
Lecture 04
Classes in Object-Oriented Programming Languages

Design and Analysis of

Information Systems

(MAS)

http://www.mtrzaska.com/

Mariusz Trzaska, Ph. D.

mtrzaska@pjwstk.edu.pl

http://www.mtrzaska.com/

• Implementation of the following constructs in the popular
programming languages (Java):
• A class

• An extent

• Attributes:
• Simple and complex

• Mandatory and optional

• Single and multi-valued

• Of an object or a class

• Derived

• Methods:
• of a class

• Of an object

• Overloading and overriding

• Persistency

• Utility class

• Summary

Design and Analysis of Information Systems (MAS), lecture 04 2

Outline

• A class is a named description of a group of
objects which share the same set of
invariants (properties).

• The class is not a set of objects,

• The class describes an object.

Design and Analysis of Information Systems (MAS), lecture 04 3

The Class

PRI lectures by Ewa Stemposz, Ph.D.

and prof. Kazimierz Subieta.

• They are utilized to describing properties of
objects.

• Kinds of:

• Simple and complex,

• Mandatory and optional,

• Single and multi-valued,

• Of an object or a class,

• Derived.

Design and Analysis of Information Systems (MAS), lecture 04 4

Attributes

• Allowing performing of operations on objects
which usually lead to changing of their states.

• Kinds of

• An object method. Performs an operation (and
has access to) on one, particular object. The one,
for which has been called on.

• A class method. Has access to the entire extent of
the class. Called on a class (rather then an object).
Such an approach allows calling them even there
are no existing objects of the class.

Design and Analysis of Information Systems (MAS), lecture 04 5

Methods

• How the definition is related to popular
programming languages?

• In languages:

• Java,

• MS C#,

• C++

classes exist according to the definition.

• Unfortunately it is not true in case of every
construct (term, definition) known from
object-orientedness (UML).

Design and Analysis of Information Systems (MAS), lecture 04 6

Classes and Programming Languages

• Let’s assume that we need a class describing a
movie in a video store.

Design and Analysis of Information Systems (MAS), lecture 04 7

Classes in Java

**

* Information about a movie.

*

*/

public class Movie {

/* Class body */

}

• A set of currently existing objects of the
class.

• In languages

• Java,

• MS C#,

• C++

class extent does not exist.

• What we can do about it?

• Our own implementation of the extent.

Design and Analysis of Information Systems (MAS), lecture 04 8

Class Extent

• Two different approaches. Implementation:

• In the same business class

• Using an additional class

• Business class Movie, extent i.e. Movies

• Business class Movie, extent i.e. MovieExtent

• Which approach is better?

• Pros

• Cons

• What about using a database?

Design and Analysis of Information Systems (MAS), lecture 04 9

Class Extent Implementation

• Implementation in the same business class

• A container storing references to objects of
the class (declared as a class attribute -
static),

• Supporting methods

• Add,

• Remove,

• Search.

• ?

• Implementation of the class methods. In the
same class with the static keyword.

Design and Analysis of Information Systems (MAS), lecture 04 10

Class Extent Implementation (2)

Design and Analysis of Information Systems (MAS), lecture 04 11

Implementation in the same Business Class

public class Movie {
public Movie() {

// Add to the extent
addMovie(this);

}

/**
* The extent. Non-final required – see further (persistency).

*/
private static List<Movie> extent = new ArrayList<>();

/**
* Adds a movie to the extent.
*
* @param movie the movie
*/

private static void addMovie(Movie movie) {
extent.add(movie);

}

/**
* Removes a movie from the extent.
*
* @param movie the movie
*/

private static void removeMovie(Movie movie) {
extent.remove(movie);

}

// [...]
}

Design and Analysis of Information Systems (MAS), lecture 04 12

Implementation in the same Business Class (2)

public class Movie {
// [...]

/** Shows the extent (utility class method). */
public static void showExtent() {

System.out.println("Extent of the class: " + Movie.class.getName());

for (Movie movie : extent) {
System.out.println(movie);

}
}

}

private static void test1() {

// A test: Class extent implemented in the same class
Movie movie1 = new Movie("Terminator 1", LocalDate.now(), 29.90f);
Movie movie2 = new Movie("Terminator 2", LocalDate.now(), 34.90f);

Movie.showExtent();
}

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@23e028a9

Movie: Terminator 2, id: mt.mas.Movie@63e2203c

• Using an external class
• Names

• Business class Movie, extent i.e. Movies

• Business class Movie, extent i.e. MovieExtent

• Possibility of creating many different extents (why?).

