QSAZ,

‘@ POLISH-JAPANESE ACADEMY OF INFORMATION TECHNOLOGY]

)esign and Analysis of

Hep e gy

-ll..‘
= Dex Hagh

shler)s

A ["
55 = this.cer(1,

“COMtainsKey therlae

1 MAS-B4im|

= extent =

Oaernal Libraries) ! ArrayList
<11

5 et {theClags)y

Java.base

Java.compiler

Java.datatransfer

" Mariusz Trzaska, Ph. D.

javainstrument

extent.add(this);

R ' mtrzaska@pjwstk.edu.pl .-

Java.management.im

> java.naming W A

java.nethitp \rows T0Fxcention

javeprefs iy throus 103icepsio
b4 ectOutputStrean strear) throws -
n vu\d writeExtents(0bjectdutputsee
Java.smi 6 public static

javaseripting strean.wr ited

rean) thows -

javasqhronset

javadrans saction @

\ 5 > javaam

£ 5 jdkact

e Al
@ y jdlk attach I
~ K charsets & 7000

Languages (2)

http://www.mtrzaska.com/

http://www.mtrzaska.com/

Outline

® The impedance mismatch and its
consequences

® Different approaches to solve the problem

® Microsoft LINQ
® Hibernate

® An introduction,

® A class/object’s and attributes mapping,
® An association’s mapping,

® Aninheritance’s mapping,

® Multi-value attributes mapping.

The summary

Design and Analysis of Information Systems (MAS), lecture 10 2

The Impedance Mismatch

® Connecting:

® An object model from a programming language,
® Arelational model from a data source

¢ hei d ' h
causest e impedance mismatcn.
/)]

// Execute the query
ResultSet result = db statement.executeQuery("select * from employee");

// Process results

while (result.next())

{
System.out.println ("ID : " + result.getInt ("ID"));

System.out.println ("Name : " + result.getString("Name"))
}

® As the result we process atomic values describing

an object (e.qg. String as a name) rather then the
object itself.

Design and Analysis of Information Systems (MAS), lecture 10 3

The Impedance Mismatch (2)

® Different solutions

® Using the same model in both programming
language and a date source.

® Itis unlikely that somebody would like to abandon
object-oriented constructs, i.e. inheritance.

® Introducing important functionalities from a database
to a programming language, e.g. a query language.
® Microsoft C# and LINQ

® A persistency layer, e.g. Trzaska M.: Data Migration and
Validation Using the Smart Persistence Layer 2.0. Acta Press.
ISBN: 978-0-88986-951-6. November 12 i 14, 2012

® Utilization of persistency libraries, e.g. Hibernate.

Design and Analysis of Information Systems (MAS), lecture 10 4

http://www.mtrzaska.com/papers

LINQ

® Language Integrated Query

® Designed by Anders Hejlsberg, who

® isthe first one who developed an IDE
(Borland Turbo Pascal),

® created the TypeScript.

® An existing programming language
has been equipped with a query
language similar to the SQL.

® Similar solution for Java 8+:

functional streams in
java.util.stream

Design and Analysis of Information Systems (MAS), lecture 10 5

https://stackify.com/streams-guide-java-8/

LINQ (2)

® Thanks to this solution the impedance mismatch is signific
reduced.

® Additional benefits:

® Utilization of the metadata during the runtime,

® Compilation-time type control,
® Support for IntelliSense.

® Different flavours: | LINQ Architecturs
(LI NQ tO ObjeCtS, C# Visual Basic Other Languages
] LI N Q to XM LI .NET Language Integrated Query (LINQ}

° LI NQ to ADO N ET, LINQ-Enabled Data Sources
o LINQ tO JSON (JSOI’].NET), LING-Enabled ADO.NET

) to Objects to Datasets to SQL to Entities to XML

LINQ LINQ LINQ LINGQ LINQ

® A revolution?

