
Lecture 10
Utilization of the Relational Model in

Object-oriented Programming
Languages (2)

Design and Analysis of

Information Systems

(MAS)

http://www.mtrzaska.com/

Mariusz Trzaska, Ph. D.

mtrzaska@pjwstk.edu.pl

http://www.mtrzaska.com/

• The impedance mismatch and its
consequences

• Different approaches to solve the problem

•Microsoft LINQ

• Hibernate

• An introduction,

• A class/object’s and attributes mapping,

• An association’s mapping,

• An inheritance’s mapping,

• Multi-value attributes mapping.

• The summary

Design and Analysis of Information Systems (MAS), lecture 10 2

Outline

• Connecting:

• An object model from a programming language,

• A relational model from a data source

• causes the impedance mismatch.

• As the result we process atomic values describing
an object (e.g. String as a name) rather then the
object itself.

Design and Analysis of Information Systems (MAS), lecture 10 3

The Impedance Mismatch

// [...]

// Execute the query

ResultSet result = db_statement.executeQuery("select * from employee");

// Process results

while (result.next())

{

 System.out.println ("ID : " + result.getInt("ID"));

 System.out.println ("Name : " + result.getString("Name"));

}

• Different solutions

• Using the same model in both programming
language and a date source.

• It is unlikely that somebody would like to abandon
object-oriented constructs, i.e. inheritance.

• Introducing important functionalities from a database
to a programming language, e.g. a query language.

•Microsoft C# and LINQ

• A persistency layer, e.g. Trzaska M.: Data Migration and
Validation Using the Smart Persistence Layer 2.0. Acta Press.
ISBN: 978-0-88986-951-6. November 12 ñ 14, 2012

• Utilization of persistency libraries, e.g. Hibernate.

Design and Analysis of Information Systems (MAS), lecture 10 4

The Impedance Mismatch (2)

http://www.mtrzaska.com/papers

• Language Integrated Query

• Designed by Anders Hejlsberg, who

• is the first one who developed an IDE
(Borland Turbo Pascal),

• created the TypeScript.

• An existing programming language
has been equipped with a query
language similar to the SQL.

• Similar solution for Java 8+:
functional streams in
java.util.stream

Design and Analysis of Information Systems (MAS), lecture 10 5

LINQ

https://stackify.com/streams-guide-java-8/

• Thanks to this solution the impedance mismatch is significantly
reduced.

• Additional benefits:

• Utilization of the metadata during the runtime,

• Compilation-time type control,

• Support for IntelliSense.

• Different flavours:

• LINQ to Objects,

• LINQ to XML,

• LINQ to ADO.NET,

• LINQ to JSON (Json.NET),

• …

• A revolution?

Design and Analysis of Information Systems (MAS), lecture 10 6

LINQ (2)

• Examples

Design and Analysis of Information Systems (MAS), lecture 10 7

LINQ (3)

var locals = from c in customers

where c.ZipCode == 91822

select new { FullName = c.FirstName + “ “ +

c.LastName, HomeAddress = c.Address };

IEnumerable<Product> x =

from p in products

where p.UnitPrice >= 10

select p;

IEnumerable<Product> MostExpensive10 =

products.OrderByDescending(p => p.UnitPrice).Take(10);

var custOrders =

from c in customers

join o in orders on c.CustomerID equals o.CustomerID

select new { c.Name, o.OrderDate, o.Total };

IEnumerable<Product> orderedProducts1 =

from p in products

orderby p.Category, p.UnitPrice descending, p.Name

select p;

• Examples – cont.

Design and Analysis of Information Systems (MAS), lecture 10 8

LINQ (4)

var q =

from c in db.Customers

where c.City == "London"

select c;

foreach (Customer c in q)

Console.WriteLine(c.CompanyName);

var q =

from o in db.Orders

where o.ShipVia == 3

select o;

foreach (Order o in q) {

if (o.Freight > 200)

SendCustomerNotification(o.Customer);

ProcessOrder(o);

}

• The Hibernate creators described it:

• Hibernate is a powerful, high performance
object/relational persistence and query service

•Multi-platforms: Java, MS .NET, C++, etc.

• The project started in 2001 as open source:

• 76 000 core code lines,

• 36 000 unit test lines,

• 3000 downloads each day.