• A container storing references to objects of the
business class,

• Utility methods
• Add,

• Remove,

• Search,

• ...

Design and Analysis of Information Systems (MAS), lecture 04 13

Class Extent Implementation (3)

• Using an additional class – cont.

• Implementation of the class methods. They
will be outside of the business class – in the
class which manages the extent.

• Possible problems with access to hidden
attributes/methods (public/private/protected).

• Automatic adding to the extent could be more
difficult.

• Other possibilities, e.g.

• Inner class,

• References collection with the static keyword.

Design and Analysis of Information Systems (MAS), lecture 04 14

Class Extent Implementation (4)

Class Extent Implementation Using an Additional Class

Design and Analysis of Information Systems (MAS), lecture 04 15

public class Movie {
// ... Class body (business related)

}

public class MovieExtent {
/** The extent. */
private List<Movie> extent = new ArrayList<>();

public void addMovie(Movie movie) {
extent.add(movie);

}

public void removeMovie(Movie movie) {
extent.remove(movie);

}

public void showExtent() {
System.out.println("Extent of the class: " + Movie.class.getName());
for (Movie movie : extent) {

System.out.println(movie);
}

}
}

Class Extent Implementation Using an Additional Class (2)

Design and Analysis of Information Systems (MAS), lecture 04 16

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@3dd4520b

Movie: Terminator 2, id: mt.mas.Movie@1efed156

private static void testExternalExtent() {
// A test: Class extent implemented using an external class
MovieExtent movieExtent = new MovieExtent();

Movie movie1 = new Movie();
movieExtent.addMovie(movie1);

Movie movie2 = new Movie();
movieExtent.addMovie(movie2);

movieExtent.showExtent();
}

• Kinds of

• Simple. They appear in the same form like in the UML.

• Complex. A complex attribute is described using another
class (i.e. date). Consequences:

• In a business class (i.e. movie) we store a reference rather then a
value.

• That means that we can share it. This is different then in the
theoretical semantic of a complex attribute., i.e. another object
can have a reference to the same date.

• When we should use an attribute and when an association with
a class?

Design and Analysis of Information Systems (MAS), lecture 04 17

Attributes in Object-orientedness and
Java

public class Movie {

private float price;

}

public class Movie {

private LocalDate additionDate;

}

• Kinds of – cont.

• Mandatory.

• Every simple attribute stores some value – there is
no way to not storing anything.

• A complex attribute stores a reference for an
object being his value. Because it is a reference it
could be nullwhich means „no value”.

• We should check if the proper value is provided.

• Possibly annotation: @NotNull.

Design and Analysis of Information Systems (MAS), lecture 04 18

Attributes in Object-orientedness and Java (2)

• Kinds of – cont.

• Optional

• A proper storing and processing data.

• For complex attributes we can store a null as an
information about lack of value.

• How about simple attributes? Wrapper classes!

• Make sure that you are ready for the lack of value.

• Possibly annotation: @Nullable.

Design and Analysis of Information Systems (MAS), lecture 04 19

Attributes in Object-orientedness and Java (2)

• Optional attributes – cont.

• Another possibility is to use Optional (Java 8+),
but there are some problems, e.g. serialization.

Design and Analysis of Information Systems (MAS), lecture 04 20

Attributes in Object-orientedness and Java (2)

public class Employee {

// ...

private Optional<Double> extraBonus = Optional.empty(); // initialization without a value

public Optional<Double> getExtraBonus() {

return extraBonus;

}

public void setExtraBonus(Optional<Double> extraBonus) {

this.extraBonus = extraBonus;
}

public double getIncome() {

return getSalary() + getExtraBonus().orElse(0d);

}

@Override

public String toString() {

return String.format("Emp '%s', sal: %s, bonus: %s", getName(), getSalary(),

getExtraBonus().isPresent() ? getExtraBonus().get() : "(no bonus)");
}

}

• Kinds of – cont.

• Single. The same story like in the UML.

• Multi-valued. Use array or containers (preferred
solution).

• Object attributes. The same story like in the UML.

• Class attributes. Implementation depends on the way
of dealing with the class extent:

• An extent in the same business-class ➔ class attributes in
the same class with the static keyword,

• An extent in additional class ➔ class attributes in the
additional class (without the static keyword).

Design and Analysis of Information Systems (MAS), lecture 04 21

Attributes in Object-orientedness and Java (3)

• Kinds of – cont.

• Derived.

