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• The impedance mismatch and its 
consequences

• Different approaches to solve the problem

•Microsoft LINQ

• Hibernate

• An introduction,

• A class/object’s and attributes mapping,

• An association’s mapping,

• An inheritance’s mapping,

• Multi-value attributes mapping.

• The summary
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Outline



• Connecting:

• An object model from a programming language,

• A relational model from a data source

• causes the impedance mismatch.

• As the result we process atomic values describing 
an object (e.g. String as a name) rather then the 
object itself.
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The Impedance Mismatch

// [...] 

 

// Execute the query 

ResultSet result = db_statement.executeQuery("select * from employee"); 

 

// Process results 

while (result.next() ) 

{ 

 System.out.println ("ID : " + result.getInt("ID")); 

 System.out.println ("Name : " + result.getString("Name")); 

} 

 



• Different solutions

• Using the same model in both programming 
language and a date source.

• It is unlikely that somebody would like to abandon 
object-oriented constructs, i.e. inheritance.

• Introducing important functionalities from a database 
to a programming language, e.g. a query language.

•Microsoft C# and LINQ

• A persistency layer, e.g. Trzaska M.: Data Migration and 
Validation Using the Smart Persistence Layer 2.0. Acta Press. 
ISBN: 978-0-88986-951-6. November 12 ñ 14, 2012

• Utilization of persistency libraries, e.g. Hibernate.
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The Impedance Mismatch (2)

http://www.mtrzaska.com/papers


• Language Integrated Query

• Designed by Anders Hejlsberg, who

• is the first one who developed an IDE 
(Borland Turbo Pascal),

• created the TypeScript.

• An existing programming language 
has been equipped with a query 
language similar to the SQL.

• Similar solution for Java 8+: 
functional streams in 
java.util.stream
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LINQ

https://stackify.com/streams-guide-java-8/


• Thanks to this solution the impedance mismatch is significantly 
reduced.

• Additional benefits:

• Utilization of the metadata during the runtime,

• Compilation-time type control,

• Support for IntelliSense.

• Different flavours:

• LINQ to Objects,

• LINQ to XML,

• LINQ to ADO.NET,

• LINQ to JSON (Json.NET),

• …

• A revolution?
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LINQ (2)



• Examples
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LINQ (3)

var locals = from c in customers

where c.ZipCode == 91822

select new { FullName = c.FirstName + “ “ +

c.LastName, HomeAddress = c.Address };

IEnumerable<Product> x =

from p in products

where p.UnitPrice >= 10

select p;

IEnumerable<Product> MostExpensive10 =

products.OrderByDescending(p => p.UnitPrice).Take(10);

var custOrders =

from c in customers

join o in orders on c.CustomerID equals o.CustomerID

select new { c.Name, o.OrderDate, o.Total };

IEnumerable<Product> orderedProducts1 =

from p in products

orderby p.Category, p.UnitPrice descending, p.Name

select p;



• Examples – cont.
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LINQ (4)

var q =

from c in db.Customers

where c.City == "London"

select c;

foreach (Customer c in q)

Console.WriteLine(c.CompanyName);

var q =

from o in db.Orders

where o.ShipVia == 3

select o;

foreach (Order o in q) {

if (o.Freight > 200)

SendCustomerNotification(o.Customer);

ProcessOrder(o);

}



• The Hibernate creators described it:

• Hibernate is a powerful, high performance 
object/relational persistence and query service

•Multi-platforms: Java, MS .NET, C++, etc.

• The project started in 2001 as open source:

• 76 000 core code lines,

• 36 000 unit test lines,

• 3000 downloads each day.

• http://www.hibernate.org/
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The Hibernate

http://www.hibernate.org/


• Currently, they write: More than an ORM, discover 
the Hibernate galaxy.

• The Hibernate galaxy inculdes:

• Hibernate ORM. Domain model persistence for 
relational databases.

• Hibernate Search. Full-text search for your domain 
model.

• Hibernate Validator. Annotation based constraints for 
your domain model.

• Hibernate OGM. Domain model persistence for NoSQL 
datastores.

• Hibernate Tools. Command line tools and IDE plugins 
for your Hibernate usages.