Objects Relational XML

\and Analysis of Information Systems (MAS), lecture 10 6

LINQ (3)

® Examples

var locals = from ¢ in customers
where c.ZipCode == 91822
select new { FullName = c.FirstName + “ “ +
c.LastName, HomeAddress = c.Address };

IEnumerable<Product> x =
from p in products
where p.UnitPrice >= 10
select p;

IEnumerable<Product> MostExpensivell =
products.OrderByDescending (p => p.UnitPrice) .Take (10) ;

var custOrders =
from ¢ in customers
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total };

IEnumerable<Product> orderedProductsl =

from p in products

orderby p.Category, p.UnitPrice descending, p.Name
select p;

Design and Analysis of Information Systems (MAS), lecture 10 7

LINQ (4)

® Examples — cont.

var q =
from ¢ in db.Customers
where c.City == "London"
select c¢;

foreach (Customer c in q)
Console.WritelLine (c.CompanyName) ;

var q =
from o in db.Orders
where o.ShipVia ==
select o;
foreach (Order o in q) {
if (o.Freight > 200)
SendCustomerNotification (o.Customer) ;
ProcessOrder (0) ;

Design and Analysis of Information Systems (MAS), lecture 10

The Hibernate

® The Hibernate creators described it:

® Hibernate is a powerful, high performance
object/relational persistence and query service

® Multi-platforms: Java, MS .NET, C++, etc.

® The project started in 2001 as open source:

® 76 ooo core code lines,
® 36 000 unit test lines,

® 3000 downloads each day.

® http://www.hibernate.org/

Design and Analysis of Information Systems (MAS), lecture 10 9

http://www.hibernate.org/

The Hibernate (2)

® Currently, they write: More than an ORM, discover
the Hibernate galaxy.

® The Hibernate galaxy inculdes:

® Hibernate ORM. Domain model persistence for
relational databases.

® Hibernate Search. Full-text search for your domain
model.

® Hibernate Validator. Annotation based constraints for
your domain model.

® Hibernate OGM. Domain model persistence for NoSQL
datastores.

® Hibernate Tools. Command line tools and IDE plugins
for your Hibernate usages.

® Unfortunately, it does not completely eliminate the
impedance mismatch problem.

|.A

Design and Analysis of Information Systems (MAS), lecture 10

Hibernate - performance

® The creators claim that the library is reall
fast:

® Objects cache,

® Query results cache,

® No updates for not modified objects,

® Efficient collections management,

® Joining many changes in one UPDATE,

® Lazy initialization of objects.

|.A

Design and Analysis of Information Systems (MAS), lecture 10

The Hibernate — a test environment

® |t is based on the official tutorial, but we
create our own business classes.

® The Hibernate works using the JDBC (the
default behaviour).

® As a database we can use:
® Atypical solution, e.qg.: MariaDB , MySOL;

® Light systems written in Java, e.g. H2, HSOL or
Apache Derby.

® Usually, you only need to use a small jar file containing
all the necessary components.

® Fortest purposes, it is convenient to use the in-memory
mode.

|.A

Design and Analysis of Information Systems (MAS), lecture 10

https://mariadb.org/
https://www.mysql.com/
http://www.h2database.com/
http://hsqldb.org/
http://db.apache.org/derby/

The Hibernate — a test environment (2)

® Utilization of the H2 database:

® Download the archive.

® Extract it to any folder.

® Copy the bin/*.jar file to the lib folder in your
Java project folder (the folder must be
configured in the IDE as a source of additional
libraries).

® Optionally one can configure the IDE to
download the required library from the Maven
repository, e.qg. com.h2database:h2:1.4.199.

Design and Analysis of Information Systems (MAS), lecture 10 13

http://www.h2database.com/html/download.html

The Hibernate — a test environment (3)

® Utilization of the H2 database — cont.

® Starting the database:

® in classic server mode - file bin/h2.bat or bin/h2.sh
(a simple configuration console via browser is
available).

® simplified — the Hibernate will start it
automatically after proper configuration (see
further). This requires adding the previously
mentioned jar file to the project launch libraries in
the IDE.

|.A

Design and Analysis of Information Systems (MAS), lecture 10

The hibernate.cfg.xml configuration file

® Location: the root source folder.