• In case of:

• Orthodox encapsulation, special treatment of an
attribute could be implemented in getter (getXXX)
methods. In special and rare circumstances also in setters
(setXXX). In most cases, there is no „real” attribute.

• Direct access to an attribute, there is no way to control
the behaviour.

• A perfect construct in C#: properties.

Design and Analysis of Information Systems (MAS), lecture 04 22

Attributes in Object-orientedness and Java
(4)

private float price {

get { return price * taxFactor; }

}

• Kinds of:

• An object method. The same semantics like in the UML.

• A class method. Particular implementation depends on the

way of dealing with the class extend (i.e. void

showExtent()):

• An extent in the same business class ➔ class methods are in the

same class with the static keyword,

• An extent as an additional class ➔ class methods in the

additional class (without the static keyword).

Design and Analysis of Information Systems (MAS), lecture 04 23

Methods in Object-orientation and
Java

public float getPrice() {

return price;

}

• An overloading of a method. The same semantics
like in the UML.

• An overriding of a method. The same semantics like
in the UML.

Design and Analysis of Information Systems (MAS), lecture 04 24

Methods in Object-orientation and Java (2)

public float getPrice() {

return price;

}

public float getPrice(float vatRate) {

return price * (1.0f + vatRate / 100.0f);

}

public class Movie{

// [...]

@Override

public String toString() {

return „Movie: " + title;

}}

The extent of the Movie
class:

mt.mas.Film@126804e

mt.mas.Film@b1b4c3The extent of the Movie
class:

Movie: Terminator 1

Movie: Terminator 2

Object

toString()

Film

toString()

• A class extent is persistent if the objects will
„survive” shutdown of the system – after
rebooting there will be the same objects.

• In languages

• Java,

• MS C#,

• C++

the property does not exist directly.

• Hence we can implement it manually writing to
and reading from a file.

Design and Analysis of Information Systems (MAS), lecture 04 25

A Persistency of an Extent

• As a result we have similar objects rather then the

same objects.

• An implementation

• Manual

• Speed of working,

• Full control of the result,

• A better resistance to source code changes,

• A smaller file,

• Requires (usually) a lot of work.

Design and Analysis of Information Systems (MAS), lecture 04 26

A Persistency of an Extent (2)

• An implementation – cont.

• Using the serialization technique,

• Easy to use,

• Usually slower,

• A bigger file,

• Compatibility/migration issues,

• A possibility for modifications:

• By adding methods:

• private void writeObject(ObjectOutputStream

stream) throws IOException

• private void readObject(ObjectInputStream

stream) throws IOException,

ClassNotFoundException

• Using the transient keyword.

Design and Analysis of Information Systems (MAS), lecture 04 27

A Persistency of an Extent (3)

• An implementation – cont.

• Using a database,

• A necessity of mapping Java structures onto database structures
and vice versa,

• Possibility of using a query language (i.e. SQL),

• Possibility of working with different database systems,

• A bigger file,

• A better speed of working.

• Using an additional library (e.g. ORMs).

• Hibernate (http://www.hibernate.org/)

• Java Persistence API (https://glassfish.dev.java.net/)

• Java Data Objects (http://www.jpox.org/)

• …

Design and Analysis of Information Systems (MAS), lecture 04 28

A Persistency of an Extent (4)

https://glassfish.dev.java.net/

• There are reading/writing methods in each business class.

Design and Analysis of Information Systems (MAS), lecture 04 29

A Persistency of an Extent – a manual implementation

public class Movie {
private String title;
private float price;
private LocalDate additionDate; // requires Java 8+

private void write(DataOutputStream stream) throws IOException {
stream.writeUTF(title);
stream.writeFloat(price);
stream.writeLong(additionDate.toEpochDay()); // count of days where day 0 is 1970-

01-01 (ISO)
}

private void read(DataInputStream stream) throws IOException {
title = stream.readUTF();
price = stream.readFloat();
long epochDay = stream.readLong();
additionDate = LocalDate.ofEpochDay(epochDay);

}

// [...]
}

• In every class,
which manages an
extent there are
methods reading
and writing the
entire extent.