• Unfortunately, it does not completely eliminate the 
impedance mismatch problem.
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The Hibernate (2)



• The creators claim that the library is really 
fast:

• Objects cache,

• Query results cache,

• No updates for not modified objects,

• Efficient collections management,

• Joining many changes in one UPDATE,

• Lazy initialization of objects.
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• It is based on the official tutorial, but we 
create our own business classes.

• The Hibernate works using the JDBC (the 
default behaviour).

• As a database we can use:

• A typical solution, e.g.: MariaDB , MySQL;

• Light systems written in Java, e.g. H2, HSQL or 
Apache Derby. 

• Usually, you only need to use a small jar file containing 
all the necessary components.

• For test purposes, it is convenient to use the in-memory
mode.
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The Hibernate – a test environment

https://mariadb.org/
https://www.mysql.com/
http://www.h2database.com/
http://hsqldb.org/
http://db.apache.org/derby/


•Utilization of the H2 database:

• Download the archive.

• Extract it to any folder.

• Copy the bin/*.jar file to the lib folder in your 
Java project folder (the folder must be 
configured in the IDE as a source of additional 
libraries). 

• Optionally one can configure the IDE to 
download the required library from the Maven 
repository, e.g. com.h2database:h2:1.4.199.
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The Hibernate – a test environment (2)

http://www.h2database.com/html/download.html


•Utilization of the H2 database – cont.

• Starting the database:

• in classic server mode - file bin/h2.bat or bin/h2.sh
(a simple configuration console via browser is 
available).

• simplified – the Hibernate will start it 
automatically after proper configuration (see 
further). This requires adding the previously 
mentioned jar file to the project launch libraries in 
the IDE.
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The Hibernate – a test environment (3)



• Location: the root source folder.
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The hibernate.cfg.xml configuration file

<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE</property>
<!--<property name="connection.url">jdbc:h2:~/db-test.h2</property>-->
<property name="connection.username">sa</property>
<property name="connection.password"></property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>

<!-- SQL dialect -->
<property name="dialect">org.hibernate.dialect.H2Dialect</property>

<!-- Disable the second-level cache  -->
<property

name="cache.provider_class">org.hibernate.cache.internal.NoCacheProvider</property>

<!-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl.auto">create</property>

<!-- Enable Hibernate stats in the logs -->
<property name="hibernate.generate_statistics">true</property>

<!– Full names of the annotated entity class -->
<mapping class="mt.mas.hibernate.Movie"/>
<mapping class="mt.mas.hibernate.Actor"/>

</session-factory>
</hibernate-configuration>



• Depending on the selected mode for the H2  
datbase, e.g.:

• in-memory mode. Convenient for testing (without 
preserving data permanently), the DB management 
system is started automatically.

• file mode. Requires the server H2 to be started. You 
may also need to provide additional settings, e.g. a 
password.
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The hibernate.cfg.xml configuration file (2)

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>

<!-- Database connection settings -->
<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:~/db-test.h2</property>
<property name="connection.username">sa</property>
<property name="connection.password">sa</property>



• Let’s create a simple application allowing:

• storing information about movies,

• linking movies with actors.

• Each business class, which is going to use full power 
of the Hibernate, needs a special attribute used to 
identification instances (entities).

• private long id;

• managed by the Hibernate.

• Recommended JavaBean convention:

• set…(),

• get…().
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The Hibernate - Basics



• Unfortunately, Hibernate does not work fully 
automatically (just like other ORMs) and one
needs to refine the way the DB (relational) 
structure is mapped to object-oriented (Java).

• Available approaches to mapping:

• native Hibernate annotations,

• JPA annotations,

• XML mapping file.

•Which one to choose?

• Advantages and disadvantages?
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The mappings



• A standard Java class 
that stores 
information about a 
movie.

• Several attributes.

• Setters and getters.

