code the capability can also be used to mark
objects.

3.2 Extensional Navigation
Extensional navigation takes place inside extensions of classes.
Graph’s vertices represent objects, and graph’s edges represent
links. When the user double clicks on a vertex, an appropriate
neighbourhood (objects and links) is downloaded from the
database, which means “growing” of the graph.
Extensional navigation is useful when there are no common rules
(or they are hard to define) among required objects. In such a
situation the user can start navigation from any related object, and
then follow the links. It is possible to use basket for storing
temporary objects or to use them as starting points for the
navigation.

3.3 Baskets
Baskets are persistent storages of search results. They store
objects (actually objects identifiers) and sub-baskets. The
hierarchy of baskets is useful for information categorization and
keeping order. Each basket has its name that is typed in by the
user. During both kinds of navigation it is possible to drag an
object (or a set of marked objects) and to drop them onto a basket.
The main basket (holding user’s sub-baskets) is assigned to a
particular user. At the end of a user session all baskets are stored
in the database.
Aside of creating a new basket, changing its properties or
removing items user is able to:

• Perform set-theoretic operations on two baskets: sum of
baskets, intersection of baskets and difference of baskets.

• Drag an object and drop it onto an extensional navigation
frame. As the result, the neighbourhood of a dropped
object will be downloaded from the repository.

• Drag a basket and drop it onto class’s visualization in the
intensional navigation window. As the result a new set of
marked object can be created through operations such as
replace, add, intersect and subtract. Only objects of that
class are considered.

Baskets allow storing selected objects in a very intuitive and
structured way. Navigation could be stopped at any time and
temporary results (currently selected/marked objects) can be
named, stored and accessed at any time.

4. ACTIVE EXTENSIONS
Active Extensions of the Mavigator are created using a
programming language. We have assumed, however, that a

Mavigator’s user is not a programmer and will not be able to
create such extensions. Hence some professional programmer
must come into the play.

Mavigator already employs some information retrieval metaphors,
which are powerful and yet easy-to-use, so we have decided to
provide a way to add new functionalities operating only on a
query result. The approach does not complicate the entire
application’s architecture and guarantees sufficient flexibility.

The current prototype uses Microsoft C# as a language for active
extensions. A programmer is aware of the Mavigator metadata
environment, which allows him/her to write a source code of the
required functionality in C#. Writing of the Active Extension
source code is done in Mavigator’s special editor. Once
programmer compiles the code, particular Active Extension is
ready to use (without stopping Mavigator). Then the end user is
supported with one click button causing execution of the written
code. The functionality of such programs is unlimited. Next
paragraphs present its particular applications.

A simplest type of Active Extensions is a calculation based on a
retrieval result. In Mavigator we have implemented the most
popular aggregate functions: a minimal attribute’s value, a
maximal attribute’s value and an average attribute’s value. They
are very easy in use. The users have to select a particular type of
calculation and a particular attribute in the query result. Then, the
calculation result is shown.

Another application of Active Extensions are active projections,
which allow visualizing a set of objects where position (x and y
coordinates) of each of them is based on value of particular
objects’ attributes. Current implementation uses two axes (2D),
which allow visualizing dependencies of two attributes. Active
projections make it possible quick identification or data mining
concerning groups of objects having some properties. Besides the
visual analysis of objects dependencies it is also possible to utilize
projections in more active fashion. Object taken from a result
retrieval basket can be dropped on projection’s surface, which
cause right (based on attributes values) placement. It is also
possible to perform reverse action: drag an object from the surface
onto the basket (which cause recording object in a basket).
The last sample application of AE is objects exporter, which
allows cooperating with other software systems. It is possible to
send a query result to other programs, such as Excel, Crystal
Reports, etc. This feature makes it possible subsequent
sophisticated processing of Mavigator’s results of
querying/browsing. The current prototype exports query results to
XML files, which could be post-processed by many modern
applications.

5. VIRTUAL SCHEMAS
A virtual schema (a view) allows for customization of a database
schema according to needs of the current user. A virtual schema
exists as a definition only, no physical mapping of data is
performed. According to the fundamental transparency
requirement, the user uses a virtual schema in the same manner as
an original database schema. Virtual schemata have low resource
demands, thus Mavigator is capable to support user’s work with
many virtual schemas in the same retrieval session.
Generally, Virtual Schemas allow creating customized database
views consisting of the following elements:

 503

• Virtual associations, which reflect any dependencies
among classes. The definition of an association is made up
of two roles’ names (direct and reverse), two classes’
names and two queries, which define target sets of objects.