• http://www.hibernate.org/

Design and Analysis of Information Systems (MAS), lecture 10 9

The Hibernate

http://www.hibernate.org/

• Currently, they write: More than an ORM, discover
the Hibernate galaxy.

• The Hibernate galaxy inculdes:

• Hibernate ORM. Domain model persistence for
relational databases.

• Hibernate Search. Full-text search for your domain
model.

• Hibernate Validator. Annotation based constraints for
your domain model.

• Hibernate OGM. Domain model persistence for NoSQL
datastores.

• Hibernate Tools. Command line tools and IDE plugins
for your Hibernate usages.

• Unfortunately, it does not completely eliminate the
impedance mismatch problem.

Design and Analysis of Information Systems (MAS), lecture 10
1

0

The Hibernate (2)

• The creators claim that the library is really
fast:

• Objects cache,

• Query results cache,

• No updates for not modified objects,

• Efficient collections management,

• Joining many changes in one UPDATE,

• Lazy initialization of objects.

Design and Analysis of Information Systems (MAS), lecture 10
1

1

Hibernate - performance

• It is based on the official tutorial, but we
create our own business classes.

• The Hibernate works using the JDBC (the
default behaviour).

• As a database we can use:

• A typical solution, e.g.: MariaDB , MySQL;

• Light systems written in Java, e.g. H2, HSQL or
Apache Derby.

• Usually, you only need to use a small jar file containing
all the necessary components.

• For test purposes, it is convenient to use the in-memory
mode.

Design and Analysis of Information Systems (MAS), lecture 10
1

2

The Hibernate – a test environment

https://mariadb.org/
https://www.mysql.com/
http://www.h2database.com/
http://hsqldb.org/
http://db.apache.org/derby/

•Utilization of the H2 database:

• Download the archive.

• Extract it to any folder.

• Copy the bin/*.jar file to the lib folder in your
Java project folder (the folder must be
configured in the IDE as a source of additional
libraries).

• Optionally one can configure the IDE to
download the required library from the Maven
repository, e.g. com.h2database:h2:1.4.199.

Design and Analysis of Information Systems (MAS), lecture 10 13

The Hibernate – a test environment (2)

http://www.h2database.com/html/download.html

•Utilization of the H2 database – cont.

• Starting the database:

• in classic server mode - file bin/h2.bat or bin/h2.sh
(a simple configuration console via browser is
available).

• simplified – the Hibernate will start it
automatically after proper configuration (see
further). This requires adding the previously
mentioned jar file to the project launch libraries in
the IDE.

Design and Analysis of Information Systems (MAS), lecture 10
1

4

The Hibernate – a test environment (3)

• Location: the root source folder.

Design and Analysis of Information Systems (MAS), lecture 10 15

The hibernate.cfg.xml configuration file

<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE</property>
<!--<property name="connection.url">jdbc:h2:~/db-test.h2</property>-->
<property name="connection.username">sa</property>
<property name="connection.password"></property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>

<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.H2Dialect</property>

<!-- Disable the second-level cache -->
<property

name="cache.provider_class">org.hibernate.cache.internal.NoCacheProvider</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl.auto">create</property>

<!-- Enable Hibernate stats in the logs -->
<property name="hibernate.generate_statistics">true</property>

<!– Full names of the annotated entity class -->
<mapping class="mt.mas.hibernate.Movie"/>
<mapping class="mt.mas.hibernate.Actor"/>

</session-factory>
</hibernate-configuration>

• Depending on the selected mode for the H2
datbase, e.g.:

• in-memory mode. Convenient for testing (without
preserving data permanently), the DB management
system is started automatically.

• file mode. Requires the server H2 to be started. You
may also need to provide additional settings, e.g. a
password.

Design and Analysis of Information Systems (MAS), lecture 10 16

The hibernate.cfg.xml configuration file (2)

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:~/db-test.h2</property>
<property name="connection.username">sa</property>
<property name="connection.password">sa</property>

• Let’s create a simple application allowing:

• storing information about movies,

• linking movies with actors.

• Each business class, which is going to use full power
of the Hibernate, needs a special attribute used to
identification instances (entities).

• private long id;

• managed by the Hibernate.

• Recommended JavaBean convention:

• set…(),

• get…().