• No need to inherit 
from a special 
superclass.
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The mapping – an example

public class Movie {
public enum MovieCategory {Unknown, Comedy, SciFi}

private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

public Movie(String title, LocalDate releaseDate) {
this.releaseDate = releaseDate;
this.title = title;

}

public LocalDate getReleaseDate() {
return releaseDate;

}
public void setReleaseDate(LocalDate releaseDate) {

this.releaseDate = releaseDate;
}

public String getTitle() {
return title;

}
public void setTitle(String title) {

this.title = title;
}

public MovieCategory getMovieCategory() {
return movieCategory;

}
public void setMovieCategory(MovieCategory

movieCategory) {
this.movieCategory = movieCategory;

}
}



• We use the JPA 
annotations.

• The class is marked with 
the annotation: 
@javax.persistence.Entity

(optional parameter: 
Name).

• A public/protected
parametrless constructor 
is required.

• Additional information 
using the annotation: 
@javax.persistence.Table

.
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The mapping – an example (2)

@Entity(name = "Movie")
public class Movie {

private long id;
private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

/** Required by Hibernate */
public Movie() {}

public Movie(String title, 
LocalDate releaseDate) {

this.releaseDate = releaseDate;
this.title = title;

}

// [...]
}



• We have added an attribute 
that acts as an identifier.

• We've created setter and 
getter for it.

• The getter has been marked 
with the appropriate 
annotations:

• @Id

• @GeneratedValue

• @GenericGenerator

• It is also possible to mark the 
attribute rather then the 
getter.
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The mapping – identifier

@Entity(name = "Movie")
public class Movie {

private long id;
private LocalDate releaseDate;
private String title;
private MovieCategory movieCategory;

/** Required by Hibernate */
public Movie() {}

public Movie(String title, LocalDate
releaseDate) {

this.releaseDate = releaseDate;
this.title = title;

}

@Id
@GeneratedValue(generator="increment")
@GenericGenerator(name="increment", strategy

= "increment")
public long getId() {

return id;
}

private void setId(long id) {
this.id = id;

}

// [...]
}



• The annotation: 
@javax.persistence.Basic

is utilized for:

• simple types,

• a few others like String or date
related.

It is possible to ommit it.

Optional parameters:

• optional. desribes if nulls’ are
available (True),

• fetch. How to retrieve the value
(Eager).

• Annotation @javax.persistence.Column.

More customizations, e.g. column 
name in a DB.

• Annotation @javax.persistence.Type.

Defines the DB type.

• It is also possible to persist custom
types.
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The mapping – simple attributes

@Entity(name = "Movie")
public class Movie {

private LocalDate releaseDate;
private String title;
// [...]

@Basic
public LocalDate getReleaseDate() {

return releaseDate;
}
public void setReleaseDate(LocalDate releaseDate) 

{
this.releaseDate = releaseDate;

}

@Basic
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}

@Override
public String toString() {

// The code could be optimized.
var sb = new StringBuilder();

sb.append(String.format("Movie: %s released on 
%s (#%s @%s)", getTitle(), getReleaseDate(), getId(), 
super.hashCode()));

return sb.toString();
}

}



• The annotation: 
@javax.persistence.Transient

• means that Hibernate 
ignores the specified 
attribute or getter and the 
associated attribute.

• allows the implementation 
of methods (mainly getters) 
used by derived attributes, 
e.g.

• getName(),

• getAge().
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The mapping – derived attributes
@Entity(name = "Actor")
public class Actor {

private long id;
private String firstName;
private String lastName;
private LocalDate birthDate;

// [...]

@Basic
public LocalDate getBirthDate() {

return birthDate;
}

public void setBirthDate(LocalDate birthDate) {
this.birthDate = birthDate;

}

@Transient
public String getName() {

return getFirstName() + " " + getLastName();
}

@Transient
public int getAge() {

return Period.between(getBirthDate(),
LocalDate.now()).getYears();

}

@Override
public String toString() {

return String.format("Actor: %s born on %s, 
age: %s (#%s @%s)", getName(), getBirthDate(), 
getAge(), getId(), super.hashCode());

}
}



• The annotation: @javax.persistence.Enumerated. Mapping of 
enums (enumerations). Additional parameters:

• EnumType.ORDINAL. Utilizes a number approach,

• EnumType.STRING. Uses an enum’s name.
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The mapping – enum

@Entity(name = "Movie")
public class Movie {

public enum MovieCategory {Unknown, Comedy, SciFi}

private LocalDate releaseDate;
private String title;

private MovieCategory movieCategory;

// [...]