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd"

<!-- Database connection settings -->
"connection.driver_class"
"connection.url"
<!--<property name="connection.url">jdbc:h2:~/db-test.h2</property>-->
"connection.username"
"connection.password"

<!-- JDBC connection pool (use the built-in) -->
"connection.pool_size"

<!-- SQL dialect -—>
"dialect"
<!-- Disable the second-level cache -->

"cache.provider_class"

<!-- Echo all executed SQL to stdout -->
"show_sql"
<!-- Drop and re-create the database schema on startup -->

"hbm2dd1l.auto"

<!-- Enable Hibernate stats in the logs -->
"hibernate.generate_statistics"

<!- Full names of the annotated entity class -->
"mt.mas.hibernate.Movie"
"mt.mas.hibernate.Actor"

Design and Analysis of Information Systems (MAS), lecture 10 15

The hibernate.cfg.xml configuration file (2)

® Depending on the selected mode for the H2
datbase, e.qg.:

® in-memory mode. Convenient for testing (without
preserving data permanently), the DB management
system is started automatically.

<!-- Database connection settings -->
"connection.driver_class"
"connection.url"
"connection.username"
"connection.password"

® file mode. Requires the server H2 to be started. You
may also need to provide additional settings, e.g. a
password.

<!-- Database connection settings -->
"connection.driver_class"
"connection.url"
"connection.username"
"connection.password"

Design and Analysis of Information Systems (MAS), lecture 10 16

The Hibernate - Basics

® Let’s create a simple application allowing:

® storing information about movies,

® linking movies with actors.

® Each business class, which is going to use full power
of the Hibernate, needs a special attribute used to
identification instances (entities).

® private long id;

® managed by the Hibernate.

® Recommended JavaBean convention:
® set..(),

® get..().

Design and Analysis of Information Systems (MAS), lecture 10 17

The mappings

® Unfortunately, Hibernate does not work ful
automatically (just like other ORMs) and on
needs to refine the way the DB (relational)
structure is mapped to object-oriented (Java).

® Available approaches to mapping:
® native Hibernate annotations,
® JPA annotations,

® XML mapping file.

® Which one to choose?

s Advantages and disadvantages?

Design and Analysis of Information Systems (MAS), lecture 10 18

The mapping —an example

® A standard Java class
that stores
information about a
movie.

® Several attributes.

® Setters and getters.

® No need toinherit
from a special
superclass.

public class
public enum Unknown, Comedy, SciFi
private
private
private

releaseDate;
title;
movieCategory;

public

this.releaseDate
this.title

public
return releaseDate;
public void
this.releaseDate
public
return title;
public void
this.title
public
return movieCategory;

public void

this.movieCategory

Design and Analysis of Information Systems (MAS), lecture 10

19

The mapping —an example (2)

® We use the JPA

annotations.
® The class is marked with —
. n OV—Ie”
the annotation: public class
@javax.persistence.Entity private long 1id;
. private releaseDate;
(optional parameter: private title;
anInEB) private movieCategory;

/** Required by Hibernate x/

Apublic/protected public
parametrless constructor public ;
iS reqUired. this.releaseDate ;

this.title ;
Additional information

using the annotation: Zane
@javax.persistence.Table

Design and Analysis of Information Systems (MAS), lecture 10 20

The mapping — identifier

® We have added an attribute
that acts as an identifier.

® We've created setter and
getter for it.

® The getter has been marked
with the appropriate
annotations:

® @Id

® @GeneratedvValue
® @GenericGenerator
It is also possible to mark the

attribute rather then the
getter.

"Movie"
public class
private long 1id;

private releaseDate;
private title;
private movieCategory;

/** Required by Hibernate */
public

public s

this.releaseDate 5
this.title 5

"increment"
"increment",
"increment"
public long
return id;

private void long
this.qd 5

/)L]

Design and Analysis of Information Systems (MAS), lecture 10

21

The mapping — simple attributes

® The annotation:

@javax.persistence.Basic
is utilized for:
® simple types,

® afew others like string or date
related.

It is possible to ommit it.

Optional parameters:

® optional.desribesifnulls’are
available (True),

® fetch. How to retrieve the value
(Eager).