Design and Analysis of Information Systems (MAS), lecture 10 17

The Hibernate - Basics

• Unfortunately, Hibernate does not work fully
automatically (just like other ORMs) and one
needs to refine the way the DB (relational)
structure is mapped to object-oriented (Java).

• Available approaches to mapping:

• native Hibernate annotations,

• JPA annotations,

• XML mapping file.

•Which one to choose?

• Advantages and disadvantages?

Design and Analysis of Information Systems (MAS), lecture 10 18

The mappings

• A standard Java class
that stores
information about a
movie.

• Several attributes.

• Setters and getters.

• No need to inherit
from a special
superclass.

19Design and Analysis of Information Systems (MAS), lecture 10

The mapping – an example

public class Movie {
public enum MovieCategory {Unknown, Comedy, SciFi}

private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

public Movie(String title, LocalDate releaseDate) {
this.releaseDate = releaseDate;
this.title = title;

}

public LocalDate getReleaseDate() {
return releaseDate;

}
public void setReleaseDate(LocalDate releaseDate) {

this.releaseDate = releaseDate;
}

public String getTitle() {
return title;

}
public void setTitle(String title) {

this.title = title;
}

public MovieCategory getMovieCategory() {
return movieCategory;

}
public void setMovieCategory(MovieCategory

movieCategory) {
this.movieCategory = movieCategory;

}
}

• We use the JPA
annotations.

• The class is marked with
the annotation:
@javax.persistence.Entity

(optional parameter:
Name).

• A public/protected
parametrless constructor
is required.

• Additional information
using the annotation:
@javax.persistence.Table

.

20Design and Analysis of Information Systems (MAS), lecture 10

The mapping – an example (2)

@Entity(name = "Movie")
public class Movie {

private long id;
private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

/** Required by Hibernate */
public Movie() {}

public Movie(String title,
LocalDate releaseDate) {

this.releaseDate = releaseDate;
this.title = title;

}

// [...]
}

• We have added an attribute
that acts as an identifier.

• We've created setter and
getter for it.

• The getter has been marked
with the appropriate
annotations:

• @Id

• @GeneratedValue

• @GenericGenerator

• It is also possible to mark the
attribute rather then the
getter.

21Design and Analysis of Information Systems (MAS), lecture 10

The mapping – identifier

@Entity(name = "Movie")
public class Movie {

private long id;
private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

/** Required by Hibernate */
public Movie() {}

public Movie(String title, LocalDate
releaseDate) {

this.releaseDate = releaseDate;
this.title = title;

}

@Id
@GeneratedValue(generator="increment")
@GenericGenerator(name="increment", strategy

= "increment")
public long getId() {

return id;
}

private void setId(long id) {
this.id = id;

}

// [...]
}

• The annotation:
@javax.persistence.Basic

is utilized for:

• simple types,

• a few others like String or date
related.

It is possible to ommit it.

Optional parameters:

• optional. desribes if nulls’ are
available (True),

• fetch. How to retrieve the value
(Eager).

• Annotation @javax.persistence.Column.

More customizations, e.g. column
name in a DB.

• Annotation @javax.persistence.Type.

Defines the DB type.

• It is also possible to persist custom
types.

22Design and Analysis of Information Systems (MAS), lecture 10

The mapping – simple attributes

@Entity(name = "Movie")
public class Movie {

private LocalDate releaseDate;
private String title;
// [...]

@Basic
public LocalDate getReleaseDate() {

return releaseDate;
}
public void setReleaseDate(LocalDate releaseDate)

{
this.releaseDate = releaseDate;

}

@Basic
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}

@Override
public String toString() {

// The code could be optimized.
var sb = new StringBuilder();

sb.append(String.format("Movie: %s released on
%s (#%s @%s)", getTitle(), getReleaseDate(), getId(),
super.hashCode()));

return sb.toString();
}

}

• The annotation:
@javax.persistence.Transient

• means that Hibernate
ignores the specified
attribute or getter and the
associated attribute.

• allows the implementation
of methods (mainly getters)
used by derived attributes,
e.g.

• getName(),

• getAge().

23Design and Analysis of Information Systems (MAS), lecture 10

The mapping – derived attributes
@Entity(name = "Actor")
public class Actor {

private long id;
private String firstName;
private String lastName;
private LocalDate birthDate;

// [...]

