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Continuation of the previous lecture
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Outline

o Introduction
o Implementation of the associations using:
o identifiers,
e references.
o Implementation of the associations:
e Inrelation to cardinalities,
e binary,
e attribute association,
e qualified,
e N-ary,
Implementation of an aggregation,
Implementation of a composition,
Generic management of associations,

Summary
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Implementation of a N-ary Association

® At the beginning we need to transform:
® One UML construct (n-ary association)

® Into another UML construct (n binary associations

performs -
i and a middle-class).
Salary
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Design and Analysis of Information Systems (MAS), lecture 06 4



Implementation of a N-ary Association

(2)

® Thanks to the transformation we got n
,ordinary” associations.

® The ,new"” associations can be implemented
using one of the discussed approaches.

® Possible semantics problems
® The name of the new class,
® Roles’ names: ,old” and ,new”,

® Cardinalities.

® More difficult access to the target objects
(through the middle-class).
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Implementation of an Aggregation

® Does an aggregation mean some

consequences to the linked objects?

° No, it does not!

® Hence, an aggregation is implemented in

the same way like an association.
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Implementation of a Composition

® Association part is implemented in the
same way like an ,,ordinary” association

®  Problemsto solve:

1. Preventing from creating parts without the
whole,

2. Forbidding of sharing the parts,

3. Removing parts during removing the whole.

® Two approaches:

® Modification of the existing solution,

® Utilization of the inner classes.
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Implementation of a Composition (2)

1. Preventing from creating parts without the
whole,

® The private constructor,

® Adedicated class method (static):

® Taking a reference to the whole (and validating it); we can
potentially use the @NotNull annotation, butitis only

informative and does not check/enforce anything,

@ Creating the part,

@® Adding a reverse connection.
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Implementation of a Composition (3)

public class
public name; // public for simplicity
private who'le;

private s
this.name ;
this.whole ;

public static s throws
if null
throw new "The given whole does not exist!"

// Create a new part
new , ;

// Add to the whole

b

return 5
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Implementation of a Composition (4)

public class
private parts new ;

private name;

public
this.name ;

public void throws
if(!parts
parts 5

public
"Whole: " name "\n";
for parts
" n name ll\nll;

return 5
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Implementation of a Composition (5)

2. Forbidding of sharing the parts

®* A modified version of the method adding the part:
® Checking if the part already exist with other whole,

@ Aside of adding a link, stores globally an information
about being a part.

® Aclass attribute storing info about all parts
connected with wholes.

Design and Analysis of Information Systems (MAS), lecture 06 11



Implementation of a Composition (6)

® A special version of the method adding the par

public class

private parts new 5
private static allParts new 5
/] L]
public void throws
if(!parts

// Check 1if the part has been already added to any wholes
if(allParts
throw new "The part is already connected with a whole!");

parts ;

// Store on the list of all parts

allParts ;
public
"Whole: " name "\n";
for parts
n n name ll\nll;
return ;
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Implementation of a Composition (7)

3. Removing parts during removing the whole.

® Inlanguages like Java or C#

® Thereis noway to manually remove an object,

® The objectis deleted by the VM when it is not reachable (no
references).

@ |nthe C++ there is a way to manually remove an
object. The code which will remove parts should be
located in the destructor.
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Implementation of a Composition (8)

3. Removing parts during removing the whole - cont.

@ |n case of our implementation it is worth:

® To create a(class) method removing the whole from the
extent,

® The method should also remove information about the part
from the global list of parts.
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Implementation of the composition using inner
classes

® An object of the inner class cannot exist witho
(surrounding) object of the outer class.

® An object of the inner class has direct access to
the invariants of the outer class object.

® The following code is correct however does not
have a proper semantics.

® Aninner class object (the part) has access to an outer
class object - correct,

® An outer class object is not aware of inner class object
—that is bad.

// Create a new whole
new "Whole 01");

// Create a new part

new "Part 02");
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Implementation of the composition using inner
classes (2)

® To prevent (correct) the behaviour:

® Aninner class should have a private constructor,

® The inner class must provide a dedicated method for a
proper creating , part” objects.

® Manually:

® Preventing sharing of the parts. A part has to be
connected with only whole-object. However it may
happen that different wholes would be connected
with the same part.

® Removing parts in case of removing the whole.
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Implementation of the composition using inner
classes (3)

public class

private wholeName;
private parts new ;
public

this.wholeName ;

public
new ;
parts ;

return H

public
return wholeName;

public class
private partName;
// Because of Java inner class properties, we do not need a reference pointing at the whole.

public
this.partName ;

public

return this; // Could be useful for accessing the whole
public

return "Part: " partName;
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Associations Management

The presented ways of implementing associations are

almost the same for each business class in the system.

® Moreover, they will be (almost) the same for each

association in the class.

s it possible to unified them? To prevent writing the same

code all the time?

Of course — similarly to the extent management, we will

use the inheritance.
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The Universal Associations
Management

® We created the ObjectPlus class whic
was useful for the extent management.

® To keep the functionality, we will create
another class called ObjectPlusPlus
which inherits from the ObjectPlus.

® Such an approach guarantees that the
existing extent functionality will be
complemented with associations.
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The Universal Associations Management (2)

® Let's create a class which will be a super
class for all business classes in our system!

