‘@ POLISH-JAPANESE ACADEMY OF INFORMATION TECHNOLOGY'

gsign and Analysis of
fon Systems

™ " Ml gy

Mow eExtent

ObjectPiys

-
= (Classpath

-
= projed

7 MAS-0

Lim|
£ extent < (Arrayids 1
Oiternal Libraries] YLI5Y) allfreent

Java.base

Java.compiier Nt = new Arrayt:

Java.datatransfer GlLExTants . put(th,

) Rimado ; Mariusz Trzaska, Ph. D.

Javanstrument
extent.add(this);

| mtrzaska@pjwstk.edu.pl S

Java.management.im

) java.naming e Ve

java.nethitp \rows T0fxception

java.prefs

je void writefxte

javasmi ¢ public stat el
: writedbject{qliEnts

javaseripting stream.

javase

java. secunty

ous 0
cagn strean) throws

stredm s .,

ahle

. id read
s static VO!

pulllltf‘. . = (Hasht
gLIEXTE Jaetd . . -

2. Favorites

g Debud

<58

n

Languages (2)

http://www.mtrzaska.com/

http://www.mtrzaska.com/

Continuation of the previous lecture

Design and Analysis of Information Systems (MAS), lecture 06 2

Outline

o Introduction
o Implementation of the associations using:
o identifiers,
e references.
o Implementation of the associations:
e Inrelation to cardinalities,
e binary,
e attribute association,
e qualified,
e N-ary,
Implementation of an aggregation,
Implementation of a composition,
Generic management of associations,

Summary

Design and Analysis of Information Systems (MAS), lecture 06 3

Implementation of a N-ary Association

® At the beginning we need to transform:
® One UML construct (n-ary association)

® Into another UML construct (n binary associations

performs -
i and a middle-class).
Salary
Assignment
Employee Od Project

-Do

|
|
| .
Employee . * % |-Wynagrodzenie %
*
*

Task

Design and Analysis of Information Systems (MAS), lecture 06 4

Implementation of a N-ary Association

(2)

® Thanks to the transformation we got n
,ordinary” associations.

® The ,new"” associations can be implemented
using one of the discussed approaches.

® Possible semantics problems
® The name of the new class,
® Roles’ names: ,old” and ,new”,

® Cardinalities.

® More difficult access to the target objects
(through the middle-class).

Design and Analysis of Information Systems (MAS), lecture 06 5

Implementation of an Aggregation

® Does an aggregation mean some

consequences to the linked objects?

° No, it does not!

® Hence, an aggregation is implemented in

the same way like an association.

Design and Analysis of Information Systems (MAS), lecture 06 6

Implementation of a Composition

® Association part is implemented in the
same way like an ,,ordinary” association

® Problemsto solve:

1. Preventing from creating parts without the
whole,

2. Forbidding of sharing the parts,

3. Removing parts during removing the whole.

® Two approaches:

® Modification of the existing solution,

® Utilization of the inner classes.

Design and Analysis of Information Systems (MAS), lecture 06 7

Implementation of a Composition (2)

1. Preventing from creating parts without the
whole,

® The private constructor,

® Adedicated class method (static):

® Taking a reference to the whole (and validating it); we can
potentially use the @NotNull annotation, butitis only

informative and does not check/enforce anything,

@ Creating the part,

@® Adding a reverse connection.

Design and Analysis of Information Systems (MAS), lecture 06 8

Implementation of a Composition (3)

public class
public name; // public for simplicity
private who'le;

private s
this.name ;
this.whole ;

public static s throws
if null
throw new "The given whole does not exist!"

// Create a new part
new , ;

// Add to the whole

b

return 5

Design and Analysis of Information Systems (MAS), lecture 06

Implementation of a Composition (4)

public class
private parts new ;

private name;

public
this.name ;

public void throws
if(!parts
parts 5

public
"Whole: " name "\n";
for parts
" n name ll\nll;

return 5

Design and Analysis of Information Systems (MAS), lecture 06 10

Implementation of a Composition (5)

2. Forbidding of sharing the parts

®* A modified version of the method adding the part:
® Checking if the part already exist with other whole,

@ Aside of adding a link, stores globally an information
about being a part.

® Aclass attribute storing info about all parts
connected with wholes.

Design and Analysis of Information Systems (MAS), lecture 06 11

Implementation of a Composition (6)

® A special version of the method adding the par

public class

private parts new 5
private static allParts new 5
/] L]
public void throws
if(!parts

// Check 1if the part has been already added to any wholes
if(allParts
throw new "The part is already connected with a whole!");

parts ;

// Store on the list of all parts

allParts ;
public
"Whole: " name "\n";
for parts
n n name ll\nll;
return ;

Design and Analysis of Information Systems (MAS), lecture 06 12

Implementation of a Composition (7)

3. Removing parts during removing the whole.

® Inlanguages like Java or C#

® Thereis noway to manually remove an object,

® The objectis deleted by the VM when it is not reachable (no
references).

@ |nthe C++ there is a way to manually remove an
object. The code which will remove parts should be
located in the destructor.