@Enumerated
public MovieCategory getMovieCategory() {

return movieCategory;
}
public void setMovieCategory(MovieCategory movieCategory) {

this.movieCategory = movieCategory;
}

@Override
public String toString() {

// The code could be optimized.
var sb = new StringBuilder();

sb.append(String.format("Movie: %s released on %s as %s (#%s @%s)", getTitle(), getReleaseDate(), 
getMovieCategory(), getId(), super.hashCode()));

return sb.toString();
}

}



@Entity(name = "Actor")
public class Actor {

private Address address;

// [...]

@Override
public String toString() {

return String.format("Actor: %s born on %s, age: %s, address: %s, movie: %s (#%s @%s)", 
getName(), getBirthDate(), getAge(), getAddress() != null ? getAddress() : "---", 
getMovie() != null ? getMovie().getTitle() : "---", getId(), super.hashCode());

}

@Embedded
public Address getAddress() {

return address;
}

public void setAddress(Address address) {
this.address = address;

}
}

• The annotation: (docs):

• @javax.persistence.Embeddable

• @javax.persistence.Embedded
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The mapping – complex attribute

@Embeddable
public class Address {

private String street;
private String city;
private String zipCode;

// [...]

public Address() { }

@Basic
public String getStreet() {

return street;
}

@Basic
public String getCity() {

return city;
}

@Basic
public String getZipCode() {

return zipCode;
}

}

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#_component_embedded


•Hibernate supports mapping of 
BLOBs/LOBs (database Large Objects).

• Be careful with resource (memory) utilization.

• Optimization techniques, e.g. streaming.

• Mapping to various Java types, e.g.. String
or access with a stream.

• More information in the LOB’s 
documentation.
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The mapping – BLOB/LOBs

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#basic-lob


• The equals() and hashCode() 
methods.

•Hibernate ensures that the same object 
(primary key) retrieved from the database 
in one session will have the same instance 
in the Java environment.

• Sometimes, your own implementation of 
the above-mentioned may be helpful. Use
the attribute annotation: @NaturalId.

•More in the Hibernate documentation.
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Objects identity in Hibernate

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#mapping-model-pojo-equalshashcode


• Create the registry.

• Create a session
factory.

• Start the session.

• Start a transaction.

• Execute some
operations.

• Commit the 
transaction and 
close the session.
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Working with the Hibernate - Session

StandardServiceRegistry registry = null;
SessionFactory sessionFactory = null;

try {
registry = new StandardServiceRegistryBuilder()

.configure() // configures settings from 
hibernate.cfg.xml

.build();
sessionFactory = new MetadataSources(registry)

.buildMetadata()

.buildSessionFactory();    

Session session = sessionFactory.openSession();
session.beginTransaction();

// Do something within the session, e.g. create/retrieve objects, 
// etc.

session.getTransaction().commit();
session.close();

}
catch (Exception e) {

e.printStackTrace();
StandardServiceRegistryBuilder.destroy( registry );

}
finally {

if (sessionFactory != null) {
sessionFactory.close();

}



• Add information about movies.

• In this step, the ids are uninitialized. They will 
be updated after the commiting of a 
transaction.

Design and Analysis of Information Systems (MAS), lecture 10 29

Hibernate – create objects

try {
// [...]
System.out.println("Created movies:");
var movie1 = new Movie("Terminator 1", LocalDate.of(1984, 10,26), 

Movie.MovieCategory.SciFi);
var movie2 = new Movie("Terminator 3", LocalDate.of(2003, 8,8), 

Movie.MovieCategory.SciFi);

System.out.println(movie1);
System.out.println(movie2);

Session session = sessionFactory.openSession();
session.beginTransaction();
session.save(movie1);
session.save(movie2);
session.getTransaction().commit();
session.close();

}
Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)



• There is a query language similar to SQL.

• As it can be seen, we work with objects rather then
simple/atomic values (like in the JDBC).