@Basic
public LocalDate getBirthDate() {

return birthDate;
}

public void setBirthDate(LocalDate birthDate) {
this.birthDate = birthDate;

}

@Transient
public String getName() {

return getFirstName() + " " + getLastName();
}

@Transient
public int getAge() {

return Period.between(getBirthDate(),
LocalDate.now()).getYears();

}

@Override
public String toString() {

return String.format("Actor: %s born on %s,
age: %s (#%s @%s)", getName(), getBirthDate(),
getAge(), getId(), super.hashCode());

}
}

• The annotation: @javax.persistence.Enumerated. Mapping of
enums (enumerations). Additional parameters:

• EnumType.ORDINAL. Utilizes a number approach,

• EnumType.STRING. Uses an enum’s name.

24Design and Analysis of Information Systems (MAS), lecture 10

The mapping – enum

@Entity(name = "Movie")
public class Movie {

public enum MovieCategory {Unknown, Comedy, SciFi}

private LocalDate releaseDate;
private String title;

private MovieCategory movieCategory;

// [...]

@Enumerated
public MovieCategory getMovieCategory() {

return movieCategory;
}
public void setMovieCategory(MovieCategory movieCategory) {

this.movieCategory = movieCategory;
}

@Override
public String toString() {

// The code could be optimized.
var sb = new StringBuilder();

sb.append(String.format("Movie: %s released on %s as %s (#%s @%s)", getTitle(), getReleaseDate(),
getMovieCategory(), getId(), super.hashCode()));

return sb.toString();
}

}

@Entity(name = "Actor")
public class Actor {

private Address address;

// [...]

@Override
public String toString() {

return String.format("Actor: %s born on %s, age: %s, address: %s, movie: %s (#%s @%s)",
getName(), getBirthDate(), getAge(), getAddress() != null ? getAddress() : "---",
getMovie() != null ? getMovie().getTitle() : "---", getId(), super.hashCode());

}

@Embedded
public Address getAddress() {

return address;
}

public void setAddress(Address address) {
this.address = address;

}
}

• The annotation: (docs):

• @javax.persistence.Embeddable

• @javax.persistence.Embedded

25Design and Analysis of Information Systems (MAS), lecture 10

The mapping – complex attribute

@Embeddable
public class Address {

private String street;
private String city;
private String zipCode;

// [...]

public Address() { }

@Basic
public String getStreet() {

return street;
}

@Basic
public String getCity() {

return city;
}

@Basic
public String getZipCode() {

return zipCode;
}

}

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#_component_embedded

•Hibernate supports mapping of
BLOBs/LOBs (database Large Objects).

• Be careful with resource (memory) utilization.

• Optimization techniques, e.g. streaming.

• Mapping to various Java types, e.g.. String
or access with a stream.

• More information in the LOB’s
documentation.

Design and Analysis of Information Systems (MAS), lecture 10 26

The mapping – BLOB/LOBs

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#basic-lob

• The equals() and hashCode()
methods.

•Hibernate ensures that the same object
(primary key) retrieved from the database
in one session will have the same instance
in the Java environment.

• Sometimes, your own implementation of
the above-mentioned may be helpful. Use
the attribute annotation: @NaturalId.

•More in the Hibernate documentation.

Design and Analysis of Information Systems (MAS), lecture 10 27

Objects identity in Hibernate

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#mapping-model-pojo-equalshashcode

• Create the registry.

• Create a session
factory.

• Start the session.

• Start a transaction.

• Execute some
operations.

• Commit the
transaction and
close the session.

Design and Analysis of Information Systems (MAS), lecture 10 28

Working with the Hibernate - Session

StandardServiceRegistry registry = null;
SessionFactory sessionFactory = null;

try {
registry = new StandardServiceRegistryBuilder()

.configure() // configures settings from
hibernate.cfg.xml

.build();
sessionFactory = new MetadataSources(registry)

.buildMetadata()

.buildSessionFactory();

Session session = sessionFactory.openSession();
session.beginTransaction();

// Do something within the session, e.g. create/retrieve objects,
// etc.

session.getTransaction().commit();
session.close();

}
catch (Exception e) {

e.printStackTrace();
StandardServiceRegistryBuilder.destroy(registry);

}
finally {

if (sessionFactory != null) {
sessionFactory.close();

}

• Add information about movies.