[]
More customizations, e.g. column
name in a DB.

Annotation @javax.persistence.Type.
Defines the DB type.

It is also possible to persist custom
types.

Annotation @javax.persistence.Column.

"Movie"
public class
private releaseDate;
private title;
/7L]
public

return releaseDate;
public void

this.releaseDate ;

public
return title;

public void

this.title ;
public
// The code could be optimized.
var new H
"Movie: %s released on

%s (#%s @%s)", s s 5
super ;

return 5

Design and Analysis of Information Systems (MAS), lecture 10

22

The mapping — derived attributes

"Actor"
® public class
" . private long id;
The annOtatlon private firstName;
@javax.persistence.Transient private lastName;
private birthDate;
® means that Hibernate /)L
ignores the specified o5’
. public
attribute or getter and the return birthDate;

associated attribute.

public void
°] . this.birthDate ;
allows the implementation

of methods (mainly getters) o
public

used by derived attributes, return o :
e.g.
® getName (), R :
® getAge ().
public
return "Actor: %s born on %s,

age: %s (#%s @%s)", s s
, , super ;

Design and Analysis of Information Systems (MAS), lecture 10 23

The mapping —enum

® The annotation: @javax.persistence.Enumerated. Mapping
enums (enumerations). Additional parameters:

® EnumType.ORDINAL. Utilizes a number approach,

® EnumType.STRING. Uses an enum’s name.

"Movie"
public class
public enum Unknown, Comedy, SciFi

private releaseDate;

private title;
private movieCategory;

/7L]

public
return movieCategory;

public void
this.movieCategory

public

// The code could be optimized.
var new ;
"Movie: %s released on %s as %s (#%s @%s)",
, super ;
return

Design and Analysis of Information Systems (MAS), lecture 10

24

The mapping — complex attribute

® The annotation: (docs):

® @javax.persistence.Embeddable

® @javax.persistence.Embedded

"Actor"

public class

private address;

/L]

public

return "Actor: %s born on %s, age: %s, address: %s, movie:
s s s null
null Moty , super
public

return address;

public void
this.address ;

public class
private
private
private

/)]

public

public
return

public
return

public
return

street;

city;

zipCode;

Design and Analysis of Information Systems (MAS), lecture 10

25

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#_component_embedded

The mapping — BLOB/LOBs

® Hibernate supports mapping of
BLOBs/LOBs (database Large Objects).

® Be careful with resource (memory) utilization.

® Optimization techniques, e.g. streaming.

® Mapping to various Java types, e.g.. String
or access with a stream.

® More information in the LOB’s
documentation.

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#basic-lob

Objects identity in Hibernate

®*The equals () and hashCode ()
methods.

® Hibernate ensures that the same object
(primary key) retrieved from the database
in one session will have the same instance
in the Java environment.

® Sometimes, your own implementation of
the above-mentioned may be helpful. Use
the attribute annotation: @Naturalid.

® More in the Hibernate documentation.

Design and Analysis of Information Systems (MAS), lecture 10 27

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#mapping-model-pojo-equalshashcode

Working with the Hibernate - Session

® Create the registry.

® Create a session
factory.
® Start the session.

® Start a transaction.

® Execute some
operations.

® Commit the
transaction and
close the session.

null;
null;

try
new
// configures settings from
hibernate.cfg.xml

new

// Do something within the session, e.g. create/retrieve objects,
// etc.

catch

finally
if null

Design and Analysis of Information Systems (MAS), lecture 10

28

Hibernate — create objects

® Add information about movies.

® In this step, the ids are uninitialized. They wil

be updated after the commiting of a

-I-rJ/

/] Le..]
out "Created movies:");

var new "Terminator 1", 1984, 10,26),
SciFi);

var new "Terminator 3", 2003, 8,8),
SciFi);
out
out

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)
Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)

Design and Analysis of Information Systems (MAS), lecture 10

29

Hibernate — retrieving data

® There is a query language similar to SQL.

® Asit can be seen, we work with objects rather then
simple/atomic values (like in the JDBCQ).