Design and Analysis of Information Systems (MAS), lecture 06 13

Implementation of a Composition (8)

3. Removing parts during removing the whole - cont.

@ |n case of our implementation it is worth:

® To create a(class) method removing the whole from the
extent,

® The method should also remove information about the part
from the global list of parts.

Design and Analysis of Information Systems (MAS), lecture 06 14

Implementation of the composition using inner
classes

® An object of the inner class cannot exist witho
(surrounding) object of the outer class.

® An object of the inner class has direct access to
the invariants of the outer class object.

® The following code is correct however does not
have a proper semantics.

® Aninner class object (the part) has access to an outer
class object - correct,

® An outer class object is not aware of inner class object
—that is bad.

// Create a new whole
new "Whole 01");

// Create a new part

new "Part 02");

Design and Analysis of Information Systems (MAS), lecture 06 15

Implementation of the composition using inner
classes (2)

® To prevent (correct) the behaviour:

® Aninner class should have a private constructor,

® The inner class must provide a dedicated method for a
proper creating , part” objects.

® Manually:

® Preventing sharing of the parts. A part has to be
connected with only whole-object. However it may
happen that different wholes would be connected
with the same part.

® Removing parts in case of removing the whole.

Design and Analysis of Information Systems (MAS), lecture 06 16

Implementation of the composition using inner
classes (3)

public class

private wholeName;
private parts new ;
public

this.wholeName ;

public
new ;
parts ;

return H

public
return wholeName;

public class
private partName;
// Because of Java inner class properties, we do not need a reference pointing at the whole.

public
this.partName ;

public

return this; // Could be useful for accessing the whole
public

return "Part: " partName;

Design and Analysis of Information Systems (MAS), lecture 06 17

Associations Management

The presented ways of implementing associations are

almost the same for each business class in the system.

® Moreover, they will be (almost) the same for each

association in the class.

s it possible to unified them? To prevent writing the same

code all the time?

Of course — similarly to the extent management, we will

use the inheritance.

Design and Analysis of Information Systems (MAS), lecture 06 18

The Universal Associations
Management

® We created the ObjectPlus class whic
was useful for the extent management.

® To keep the functionality, we will create
another class called ObjectPlusPlus
which inherits from the ObjectPlus.

® Such an approach guarantees that the
existing extent functionality will be
complemented with associations.

Design and Analysis of Information Systems (MAS), lecture 06 19

The Universal Associations Management (2)

® Let's create a class which will be a super
class for all business classes in our system!

®Let'scallitObjectPlusPlus and add
the functionalities for management of:

® Binary associations,
® Qualified associations,

® Compositions (partial —only req. no 2).

® We will utilize the second approach (using
references rather then ids).

Design and Analysis of Information Systems (MAS), lecture 06 20

The Universal Associations

® Because all associations in one object will be store
in the same collection, it is not possible to use
ordinary container like Vector orArrayList.
® We will use a map storing key and values:
® The key will be arole’s name,
® The value will be a map containing:

® Akey for a qualified association. In case of ordinary
associations both key and value will store the same value.

® Avalue will store a reference to the target object.

® A class attribute storing references to all objects
being parts in compositions. This will allow
fulfilment of the requirement no 2 (no sharing),

® In the other words, the new container will store
links for all associations of the particular objects.

Design and Analysis of Information Systems (MAS), lecture 06 21

The Universal Associations (2)

and Analysis of Information Systems (MAS), lecture 06

The ObjectPlusPlus Class

public abstract class extends implements

/x*

*x Stores information about all connections of this object.
*/

private s s links new 5

/x*

* Stores information about all parts connected with any objects.
*/

private static allParts new ;

/x %
* The constructor.
*
x/

public

super();

Design and Analysis of Information Systems (MAS), lecture 06 23

The ObjectPlusPlus Class(2)

public abstract class extends implements
private s s links new ;
/] [...]
private void , s s

> 5
// Protection for the reverse connection
if 1
return;

// Find a collection of links for the role

if(links
// Get the 1links
links R
else
// No links ==> create them
new ;
links s R

// Check 1if there is already the connection
// If yes, then dignore the creation
if

// Add a link for the target object

l ’)

// Add the reverse connection

s , this, this, 1);

Design and Analysis of Information Systems (MAS), lecture 06 24

The ObjectPlusPlus Class (3)

public abstract class extends implements

Jx*

*x Stores information about all connections of this object.
*/

private s s links new ;

Jx*

*x Stores information about all parts connected with any objects.
*/

private static allParts new 5

public void , ,

b b J J 2 J
public void , R
)) J b
public void , ,
// Check if the part exist somewhere
if(allParts
throw new "The part 1is already connected to a whole!"