• In this step, the ids are uninitialized. They will
be updated after the commiting of a
transaction.

Design and Analysis of Information Systems (MAS), lecture 10 29

Hibernate – create objects

try {
// [...]
System.out.println("Created movies:");
var movie1 = new Movie("Terminator 1", LocalDate.of(1984, 10,26),

Movie.MovieCategory.SciFi);
var movie2 = new Movie("Terminator 3", LocalDate.of(2003, 8,8),

Movie.MovieCategory.SciFi);

System.out.println(movie1);
System.out.println(movie2);

Session session = sessionFactory.openSession();
session.beginTransaction();
session.save(movie1);
session.save(movie2);
session.getTransaction().commit();
session.close();

}
Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)

• There is a query language similar to SQL.

• As it can be seen, we work with objects rather then
simple/atomic values (like in the JDBC).

• Retrieved objects contain valid values of primary keys.

Design and Analysis of Information Systems (MAS), lecture 10 30

Hibernate – retrieving data

try {
// [...]

System.out.println("\nMovies from the db:");

session = sessionFactory.openSession();
session.beginTransaction();
List<Movie> moviesFromDb = session.createQuery("from

Movie").list();
for (var movie : moviesFromDb) {

System.out.println(movie);
}
session.getTransaction().commit();
session.close();

}

// [...]
Movies from the db:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)

Design and Analysis of Information Systems (MAS), lecture 10 31

Hibernate – the log file
1:01:10 PM org.hibernate.Version logVersion INFO: HHH000412: Hibernate Core {5.4.1.Final}

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure WARN: HHH10001002: Using Hibernate built-in

connection pool (not for production use!)

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001005: using driver [org.h2.Driver] at

URL [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001001: Connection properties:

{password=****, user=sa}

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001003: Autocommit mode: false

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl$PooledConnections <init> INFO: HHH000115: Hibernate connection

pool size: 1 (min=1)

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal.DdlTransactionIsolatorNonJtaImpl getIsolatedConnection INFO: HHH10001501: Connection

obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentInitiator$ConnectionProviderJdbcConnectionAccess@423c5404] for

(non-JTA) DDL execution was not in auto-commit mode; the Connection 'local transaction' will be committed and the Connection will be set into auto-commit mode.

Hibernate: drop table Movie if exists

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal.DdlTransactionIsolatorNonJtaImpl getIsolatedConnection INFO: HHH10001501: Connection

obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentInitiator$ConnectionProviderJdbcConnectionAccess@6add8e3f] for

(non-JTA) DDL execution was not in auto-commit mode; the Connection 'local transaction' will be committed and the Connection will be set into auto-commit mode.

Hibernate: create table Movie (id bigint not null, movieCategory integer, releaseDate date, title varchar(255), primary key (id))

1:01:11 PM org.hibernate.engine.transaction.jta.platform.internal.JtaPlatformInitiator initiateService INFO: HHH000490: Using JtaPlatform implementation:

[org.hibernate.engine.transaction.jta.platform.internal.NoJtaPlatform]

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)

Hibernate: select max(id) from Movie

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Movies and actors from the db:

Hibernate: select movie0_.id as id1_1_, movie0_.movieCategory as movieCat2_1_, movie0_.releaseDate as releaseD3_1_, movie0_.title as title4_1_ from

Movie movie0_

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)

1:01:12 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl$PoolState stop

INFO: HHH10001008: Cleaning up connection pool [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]

•Of course, Hibernate automatically creates
an appropriate relational scheme/model in
DB.

• After "generating" the data (stable version
of the data model), the fragment of the
hibernate.cfg.xml file should be
commented/removed (otherwise the
existing data will be deleted after the
program has been started).

Design and Analysis of Information Systems (MAS), lecture 10 32

Hibernate – the data scheme

<!-- Drop and re-create the database schema on startup -->
<!-- <property name="hbm2ddl.auto">create</property> -->

• Associations are (almost) automatically
mapped to relationships in the database.

• Elements that need to be included are:

• direction,

• cardinality

• the behavior of the implementation collection
(on the Java side).