• Retrieved objects contain valid values of primary keys.
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Hibernate – retrieving data

try {
// [...]

System.out.println("\nMovies from the db:");

session = sessionFactory.openSession();
session.beginTransaction();
List<Movie> moviesFromDb = session.createQuery("from 

Movie").list();
for ( var movie : moviesFromDb) {

System.out.println(movie);
}
session.getTransaction().commit();
session.close();

}

// [...]
Movies from the db:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)
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Hibernate – the log file
1:01:10 PM org.hibernate.Version logVersion INFO: HHH000412: Hibernate Core {5.4.1.Final}

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl configure WARN: HHH10001002: Using Hibernate built-in 

connection pool (not for production use!)

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001005: using driver [org.h2.Driver] at

URL [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001001: Connection properties: 

{password=****, user=sa}

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl buildCreator INFO: HHH10001003: Autocommit mode: false

1:01:11 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl$PooledConnections <init> INFO: HHH000115: Hibernate connection

pool size: 1 (min=1)

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal.DdlTransactionIsolatorNonJtaImpl getIsolatedConnection INFO: HHH10001501: Connection 

obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentInitiator$ConnectionProviderJdbcConnectionAccess@423c5404] for 

(non-JTA) DDL execution was not in auto-commit mode; the Connection 'local transaction' will be committed and the Connection will be set into auto-commit mode.

Hibernate: drop table Movie if exists

1:01:11 PM org.hibernate.resource.transaction.backend.jdbc.internal.DdlTransactionIsolatorNonJtaImpl getIsolatedConnection INFO: HHH10001501: Connection 

obtained from JdbcConnectionAccess [org.hibernate.engine.jdbc.env.internal.JdbcEnvironmentInitiator$ConnectionProviderJdbcConnectionAccess@6add8e3f] for 

(non-JTA) DDL execution was not in auto-commit mode; the Connection 'local transaction' will be committed and the Connection will be set into auto-commit mode.

Hibernate: create table Movie (id bigint not null, movieCategory integer, releaseDate date, title varchar(255), primary key (id))

1:01:11 PM org.hibernate.engine.transaction.jta.platform.internal.JtaPlatformInitiator initiateService INFO: HHH000490: Using JtaPlatform implementation: 

[org.hibernate.engine.transaction.jta.platform.internal.NoJtaPlatform]

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @1499588909)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1339052072)

Hibernate: select max(id) from Movie

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Movies and actors from the db:

Hibernate: select movie0_.id as id1_1_, movie0_.movieCategory as movieCat2_1_, movie0_.releaseDate as releaseD3_1_, movie0_.title as title4_1_ from 

Movie movie0_

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @1989924937)

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @1842571958)

1:01:12 PM org.hibernate.engine.jdbc.connections.internal.DriverManagerConnectionProviderImpl$PoolState stop

INFO: HHH10001008: Cleaning up connection pool [jdbc:h2:mem:db1;DB_CLOSE_DELAY=-1;MVCC=TRUE]



•Of course, Hibernate automatically creates 
an appropriate relational scheme/model in 
DB.

• After "generating" the data (stable version 
of the data model), the fragment of the 
hibernate.cfg.xml file should be 
commented/removed (otherwise the 
existing data will be deleted after the 
program has been started).
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Hibernate – the data scheme

<!-- Drop and re-create the database schema on startup -->
<!-- <property name="hbm2ddl.auto">create</property> -->



• Associations are (almost) automatically 
mapped to relationships in the database.

• Elements that need to be included are:

• direction,

• cardinality

• the behavior of the implementation collection 
(on the Java side).
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Associations in Hibernate



•We will create the 
Actor class, which 
will be related to 
the Movie.

•New entry in the 
hibernate.cfg.xml
configuration file.
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Adding a directed association
@Entity(name = "Actor")
public class Actor {

private long id;
private String firstName;
private String lastName;
private LocalDate birthDate;

public Actor() {    }

@Id
@GeneratedValue(generator="increment")
@GenericGenerator(name="increment", strategy = 

"increment")
public long getId() {

return id;
}

@Basic
public String getFirstName() {

return firstName;
}    

@Basic
public String getLastName() {

return lastName;
}

@Basic
public LocalDate getBirthDate() {

return birthDate;
}

// Other methods, setters, etc.
}

<mapping 
class="mt.mas.hibernate.Actor
"/>



• To the Movie class we will add information about 
actors playing in it.