• Virtual attributes, which describe objects’ properties.
Definition of a virtual attribute consists of a name and a
query. In the simplest case it is just the name of a physical
attribute.

• Classes, which are counterparts of physical collections
from the database.

Particular applications of Virtual Schemas are the following:

• Determining or changing names of the associations’ roles.

• Creating new connections between classes. It is quite easy
to achieve that by using path expressions, which define
essential parts of virtual associations.

• More accurate specifying objects from the target class.
Let’s assume that we would like to analyse only recent
information stored in our database. In an appropriate
virtual schema, among other information, we want to
know only recent orders served by particular employee. In
that case, we extend the definition of the Serves role
(Employees – Orders) with particular WHERE clause,
which checks the date of the order and returns only
objects (ids) with the current date.

• Hiding some classes. It could be useful for security or just
to simplify user’s schema.

• Hiding some intermediate classes, which were necessary
in a relational representation. Mavigator could be
connected (via a dedicated wrapper) to any data source.
Thus in case of a relational one, it would be useful to hide
intermediary tables (mapped as “empty” classes), which
were necessary only to illustrate many-to-many
relationship.

6. CONCLUSIONS AND FUTURE WORK
We have presented Mavigator, which offers new quality in two
main areas. The first one is extending existing application’s
functionalities by Active Extensions, which use fully-fledged
programming language and make it possible to create any kind of
additions to Mavigator’s core functions. The second area contains
Virtual Schemas, which allow creating customized version of the
existing database schema. Possible modifications to the original
schema include creating virtual association, virtual attributes,
hiding/showing particular classes, etc.
The architecture of the Mavigator is flexible and allows one to
work with any kind of data source. The utilized data retrieval
metaphors are easy to understand even for casual users.
As a continuation of our research, we have started a work related
with connecting the Mavigator with the eGov-Bus virtual

repository. This data source is developed as a part of the EC
project called eGov-Bus1.

7. REFERENCES
[1] Trzaska M., Subieta K.: Usability of Visual Information

Retrieval Metaphors for Object-Oriented Databases.
Proceedings of the On The Move Federated Conferences and
Workshops (DOA, ODBASE, CoopIS, PhD Symposium),
Springer Lecture Notes in Computer Science (LNCS 3292),
pp. 822-833, October 25-29, 2004, Larnaca, Cyprus.

[2] Trzaska M., Subieta K.: Active Extensions in a Visual
Interface to Databases, Fourteenth International Conference
on Information Systems Development (ISD´2005),
Kluwer/Plenum Press, 14-17 August, 2005, Karlstad,
Sweden.

[3] Roth F., Chuah M., Kerpedjiev S., Kolojejchick J., Lucas P.:
Towards an Information Visualization Workspace:
Combining Multiple Means of Expression. Human-
Computer Interaction Journal, Volume 12, Numbers 1 & 2,
1997, 131-185.

[4] Trzaska M.: Virtual Schemas in Visual Interfaces to
Databases, I Krajowa Konferencja Naukowa "Technologie
Przetwarzania Danych", pp. 361 - 371, 26-28 September,
2005, Poznan, Poland.

[5] Carey M.J., Haas L.M., Maganty V., Williams J.H.: PESTO:
An Integrated Query/Browser for Object Databases. Proc.
VLDB (1996) 203-214

[6] Murray N., Goble C., Paton N.: Kaleidoscape: A 3D
Environment for Querying ODMG Compliant Databases. In
Pro. of Visual Databases 4, L'Aquila, Italy, May 27-29, 1998

[7] Fegaras L.: VOODOO: A Visual Object-Oriented Database
Language For ODMG OQL. ECOOP Workshop on Object-
Oriented Databases 1999, 61-72

[8] Mitchell K., Kennedy J.: DRIVE: An environment for the
organised construction of user interfaces to databases, 3rd
International Workshop on Interfaces to Databases, Springer-
Verlag Electronic WIC (1996).

[9] Josifovski V., Risch T.: Query Decomposition for a
Distributed Object-Oriented Mediator System. Distributed
and Parallel Databases J., 11(3), pp 307-336, Kluwer, May
2002.

[10] Cassel K., Risch T.: An Object-Oriented Multi-Mediator
Browser. 2nd International Workshop on User Interfaces to
Data Intensive Systems, Zürich, Switzerland, May 31 - June
1, 2001

[11] Smith M., King P.: The Exploratory Construction of
Database Views. Research Report: BBKCS-02-02, School of
Computer Science and Information Systems, Birkbeck
College, University of London, 2002.

1 Advanced Government Information Service Bus (eGov-Bus, IST 26727 STP) is a project supported by the EC as a part of
the Sixth Framework Programme.