Design and Analysis of Information Systems (MAS), lecture 10 33

Associations in Hibernate

•We will create the
Actor class, which
will be related to
the Movie.

•New entry in the
hibernate.cfg.xml
configuration file.

Design and Analysis of Information Systems (MAS), lecture 10 34

Adding a directed association
@Entity(name = "Actor")
public class Actor {

private long id;
private String firstName;
private String lastName;
private LocalDate birthDate;

public Actor() { }

@Id
@GeneratedValue(generator="increment")
@GenericGenerator(name="increment", strategy =

"increment")
public long getId() {

return id;
}

@Basic
public String getFirstName() {

return firstName;
}

@Basic
public String getLastName() {

return lastName;
}

@Basic
public LocalDate getBirthDate() {

return birthDate;
}

// Other methods, setters, etc.
}

<mapping
class="mt.mas.hibernate.Actor
"/>

• To the Movie class we will add information about
actors playing in it.

• We use a List container (other ones are also
supported).

• @OneToMany annotation

Design and Analysis of Information Systems (MAS), lecture 10 35

Adding a directed association (2)

@Entity(name = "Movie")
public class Movie {

private List<Actor> actors = new ArrayList<>();

// [...]

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
public List<Actor> getActors() {

return actors;
}

private void setActors(List<Actor> actors) {
this.actors = actors;

}
}

• As a result, we received:

• the relational schema (the intermediate table
was generated automatically, although it is
not needed for 1- *).

• a connection (Java references) from the Movie
class to the Actor (but not the other way).

Design and Analysis of Information Systems (MAS), lecture 10 36

Adding a directed association (3)

Movie Actor*

•We add the
connection by
modifying the Java
container,

• Hibernate
automatically detects
it and updates the
database,

• Similar "automation"
exists for attributes.

Design and Analysis of Information Systems (MAS), lecture 10 37

Utilization of the directed association

var movie1 = new Movie("Terminator 1", LocalDate.of(1984, 10,26),
Movie.MovieCategory.SciFi);

var movie2 = new Movie("Terminator 3", LocalDate.of(2003, 8,8),
Movie.MovieCategory.SciFi);

var actor1 = new Actor("Arnold", "Schwarzenegger",
LocalDate.of(1947, 7, 30));

var actor2 = new Actor("Claire", "Danes", LocalDate.of(1979, 4,
12));
var actor3 = new Actor("Kristanna", "Loken",

LocalDate.of(1979, 10, 8));

movie2.getActors().add(actor1);
movie2.getActors().add(actor2);
movie2.getActors().add(actor3);

Session session = sessionFactory.openSession();
session.beginTransaction();
session.save(movie1);
session.save(movie2);
session.save(actor1);
session.save(actor2);
session.save(actor3);
session.getTransaction().commit();
session.close();

session = sessionFactory.openSession();
session.beginTransaction();
List<Movie> moviesFromDb = session.createQuery("from Movie"
).list();
for (var movie : moviesFromDb) {

System.out.println(movie);
}
List<Actor> actorsFromDb = session.createQuery("from Actor"
).list();
for (var actor : actorsFromDb) {

System.out.println(actor);
}
session.getTransaction().commit();
session.close();

Design and Analysis of Information Systems (MAS), lecture 10 38

Utilization of the directed association (2)

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @612635506)

Actors: ---

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1997623038)

Actors: ---

Created actors:

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#0 @2122267901)

Actor: Claire Danes born on 1979-04-12, age: 39 (#0 @987834065)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#0 @1185188034)

Hibernate: select max(id) from Movie

Hibernate: select max(id) from Actor

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Design and Analysis of Information Systems (MAS), lecture 10 39

Utilization of the directed association (3)

Movies and actors from the db:

Hibernate: select movie0_.id as id1_1_, movie0_.movieCategory as movieCat2_1_, movie0_.releaseDate

as releaseD3_1_, movie0_.title as title4_1_ from Movie movie0_

Hibernate: select actors0_.Movie_id as Movie_id1_2_0_, actors0_.actors_id as actors_i2_2_0_,

actor1_.id as id1_0_1_, actor1_.birthDate as birthDat2_0_1_, actor1_.firstName as firstNam3_0_1_,

actor1_.lastName as lastName4_0_1_ from Movie_Actor actors0_ inner join Actor actor1_ on

actors0_.actors_id=actor1_.id where actors0_.Movie_id=?