• We use a List container (other ones are also 
supported).

• @OneToMany annotation
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Adding a directed association (2)

@Entity(name = "Movie")
public class Movie {

private List<Actor> actors = new ArrayList<>();

// [...]    

@OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
public List<Actor> getActors() {

return actors;
}

private void setActors(List<Actor> actors) {
this.actors = actors;

}
}



• As a result, we received:

• the relational schema (the intermediate table 
was generated automatically, although it is 
not needed for 1- *).

• a connection (Java references) from the Movie
class to the Actor (but not the other way).
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Adding a directed association (3)

Movie Actor*



•We add the 
connection by 
modifying the Java 
container,

• Hibernate 
automatically detects 
it and updates the 
database,

• Similar "automation" 
exists for attributes.
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Utilization of the directed association

var movie1 = new Movie("Terminator 1", LocalDate.of(1984, 10,26),
Movie.MovieCategory.SciFi);

var movie2 = new Movie("Terminator 3", LocalDate.of(2003, 8,8), 
Movie.MovieCategory.SciFi);

var actor1 = new Actor("Arnold", "Schwarzenegger", 
LocalDate.of(1947, 7, 30));

var actor2 = new Actor("Claire", "Danes", LocalDate.of(1979, 4, 
12));
var actor3 = new Actor("Kristanna", "Loken", 

LocalDate.of(1979, 10, 8));

movie2.getActors().add(actor1);
movie2.getActors().add(actor2);
movie2.getActors().add(actor3);

Session session = sessionFactory.openSession();
session.beginTransaction();
session.save(movie1);
session.save(movie2);
session.save(actor1);
session.save(actor2);
session.save(actor3);
session.getTransaction().commit();
session.close();

session = sessionFactory.openSession();
session.beginTransaction();
List<Movie> moviesFromDb = session.createQuery( "from Movie" 
).list();
for ( var movie : moviesFromDb) {

System.out.println(movie);
}
List<Actor> actorsFromDb = session.createQuery( "from Actor" 
).list();
for ( var actor : actorsFromDb) {

System.out.println(actor);
}
session.getTransaction().commit();
session.close();
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Utilization of the directed association (2)

Created movies:

Movie: Terminator 1 released on 1984-10-26 as SciFi (#0 @612635506)

Actors: ---

Movie: Terminator 3 released on 2003-08-08 as SciFi (#0 @1997623038)

Actors: ---

Created actors:

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#0 @2122267901)

Actor: Claire Danes born on 1979-04-12, age: 39 (#0 @987834065)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#0 @1185188034)

Hibernate: select max(id) from Movie

Hibernate: select max(id) from Actor

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Movie (movieCategory, releaseDate, title, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Actor (birthDate, firstName, lastName, id) values (?, ?, ?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)

Hibernate: insert into Movie_Actor (Movie_id, actors_id) values (?, ?)
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Utilization of the directed association (3)

Movies and actors from the db:

Hibernate: select movie0_.id as id1_1_, movie0_.movieCategory as movieCat2_1_, movie0_.releaseDate 

as releaseD3_1_, movie0_.title as title4_1_ from Movie movie0_

Hibernate: select actors0_.Movie_id as Movie_id1_2_0_, actors0_.actors_id as actors_i2_2_0_, 

actor1_.id as id1_0_1_, actor1_.birthDate as birthDat2_0_1_, actor1_.firstName as firstNam3_0_1_, 

actor1_.lastName as lastName4_0_1_ from Movie_Actor actors0_ inner join Actor actor1_ on 

actors0_.actors_id=actor1_.id where actors0_.Movie_id=?