® Retrieved objects contain valid values of primary keys.

try

/] Lo]

out "\nMovies from the db:");

)

"from
Movie"
for var

out

)

TR Movies from the db:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)
Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)

Design and Analysis of Information Systems (MAS), lecture 10 30

Hibernate — the log file

1:01:10 PM org.hibernate.Version logVersion INFO: HHH000412: Hibernate Core {5.4.1.Final}
1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderimpl configure WARN: HHH10001002: Using Hibernate built-in
connection pool (not for production use!)

1:01:11 PM org.hibernate.engine.jdbc.connections.internal. DriverManagerConnectionProviderimpl buildCreator INFO: HHH10001005: using driver [org.h2.Driver] at
URL [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderimpl buildCreator INFO: HHH10001001: Connection properties:
{password=**** user=sa}

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderimpl buildCreator INFO: HHH10001003: Autocommit mode: false

1:01:11 PM org.hibernate.engine.jdbc.connections.internal. DriverManagerConnectionProviderimpl$PooledConnections <init> INFO: HHH000115: Hibernate connection
pool size: 1 (min=1)

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal.DdITransactionlsolatorNonJtalmpl getlsolatedConnection INFO: HHH10001501: Connection
obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentlinitiator$ConnectionProviderJdbcConnectionAccess@423c5404] for
(non-JTA) DDL execution was not in auto-commit mode; the Connection ‘local transaction' will be committed and the Connection will be set into auto-commit mode.
Hibernate: drop table Movie if exists

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal. DdITransactionlsolatorNonJtalmpl getlsolatedConnection INFO: HHH10001501: Connection
obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentlinitiator$ConnectionProviderJdbcConnectionAccess@6add8e3f] for
(non-JTA) DDL execution was not in auto-commit mode; the Connection ‘local transaction' will be committed and the Connection will be set into auto-commit mode.
Hibernate: create table Movie (id bigint not null, movieCategory integer, releaseDate date, title varchar(255), primary key (id))

1:01:11 PM org.hibernate.engine.transaction.jta.platform.internal.JtaPlatforminitiator initiateService INFO: HHH000490: Using JtaPlatform implementation:
[org.hibernate.engine.transaction.jta.platform.internal.NoJtaPlatform]

Created movies:
Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)
Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)

Hibernate: select max(id) from Movie
Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)
Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Movies and actors from the db:

Hibernate: select movieO_.id as id1_1_, movieO_.movieCategory as movieCat2_1 , movieO_.releaseDate as releaseD3_1_, movieO__title as title4_1 from
Movie movieO_

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)

1:01:12 PM org.hibernate.engine.jdbc.connections.internal. DriverManagerConnectionProviderimpl$PoolState stop

INFO: HHH10001008: Cleaning up connection pool [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]

Design and Analysis of Information Systems (MAS), lecture 10 31

Hibernate — the data scheme

® Of course, Hibernate automatically creat
an appropriate relational scheme/model i
DB.

® After "generating" the data (stable version
of the data model), the fragment of the
hibernate.cfg.xml file should be
commented/removed (otherwise the
existing data will be deleted after the
orogram has been started).

<!-- Drop and re-create the database schema on startup -->
<!-- <property name="hbm2ddl.auto'>create</property> —-->

i d Analysis of Information Systems (MAS), lecture 10 32

Associations in Hibernate

® Associations are (almost) automatically
mapped to relationships in the database.

® Elements that need to be included are:
® direction,
® cardinality

® the behavior of the implementation collection
(on the Java side).

Adding a directed association

® We will create the
Actor class, which
will be related to
the Movie.

® New entry in the
hibernate.cfg.xml
configuration file.

"mt.mas.hibernate.Actor

"Actor"

public class

private long 1d;

private firstName;
private lastName;
private birthDate;
public

"increment"

"increment",
"increment"
public long
return id;

public
return firstName;

public
return lastName;

public
return birthDate;

// Other methods, setters, etc.

Design and Analysis of Information Systems (MAS), lecture 10

34

Adding a directed association (2)

® To the Movie class we will add information abo
actors playing in it.