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @61334373)

Actors: ---

Hibernate: select actors0_.Movie_id as Movie_id1_2_0_, actors0_.actors_id as actors_i2_2_0_,

actor1_.id as id1_0_1_, actor1_.birthDate as birthDat2_0_1_, actor1_.firstName as firstNam3_0_1_,

actor1_.lastName as lastName4_0_1_ from Movie_Actor actors0_ inner join Actor actor1_ on

actors0_.actors_id=actor1_.id where actors0_.Movie_id=?

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @331918455)

Actors: Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676); Actor:

Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723); Actor: Kristanna Loken born on 1979-

10-08, age: 39 (#3 @1406018450);

Hibernate: select actor0_.id as id1_0_, actor0_.birthDate as birthDat2_0_, actor0_.firstName as

firstNam3_0_, actor0_.lastName as lastName4_0_ from Actor actor0_

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676)

Actor: Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#3 @1406018450)

Design and Analysis of Information Systems (MAS), lecture 10 40

Utilization of the directed association (4)

ID BIRTHDATE FIRSTNAME LASTNAME

1 1947-07-30 Arnold Schwarzenegger

2 1979-04-12 Claire Danes

3 1979-10-08 Kristanna Loken

MOVIE_ID ACTORS_ID

2 1

2 2

2 3

ID MOVIECATEGORY RELEASEDATE TITLE

1 2 1984-10-26 Terminator 1

2 2 2003-08-08 Terminator 3

Movie

Actor

MOVIE_ACTOR

http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e

• The relational diagram
remains the same.

• @ManyToOne
Annotation.

• It is necessary to
ensure the consistency
of both directions
(dedicated logic in the
method that creates
the connection).

• You must use the
inverse or
mappedBy
parameter.

Design and Analysis of Information Systems (MAS), lecture 10 41

Adding a bidirectional association

@Entity(name = "Movie")
public class Movie {

private List<Actor> actors = new ArrayList<>();

// [...]

@OneToMany(
mappedBy = "movie",
cascade = CascadeType.ALL,
orphanRemoval = true)

private List<Actor> getActors() {
return actors;

}
public void addActor(Actor actor) {

getActors().add(actor);
actor.setMovie(this);

}
public void removeActor(Actor actor) {

getActors().remove(actor);
actor.setMovie(null);

}
}

@Entity(name = "Actor")
public class Actor {

private Movie movie;

// [...]

@ManyToOne
public Movie getMovie() {

return movie;
}

public void setMovie(Movie movie) {
this.movie = movie;

}
}

• Similarly, we map other numbers using the
annotation:

• @ManyToMany,

• @OneToOne.

• Note on defining the "owner" of the
association. Important when removing
objects.

• Special association cases:

• @NotFound. When no associated primary key
was found.

• @Any.

• @JoinFormula, @JoinColumnOrFormula.

Modelowanie i Analiza Systemów Informacyjnych (MAS), wykład 10 42

Adding a bidirectional association (2)

• In the Hibernate they are called Collection
of values.

• The difference to associations is that the
values cannot be shared (and objects could
be shared).

• They must be declared using an interface,
not a specific implementation.

• The behavior of this repetitive attribute
depends on the interface type (e.g., List,
Set).

Design and Analysis of Information Systems (MAS), lecture 10
4

3

Multi-valued Attributes

• For the Actor class we add a list of his/her urls.

• The annotation: @javax.persistence.ElementCollection

• It means that the collection does not contain connections to other
instances, but the list of items, e.g. String type.

Design and Analysis of Information Systems (MAS), lecture 10 44

Multi-valued Attributes (2)

@Entity(name = "Actor")
public class Actor {

// [...]

private List<String> urls;

@ElementCollection
public List<String> getUrls() {

return urls;
}

public void setUrls(List<String> urls) {
this.urls = urls;

}
}

actor1.setUrls(List.of("http://www.schwarzenegger.com/",
"https://pl.pinterest.com/schwarzenegger/",
"https://www.facebook.com/arnold"));

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71, movie: Terminator 3 (#1 @1989924937)

Hibernate: select urls0_.Actor_id as Actor_id1_1_0_, urls0_.urls as urls2_1_0_ from Actor_urls urls0_ where urls0_.Actor_id=?