M b)

// Store adding the object as a part
allParts ;

throws

Design and Analysis of Information Systems (MAS), lecture 06

25

The ObjectPlusPlus Class (4)

public abstract class extends implements
private s s links new ;

/] [...]
public throws
if(!1links

// No links for the role
throw new "No links for the role: " ;

links 5
return new 0

public void s throws

if(!links
// No links
throw new "No links for the role: "

links R

this " 1links, role '"" mren

Design and Analysis of Information Systems (MAS), lecture 06 26

The ObjectPlusPlus Class (5)

public abstract class extends implements
private s s links new 5

/1 L.

public s throws

if(!links
// No links
throw new "No links for the role: " ;

links 5

if
// No link for the qualifer
throw new "No link for the qualifer: " 5

return 5

Design and Analysis of Information Systems (MAS), lecture 06 27

Business classes to implement

Movie movies actors Actor actors
-Title -Name
* * *
Group 1
-Number o —
group
Movie movies actors Actor actors
-Title Initials -Name
* 1 *
Group 1
-Number [@—
group

Design and Analysis of Information Systems (MAS), lecture 06 28

Implementation of the business classes using
ObjectPlusPlus

public class extends
private name;
public
super(); // call the super constructor
this.name ;
public
return "Actor: " name;
public class extends
private title;
public
super(); // call the super constructor
this.title ;
public

return "Movie: " title;

Design and Analysis of Information Systems (MAS), lecture 06

29

Implementation of the business classes using
ObjectPlusPlus (2)

public class extends
private int number;

public int
super () ; // call the super constructor
this.number ;

public
return "Group: " number ;

Design and Analysis of Information Systems (MAS), lecture 06 30

Utilization of the businnes classes based on the
ObjectPlusPlus

public static void throws
// Create new objects (no links)
new "Arnold Schwarzenegger") ;
new "Michael Biehn");
new "Kristanna Loken");
new "Terminator 1");
new "Terminator 3");
new 1);
new 2);
// Add 1info about links
"actor", "movie", ;
// fl.addLink("actor", "movie", a2);
"actor", "movie", , "MB"); // use the qualified association
"actor", "movie", ;
"actor", "movie", ;
"part", "whole", ;
"part", "whole", ;
"part", "whole", ;

// g2.addPart("part", "whole", al); // an exception because the part already belongs to
another whole (group)

Design and Analysis of Information Systems (MAS), lecture 06 31

Utilization of the businnes classes based on the
ObjectPlusPlus (2)

public static void

/] L]

// Show infos
"actor",
"actor",

"movie",

llpartll s

out

out) ;
out) ;

out) ;

out) ;

)

// Test the qualified association

b

)

)

throws

"actor",

IIMBII

b

Movie links, role 'actor:
Actor: Arnold Schwarzenegger
Actor: Michael Biehn

Movie links, role 'actor:

Actor: Arnold Schwarzenegger
Actor: Kristanna Loken
Actor links, role 'movie":
Movie: Terminator 1
Movie: Terminator 3

Group links, role 'part"

Actor: Arnold Schwarzenegger
Actor: Michael Biehn
Actor: Michael Biehn

Design and Analysis of Information Systems (MAS), lecture 06

32

The Summary

® We can define two general approaches to implementa
of the associations:

® |dentifiers,

® Native references.

® Some of the associations before the implementation
should be transformed into other UML constructs.

® Thanks to that we can implement them using one of the
already known ways.

Entire functionality for the association management
should be encapsulated in the super class
(ObjectPlusPlus).

Such a solution gquarantees that the new class
(ObjectPlusPlus)also manages the extents.

Design and Analysis of Information Systems (MAS), lecture 06 33

Source files

Download source files for all MAS lectures

http:/lwww.mtrzaska.com/plik/mas/mas-source-files-lectures

Modelowanie i Analiza Systemow Informacyjnych (MAS), wyktad 4 34

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

	Slajd 1: Lecture 06
	Slajd 2
	Slajd 3: Outline
	Slajd 4: Implementation of a N-ary Association
	Slajd 5: Implementation of a N-ary Association (2)
	Slajd 6: Implementation of an Aggregation
	Slajd 7: Implementation of a Composition
	Slajd 8: Implementation of a Composition (2)
	Slajd 9: Implementation of a Composition (3)
	Slajd 10: Implementation of a Composition (4)
	Slajd 11: Implementation of a Composition (5)
	Slajd 12: Implementation of a Composition (6)
	Slajd 13: Implementation of a Composition (7)
	Slajd 14: Implementation of a Composition (8)
	Slajd 15: Implementation of the composition using inner classes
	Slajd 16: Implementation of the composition using inner classes (2)
	Slajd 17: Implementation of the composition using inner classes (3)
	Slajd 18: Associations Management
	Slajd 19: The Universal Associations Management
	Slajd 20: The Universal Associations Management (2)
	Slajd 21: The Universal Associations
	Slajd 22: The Universal Associations (2)
	Slajd 23: The ObjectPlusPlus Class
	Slajd 24: The ObjectPlusPlus Class (2)
	Slajd 25: The ObjectPlusPlus Class (3)
	Slajd 26: The ObjectPlusPlus Class (4)
	Slajd 27: The ObjectPlusPlus Class (5)
	Slajd 28: Business classes to implement
	Slajd 29: Implementation of the business classes using ObjectPlusPlus
	Slajd 30: Implementation of the business classes using ObjectPlusPlus (2)
	Slajd 31: Utilization of the businnes classes based on the ObjectPlusPlus
	Slajd 32: Utilization of the businnes classes based on the ObjectPlusPlus (2)
	Slajd 33: The Summary
	Slajd 34: Source files