® We use a List container (other ones are also
supported).

® @OneToMany annotation

"Movie"
public class
private actors new

/) Lo

ALL, true
public
return actors;

private void
this.actors

Design and Analysis of Information Systems (MAS), lecture 10 35

Adding a directed association (3)

® As aresult, we received:

® the relational schema (the intermediate tabl
was generated automatically, although it is
not needed for 1- *).

Movie Movis_Actor Actor

PK | ID | < PK.FKi | MOVIE_ID PK | ID
TITLE PK,FK2 | ACTORS ID / FIRSTNAME
RELEASEDATE LASTMAME
MOVIECATEGORY BIRTHDATE

® a connection (Java references) from the Movie
class to the Actor (but not the other way).

Movie > Actor

Design and Analysis of Information Systems (MAS), lecture 10 36

Utilization of the directed association

. We add the var new "Terminator 1", 1984, 10,26),
SciFi);
var new "Terminator 3", 2003, 8,8),
COnnec-tIOn by var ne "Arnold", "Schwarzenegger",
1947, 7, 30));
. . var new "Claire", "Danes", 1979, 4,
moditying the Java 5
var new "Kristanna", "Loken",
container,

1979, 10, 8));

® Hibernate
automatically detects
it and updates the
database, | estoncrsatagsry e oo

® Similar "automation" | |
exists for attributes.

Design and Analysis of Information Systems (MAS), lecture 10 37

Utilization of the directed association (2)

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @612635506)
Actors: ---

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1997623038)
Actors: ---

Created actors:

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#0 @2122267901)

Actor: Claire Danes born on 1979-04-12, age: 39 (#0 @987834065)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#0 @1185188034)

Hibernate: select max(id) from Movie

Hibernate: select max(id) from Actor

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Movie_Actor (Movie _id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Design and Analysis of Information Systems (MAS), lecture 10 38

Utilization of the directed association (3)

Movies and actors from the db:
Hibernate: select movieO _.id asidl 1 , movieO .movieCategory as movieCat2_1 , movieO_.releaseDate
as releaseD3 1 , movieO_.title as title4 1 from Movie movieO
Hibernate: select actorsO_.Movie_id as Movie_id1l 2 0 , actorsO_.actors id as actors _i2 2 0,
actorl .idasidl 0 1 , actorl .birthDate as birthDat2 0 1 , actorl .firstName as firstNam3 0 1 |,
actorl .lastName as lastName4 0 1 from Movie Actor actorsO _inner join Actor actorl on
actorsO_.actors_id=actorl_.id where actorsO_.Movie id=?
Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @61334373)

Actors: ---
Hibernate: select actorsO_.Movie_id as Movie_id1l 2 0 , actorsO_.actors id as actors _i2 2 0,
actorl .idasidl 0 1 , actorl .birthDate as birthDat2 0 1 , actorl .firstName as firstNam3 0 1 |,
actorl .lastName as lastName4 0 1 from Movie Actor actorsO _inner join Actor actorl on
actorsO_.actors_id=actorl _.id where actorsO_.Movie id="
Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @331918455)

Actors: Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676); Actor:
Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723); Actor: Kristanna Loken born on 1979-
A 10-08, age: 39 (#3 @1406018450);

Hibernate: select actorO_.id asid1l 0 , actorO_.birthDate as birthDat2_0 , actorO_.firstName as
firstNam3_0 , actorO _.lastName as lastName4_ 0 _from Actor actorO

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676)

Actor: Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#3 @1406018450)

Design and Analysis of Information Systems (MAS), lecture 10 39

Utilization of the directed association (4)

Movie

ID MOVIECATEGORY RELEASEDATE TITLE

1 2 1984-10-26 Terminator 1
2 2 2003-08-08 Terminator 3

MOVIE_ACTOR

MOVIE_ID ACTORS ID
2 1
2
3
Actor
ID BIRTHDATE FIRSTNAME LASTNAME
1 1947-07-30 Arnold Schwarzenegger
2 1979-04-12 Claire Danes
3 1979-10-08 Kristanna Loken

Design and Analysis of Information Systems (MAS), lecture 10 40

http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e

Adding a bidirectional association

® Therelational diagram [~ =~
remains the same. o e

® @ManyToOne
Annotation. private Listancons i

® Itis necessary to pbtic soid i et
ensure the consistency
of both directions S
(dedicated logicin the
method that creates
the connection). pubLic class

® You must use the o
inverse or
mappedBy
parameter.