[http://www.schwarzenegger.com/, https://pl.pinterest.com/schwarzenegger/, https://www.facebook.com/arnold]

• The updated relational scheme

Design and Analysis of Information Systems (MAS), lecture 10 45

Multi-valued Attributes (3)

•Mapped superclass.

• Single table, Table Per Hierarchy - TPH.

• Joined table, table-per-subclass/type -

TPT.

• Table per class, table-per-concrete-

class - TPC.

• (See also the previous lecture)

Design and Analysis of Information Systems (MAS), lecture 10 46

Hibernate - inheritance

• Reflected only in the model, but not in the DB.
There is no possibility to refer to the superclass.

• Only two tables will be created in the DB
(repeating the contents of the superclass).

Design and Analysis of Information Systems (MAS), lecture 10 47

Inheritance - mapped superclass

@MappedSuperclass

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate

• One table containing elements from the
superclass and all subclasses.

• Special column - discriminator.

Design and Analysis of Information Systems (MAS), lecture 10 48

Inheritance - single table

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate

• Each class has its own table. Connections
using relationships (master – foreign key).

Design and Analysis of Information Systems (MAS), lecture 10 49

Hibernate - joined table

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.JOINED)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

}

Source: documentation of the Hibernate

• Tables are generated for each subclass and
the contents of the superclass is also placed
in them.

Design and Analysis of Information Systems (MAS), lecture 10 50

Inheritance - table per class

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate

•Queries expressed using the Criteria

• support for strong typing,

• quite complicated construction.

Design and Analysis of Information Systems (MAS), lecture 10 51

Queries in the Hibernate

CriteriaBuilder builder = entityManager.getCriteriaBuilder();

CriteriaQuery<Person> criteria = builder.createQuery(Person.class);

Root<Person> root = criteria.from(Person.class);

criteria.select(root);

criteria.where(builder.equal(root.get(Person_.name), "John Doe"));

List<Person> persons =

entityManager.createQuery(criteria).getResultList();

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#criteria

• Sample queries in Hibernate Query
Language (HQL) – similar to SQL.

Design and Analysis of Information Systems (MAS), lecture 10 52

Queries in the Hibernate (2)

List cats = session.createQuery(

"from Cat as cat where cat.birthdate < ?")

.setDate(0, date)

.list();

List mothers = session.createQuery(

"select mother from Cat as cat join cat.mother as mother where cat.name = ?")

.setString(0, name)

.list();

List kittens = session.createQuery(

"from Cat as cat where cat.mother = ?")

.setEntity(0, pk)

.list();

Cat mother = (Cat) session.createQuery(

"select cat.mother from Cat as cat where cat = ?")

.setEntity(0, izi)

.uniqueResult();]]

Query mothersWithKittens = (Cat) session.createQuery(

"select mother from Cat as mother left join fetch mother.kittens");

Set uniqueMothers = new HashSet(mothersWithKittens.list());

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql

• The impedance mismatch is a real, serious
problem.

• There are two general approaches for
solving it:

• A modification of the programming language
(platform) by introducing some DB
functionalities (e.g. query language),

• A creation of additional libraries making easier
working with data.

Design and Analysis of Information Systems (MAS), lecture 10
5

3

The Summary (1)

• The first approach is represented by
Microsoft C# together with the LINQ
technology.

• A query language (similar to the SQL)
becomes a part of the programming language.

• The impedance mismatch is significantly
reduced. Hence we do not need perform OR
mapping (at least in the theory).

• As additional benefits we have e.g. type
checking during the compilation.

Design and Analysis of Information Systems (MAS), lecture 10
5

4

The Summary (2)

• The second approach is represented by the
Hibernate

• The library really simplifies processing the
data,

• Unfortunately sometimes it requires
identifiers rather then references.

• It seems that a much better solution is the
first one (i.e. Microsoft LINQ).

Design and Analysis of Information Systems (MAS), lecture 10
5

5

The Summary (3)

Download source files for all MAS lectures

Design and Analysis of Information Systems (MAS), lecture 10 56

Source files

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