Movie: Terminator 1 released on 1984-10-26 as SciFi (#1 @61334373)

Actors: ---

Hibernate: select actors0_.Movie_id as Movie_id1_2_0_, actors0_.actors_id as actors_i2_2_0_, 

actor1_.id as id1_0_1_, actor1_.birthDate as birthDat2_0_1_, actor1_.firstName as firstNam3_0_1_, 

actor1_.lastName as lastName4_0_1_ from Movie_Actor actors0_ inner join Actor actor1_ on 

actors0_.actors_id=actor1_.id where actors0_.Movie_id=?

Movie: Terminator 3 released on 2003-08-08 as SciFi (#2 @331918455)

Actors: Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676); Actor: 

Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723); Actor: Kristanna Loken born on 1979-

10-08, age: 39 (#3 @1406018450); 

Hibernate: select actor0_.id as id1_0_, actor0_.birthDate as birthDat2_0_, actor0_.firstName as 

firstNam3_0_, actor0_.lastName as lastName4_0_ from Actor actor0_

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71 (#1 @263233676)

Actor: Claire Danes born on 1979-04-12, age: 39 (#2 @1651795723)

Actor: Kristanna Loken born on 1979-10-08, age: 39 (#3 @1406018450)
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Utilization of the directed association (4)

ID BIRTHDATE FIRSTNAME LASTNAME

1 1947-07-30 Arnold Schwarzenegger

2 1979-04-12 Claire Danes

3 1979-10-08 Kristanna Loken

MOVIE_ID ACTORS_ID

2 1

2 2

2 3

ID MOVIECATEGORY RELEASEDATE TITLE

1 2 1984-10-26 Terminator 1

2 2 2003-08-08 Terminator 3

Movie

Actor

MOVIE_ACTOR

http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e
http://192.168.1.143:8082/query.do?jsessionid=7ab8d7ab0934dbefc76280a1e7c7fc5e


• The relational diagram 
remains the same.

• @ManyToOne
Annotation.

• It is necessary to 
ensure the consistency 
of both directions 
(dedicated logic in the 
method that creates 
the connection).

• You must use the 
inverse or 
mappedBy
parameter.
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Adding a bidirectional association

@Entity(name = "Movie")
public class Movie {

private List<Actor> actors = new ArrayList<>();

// [...]

@OneToMany(
mappedBy = "movie", 
cascade = CascadeType.ALL, 
orphanRemoval = true)

private List<Actor> getActors() {
return actors;

}
public void addActor(Actor actor) {

getActors().add(actor);
actor.setMovie(this);

}
public void removeActor(Actor actor) {

getActors().remove(actor);
actor.setMovie(null);

}
}

@Entity(name = "Actor")
public class Actor {    

private Movie movie;

// [...]

@ManyToOne
public Movie getMovie() {

return movie;
}

public void setMovie(Movie movie) {
this.movie = movie;

}
}



• Similarly, we map other numbers using the 
annotation:

• @ManyToMany,

• @OneToOne.

• Note on defining the "owner" of the 
association. Important when removing 
objects.

• Special association cases:

• @NotFound. When no associated primary key 
was found.

• @Any.

• @JoinFormula, @JoinColumnOrFormula.
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Adding a bidirectional association (2)



• In the Hibernate they are called Collection 
of values.

• The difference to associations is that the 
values cannot be shared (and objects could 
be shared).

• They must be declared using an interface, 
not a specific implementation.

• The behavior of this repetitive attribute 
depends on the interface type (e.g., List, 
Set).

Design and Analysis of Information Systems (MAS), lecture 10
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Multi-valued Attributes



• For the Actor class we add a list of his/her urls.

• The annotation: @javax.persistence.ElementCollection

• It means that the collection does not contain connections to other 
instances, but the list of items, e.g. String type.
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Multi-valued Attributes (2)

@Entity(name = "Actor")
public class Actor {

// [...]

private List<String> urls;

@ElementCollection
public List<String> getUrls() {

return urls;
}

public void setUrls(List<String> urls) {
this.urls = urls;

}
}

actor1.setUrls(List.of("http://www.schwarzenegger.com/", 
"https://pl.pinterest.com/schwarzenegger/", 
"https://www.facebook.com/arnold"));

Actor: Arnold Schwarzenegger born on 1947-07-30, age: 71, movie: Terminator 3 (#1 @1989924937)

Hibernate: select urls0_.Actor_id as Actor_id1_1_0_, urls0_.urls as urls2_1_0_ from Actor_urls urls0_ where urls0_.Actor_id=?