Design and Analysis of Information Systems (MAS), lecture 10 41

Adding a bidirectional association (2)

® Similarly, we map other numbers using the
annotation:

® @ManyToMany,

® QOneToOne.

® Note on defining the "owner" of the
association. Important when removing
objects.

® Special association cases:

® @NotFound. When no associated primary key
was found.

® @Any.

® @QJoinFormula, @JoinColumnOrFormula.

Modelowanie i Analiza Systeméw Informacyjnych (MAS), wyktad 10 42

Multi-valued Attributes

® In the Hibernate they are called Collectio
of values.

® The difference to associations is that the

values cannot be shared (and objects could
be shared).

® They must be declared using an interface,
not a specific implementation.

® The behavior of this repetitive attribute
depends on the interface type (e.qg., List,
Set).

0 b

Design and Analysis of Information Systems (MAS), lecture 10

Multi-valued Attributes (2)

® Forthe Actor class we add a list of his/her urls.

® The annotation: @javax.persistence.ElementCollection

® |t means that the collection does not contain connections to other
instances, but the list of items, e.g. String type.

"Actor"

public class

private urls;

public
return urls;

public void
this.urls ;

"http://www.schwarzenegger.com/",
"https://pl.pinterest.com/schwarzenegger/",
"https://www. facebook.com/arnold"

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71, movie: Terminator 3 (#1 @1989924937)
Hibernate: select urlsO_.Actor_id as Actor_id1 1 0 , urlsO_.urlsas urls2_1 0 from Actor_urls urlsO_ where urlsO_.Actor_id=?

[http://www.schwarzenegger.com/, https://pl.pinterest.com/schwarzenegger/, https://www.facebook.com/arnold]

Design and Analysis of Information Systems (MAS), lecture 10 44

Multi-valued Attributes (3)

® The updated relational scheme

Movie Movie_Actor Actor Actor_urls
FE | 1D . ——= PK,FK1 | MOVIE_ID PKE | ID
TITLE PK.,FK2 | ACTORS 1D / FIRSTMAME \ FE-| ACTOR_ID
RELEASEDATE LASTNAME URLS
MOVIECATEGORY BIRTHDATE

Design and Analysis of Information Systems (MAS), lecture 10 45

Hibernate - inheritance

® Mapped superclass.
® Single table, Table Per Hierarchy - TPH.

® Joined table, table-per-subclass/type -
TPT.

® Table per class, table-per-concrete-
class - TPC.

® (See also the previous lecture)

Design and Analysis of Information Systems (MAS), lecture 10 46

Inheritance - mapped superclass

® Reflected only in the model, but not in the DB.
There is no possibility to refer to the superclass.

® Only two tables will be created in the DB
(repeating the contents of the superclass).

@MappedSuperclass
public class Account {
@Id
private Long id;
private String owner;
private BigDecimal balance;
private BigDecimal interestRate;
//Getters and setters are omitted for brevity

}
@Entity (name = "DebitAccount")
public class DebitAccount extends Account {
private BigDecimal overdraftFee;
//Getters and setters are omitted for brevity

}

@Entity (name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

Source: documentation of the Hibernate

Design and Analysis of Information Systems (MAS), lecture 10

47

Inheritance - single table

® One table containing elements from the
superclass and all subclasses.

® Special column - discriminator.

@Entity (name = "Account")
@Inheritance (strategy = InheritanceType.SINGLE TABLE)
public class Account {

@Id

private Long 1id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}
@Entity (name = "DebitAccount")
public class DebitAccount extends Account
private BigDecimal overdraftFee;
//Getters and setters are omitted for brevity

}

@Entity (name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

J Source: documentation of the Hibernate

Design and Analysis of Information Systems (MAS), lecture 10 48

Hibernate - joined table

® Each class has its own table. Connection
using relationships (master —foreign key).