®Let'scallitObjectPlusPlus and add
the functionalities for management of:

® Binary associations,
® Qualified associations,

® Compositions (partial —only req. no 2).

® We will utilize the second approach (using
references rather then ids).
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The Universal Associations

® Because all associations in one object will be store
in the same collection, it is not possible to use
ordinary container like Vector orArrayList.
® We will use a map storing key and values:
® The key will be arole’s name,
® The value will be a map containing:

® Akey for a qualified association. In case of ordinary
associations both key and value will store the same value.

® Avalue will store a reference to the target object.

® A class attribute storing references to all objects
being parts in compositions. This will allow
fulfilment of the requirement no 2 (no sharing),

® In the other words, the new container will store
links for all associations of the particular objects.
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The Universal Associations (2)
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The ObjectPlusPlus Class

public abstract class extends implements

/x*

*x Stores information about all connections of this object.
*/

private s s links new 5

/x*

* Stores information about all parts connected with any objects.
*/

private static allParts new ;

/x %
* The constructor.
*
x/

public

super();
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The ObjectPlusPlus Class(2)

public abstract class extends implements
private s s links new ;
/] [...]
private void , s s

> 5
// Protection for the reverse connection
if 1
return;

// Find a collection of links for the role

if(links
// Get the 1links
links R
else
// No links ==> create them
new ;
links s R

// Check 1if there is already the connection
// If yes, then dignore the creation
if

// Add a link for the target object

l ’ )

// Add the reverse connection

s , this, this, 1);
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The ObjectPlusPlus Class (3)

public abstract class extends implements

Jx*

*x Stores information about all connections of this object.
*/

private s s links new ;

Jx*

*x Stores information about all parts connected with any objects.
*/

private static allParts new 5

public void , ,

b b J J 2 J
public void , R
) ) J b
public void , ,
// Check if the part exist somewhere
if(allParts
throw new "The part 1is already connected to a whole!"

M b )

// Store adding the object as a part
allParts ;

throws
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The ObjectPlusPlus Class (4)

public abstract class extends implements
private s s links new ;

/] [...]
public throws
if(!1links

// No links for the role
throw new "No links for the role: " ;

links 5
return new 0

public void s throws

if(!links
// No links
throw new "No links for the role: "

links R

this " 1links, role '"" mren
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The ObjectPlusPlus Class (5)

public abstract class extends implements
private s s links new 5

/1 L.

public s throws

if(!links
// No links
throw new "No links for the role: " ;

links 5

if
// No link for the qualifer
throw new "No link for the qualifer: " 5

return 5
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Business classes to implement

Movie movies actors Actor actors
-Title -Name
* * *
Group 1
-Number o —
group
Movie movies actors Actor actors
-Title Initials -Name
* 1 *
Group 1
-Number [ @—
group
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Implementation of the business classes using
ObjectPlusPlus

public class extends
private name;
public
super(); // call the super constructor
this.name ;
public
return "Actor: " name;
public class extends
private title;
public
super(); // call the super constructor
this.title ;
public

return "Movie: " title;
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Implementation of the business classes using
ObjectPlusPlus (2)

public class extends
private int number;

public int
super () ; // call the super constructor
this.number ;

public
return "Group: " number ;
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Utilization of the businnes classes based on the
ObjectPlusPlus

public static void throws
// Create new objects (no links)
new "Arnold Schwarzenegger") ;
new "Michael Biehn");
new "Kristanna Loken");
new "Terminator 1");
new "Terminator 3");
new 1);
new 2);
// Add 1info about links
"actor", "movie", ;
// fl.addLink("actor", "movie", a2);
"actor", "movie", , "MB"); // use the qualified association
"actor", "movie", ;
"actor", "movie", ;
"part", "whole", ;
"part", "whole", ;
"part", "whole", ;

// g2.addPart("part", "whole", al); // an exception because the part already belongs to
another whole (group)
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Utilization of the businnes classes based on the
ObjectPlusPlus (2)

public static void

/] L]

// Show infos
"actor",
"actor",

"movie",

llpartll s

out

out) ;
out) ;

out) ;

out) ;

)

// Test the qualified association

b

)

)

throws

"actor",

IIMBII

b

Movie links, role 'actor:
Actor: Arnold Schwarzenegger
Actor: Michael Biehn

Movie links, role 'actor:

Actor: Arnold Schwarzenegger
Actor: Kristanna Loken
Actor links, role 'movie":
Movie: Terminator 1
Movie: Terminator 3

Group links, role 'part"

Actor: Arnold Schwarzenegger
Actor: Michael Biehn
Actor: Michael Biehn
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The Summary

® We can define two general approaches to implementa
of the associations:

® |dentifiers,

® Native references.

® Some of the associations before the implementation
should be transformed into other UML constructs.

® Thanks to that we can implement them using one of the
already known ways.

Entire functionality for the association management
should be encapsulated in the super class
(ObjectPlusPlus).

Such a solution gquarantees that the new class
(ObjectPlusPlus)also manages the extents.
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Source files

Download source files for all MAS lectures

http:/lwww.mtrzaska.com/plik/mas/mas-source-files-lectures
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