[http://www.schwarzenegger.com/, https://pl.pinterest.com/schwarzenegger/, https://www.facebook.com/arnold]



• The updated relational scheme
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Multi-valued Attributes (3)



•Mapped superclass.

• Single table, Table Per Hierarchy - TPH.

• Joined table, table-per-subclass/type -

TPT.

• Table per class, table-per-concrete-

class - TPC.

• (See also the previous lecture)
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Hibernate - inheritance



• Reflected only in the model, but not in the DB. 
There is no possibility to refer to the superclass.

• Only two tables will be created in the DB
(repeating the contents of the superclass).
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Inheritance - mapped superclass

@MappedSuperclass

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate



• One table containing elements from the 
superclass and all subclasses.

• Special column - discriminator.
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Inheritance - single table

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate



• Each class has its own table. Connections 
using relationships (master – foreign key).
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Hibernate - joined table

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.JOINED)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

}

Source: documentation of the Hibernate



• Tables are generated for each subclass and 
the contents of the superclass is also placed 
in them.
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Inheritance - table per class

@Entity(name = "Account")

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

public class Account {

@Id

private Long id;

private String owner;

private BigDecimal balance;

private BigDecimal interestRate;

//Getters and setters are omitted for brevity

}

@Entity(name = "DebitAccount")

public class DebitAccount extends Account {

private BigDecimal overdraftFee;

//Getters and setters are omitted for brevity

}

@Entity(name = "CreditAccount")

public class CreditAccount extends Account {

private BigDecimal creditLimit;

//Getters and setters are omitted for brevity

} Source: documentation of the Hibernate



•Queries expressed using the Criteria

• support for strong typing,

• quite complicated construction.
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Queries in the Hibernate

CriteriaBuilder builder = entityManager.getCriteriaBuilder();

CriteriaQuery<Person> criteria = builder.createQuery(Person.class);

Root<Person> root = criteria.from(Person.class);

criteria.select(root);

criteria.where(builder.equal(root.get(Person_.name), "John Doe"));

List<Person> persons =

entityManager.createQuery(criteria).getResultList();

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#criteria


• Sample queries in Hibernate Query 
Language (HQL) – similar to SQL.
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Queries in the Hibernate (2)

List cats = session.createQuery(

"from Cat as cat where cat.birthdate < ?")

.setDate(0, date)

.list();

List mothers = session.createQuery(

"select mother from Cat as cat join cat.mother as mother where cat.name = ?")

.setString(0, name)

.list();

List kittens = session.createQuery(

"from Cat as cat where cat.mother = ?")

.setEntity(0, pk)

.list();

Cat mother = (Cat) session.createQuery(

"select cat.mother from Cat as cat where cat = ?")

.setEntity(0, izi)

.uniqueResult();]]

Query mothersWithKittens = (Cat) session.createQuery(

"select mother from Cat as mother left join fetch mother.kittens");

Set uniqueMothers = new HashSet(mothersWithKittens.list());

http://docs.jboss.org/hibernate/orm/5.4/userguide/html_single/Hibernate_User_Guide.html#hql


• The impedance mismatch is a real, serious 
problem.

• There are two general approaches for 
solving it:

• A modification of the programming language 
(platform) by introducing some DB 
functionalities (e.g. query language),

• A creation of additional libraries making easier 
working with data.
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The Summary (1)



• The first approach is represented by 
Microsoft C# together with the LINQ 
technology.

• A query language (similar to the SQL) 
becomes a part of the programming language.

• The impedance mismatch is significantly 
reduced. Hence we do not need perform OR 
mapping (at least in the theory).

• As additional benefits we have e.g. type 
checking during the compilation.
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The Summary (2)



• The second approach is represented by the 
Hibernate

• The library really simplifies processing the 
data,

• Unfortunately sometimes it requires 
identifiers rather then references.

• It seems that a much better solution is the 
first one (i.e. Microsoft LINQ).
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The Summary (3)



Download source files for all MAS lectures
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Source files

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