@Entity (name = "Account")
@Inheritance (strategy = InheritanceType.JOINED)
public class Account {
@Id
private Long id;
private String owner;
private BigDecimal balance;
private BigDecimal interestRate;
//Getters and setters are omitted for brevity

}
@Entity (name = "DebitAccount")
public class DebitAccount extends Account {
private BigDecimal overdraftFee;
//Getters and setters are omitted for brevity
}
@Entity (name = "CreditAccount")
public class CreditAccount extends Account {
private BigDecimal creditLimit;
//Getters and setters are omitted for brevity

Source: documentation of the Hibernate

Design and Analysis of Information Systems (MAS), lecture 10 49

Inheritance - table per class

® Tables are generated for each subclass and
the contents of the superclass is also placed
In them.

@Entity (name = "Account")
@Inheritance (strategy = InheritanceType.TABLE PER CLASS)
public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}
@Entity (name = "DebitAccount")

public class DebitAccount extends Account {
private BigDecimal overdraftFee;
//Getters and setters are omitted for brevity
}
@Entity (name = "CreditAccount")
public class CreditAccount extends Account {
private BigDecimal creditLimit;
//Getters and setters are omitted for brevity

) Source: documentation of the Hibernate

Design and Analysis of Information Systems (MAS), lecture 10 50

Queries in the Hibernate

® Queries expressed using the Criteria

® support for strong typing,

® quite complicated construction.

CriteriaBuilder builder = entityManager.getCriteriaBuilder ()
CriteriaQuery<Person> criteria = builder.createQuery (Person.class);
Root<Person> root = criteria.from(Person.class);
criteria.select (root) ;

criteria.where (builder.equal (root.get (Person .name), "John Doe"));

List<Person> persons =
i entityManager.createQuery(criteria) .getResultList () ;

Design and Analysis of Information Systems (MAS), lecture 10 51

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#criteria

Queries in the Hibernate (2)

® Sample queries in Hibernate Query
Language (HQL) — similar to SQL.

List cats = session.createQuery (
"from Cat as cat where cat.birthdate < ?2")
.setDate (0, date)
.list () ;

List mothers = session.createQuery (
"select mother from Cat as cat join cat.mother as mother where cat.name = ?")
.setString (0, name)
.list () ;

List kittens = session.createQuery (
"from Cat as cat where cat.mother = ?")
.setEntity (0, pk)
.list () ;

Cat mother = (Cat) session.createQuery (
"select cat.mother from Cat as cat where cat = ?")
.setEntity (0, izi)
.uniqueResult () ;1]

Query mothersWithKittens = (Cat) session.createQuery (

"select mother from Cat as mother left join fetch mother.kittens");
Set uniqueMothers = new HashSet (mothersWithKittens.list()):

Design and Analysis of Information Systems (MAS), lecture 10

52

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql

The Summary (1)

® The impedance mismatch is a real, serio
problem.

® There are two general approaches for
solving it:
® A modification of the programming language

(platform) by introducing some DB
functionalities (e.g. query language),

® A creation of additional libraries making easier
working with data.

an

Design and Analysis of Information Systems (MAS), lecture 10

The Summary (2)

® The first approach is represented by
Microsoft C# together with the LINQ
technology.

® A query language (similar to the SQL)
becomes a part of the programming language.

® The impedance mismatch is significantly
reduced. Hence we do not need perform OR
mapping (at least in the theory).

® As additional benefits we have e.q. type
checking during the compilation.

an

Design and Analysis of Information Systems (MAS), lecture 10

The Summary (3)

® The second approach is represented by t
Hibernate

® The library really simplifies processing the
data,

® Unfortunately sometimes it requires
identifiers rather then references.

® It seems that a much better solution is the
first one (i.e. Microsoft LINQ).

an

Design and Analysis of Information Systems (MAS), lecture 10

Source files

Download source files for all MAS lectures

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

Design and Analysis of Information Systems (MAS), lecture 10 56

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