Design and Analysis of Information Systems (MAS), lecture 04 30

A Persistency of an Extent – a manual implementation (2)

public class Movie {
// [...]

private static List<Movie> extent = new ArrayList<>();

public static void writeExtent(DataOutputStream stream) throws
IOException {

// Number of objects
stream.writeInt(extent.size());

for (Movie movie : extent) {
movie.write(stream);

}
}

public static void readExtent(DataInputStream stream) throws
IOException {

Movie movie = null;

// Get the number of written objects
int objectCount = stream.readInt();

// remove the current extent
extent.clear();

for (int i = 0; i < objectCount; i++) {
movie = new Movie();
movie.read(stream);

}
}

}

A Persistency of an Extent – a manual implementation (3)

Design and Analysis of Information Systems (MAS), lecture 04 31

private static void testExtentManual() {
final String extentFile = "d:\\temp\\mas-extent.bin";

// A test: persistency of the extent (manual impl.)
try {

// Write the extent to the given stream
DataOutputStream out2 = new DataOutputStream(new BufferedOutputStream(new

FileOutputStream(extentFile)));
Movie.writeExtent(out2);
out2.close();

// Read the extent from the given stream
DataInputStream in2 = new DataInputStream(new BufferedInputStream(new

FileInputStream(extentFile)));
Movie.readExtent(in2);
in2.close();

} catch (IOException e) {
e.printStackTrace();

}

Movie.showExtent();
}

• The example shows writing and reading of the extent.

• Thanks to the splitting of the functionality into a couple
of methods, it is possible to store many extents in the
same stream

• As the result state of the entire application is
remembered in a single file.

• The sample result

• An extent created in

the memory,

• An extent written and

read from a file.

Design and Analysis of Information Systems (MAS), lecture 04 32

A Persistency of an Extent – a manual implementation (4)

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@23e028a9

Movie: Terminator 2, id: mt.mas.Movie@63e2203c

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@6737fd8f

Movie: Terminator 2, id: mt.mas.Movie@72b6cbcc

• The presented approach to extent persistency is very simple. It
does not treat linked objects in a right way.

Design and Analysis of Information Systems (MAS), lecture 04 33

A Persistency of an Extent – links problem

:Movie

„Terminator 1”

:Actor

„Arnold Schwarzenegger”

:Movie

„Terminator 2”

:Movie

„Terminator 3”

:Actor

„Michael Biehn”

:Actor

„Kristanna Loken”

:Movie

„Commando”

Movies extent Actors extent

• The serialization is a mechanism implemented in one of
the Java libraries.

• It allows automatically:

• Writing a graph of objects to a stream,

• Reading the graph of objects from a stream.

• The only requirement to utilize the serialization is special
implementation of the Serializable interface by the
serialized classes (and by their content).

• The special implementation of the interface means that
we only need to declare the implementation but without
providing necessary methods’ bodies. The bodies are
implemented by the „library”

Design and Analysis of Information Systems (MAS), lecture 04 34

A Persistency of an Extent – a serialization
implementation

• Declare implementation of the interface by a business class.

• Create methods for writing and reading the extent.

• All the extents (of all classes) have to be written to the same

stream (file).

Design and Analysis of Information Systems (MAS), lecture 04 35

A Persistency of an Extent – a serialization
implementation (2)

public class Movie implements Serializable {
// [...]
private String title;
private float price;
private LocalDate additionDate; // requires Java 8+

}

public class Movie implements Serializable {
// [...]
// Non-final required because of (de)serialization (persistency).
private static List<Movie> extent = new ArrayList<>();

public static void writeExtent(ObjectOutputStream stream) throws IOException {
stream.writeObject(extent);

}

public static void readExtent(ObjectInputStream stream) throws IOException,
ClassNotFoundException {

extent = (ArrayList<Movie>) stream.readObject();
}

}

• An utilization

• Size of the extent file:

• Manual implementation:

56 bytes,

• Serialization: 263 bytes.

• For bigger files the differences are less – about x2.

Design and Analysis of Information Systems (MAS), lecture 04 36

A Persistency of an Extent – a serialization
implementation (3)

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@61a485d2

Movie: Terminator 2, id: mt.mas.Movie@1810399e

Extent of the class: mt.mas.Movie

Movie: Terminator 1, id: mt.mas.Movie@2f686d1f

Movie: Terminator 2, id: mt.mas.Movie@3fee9989

try {
// Write the extent to the given stream
var out = new ObjectOutputStream(new FileOutputStream(extentFile));
Movie.writeExtent(out);
// Write any other extents
out.close();

// Read the extent from the given stream
var in = new ObjectInputStream(new FileInputStream(extentFile));
Movie.readExtent(in);
// Read any other extents
in.close();

} catch (IOException | ClassNotFoundException e) { e.printStackTrace(); }

• Presented approaches to an extent

implementation will be (almost) the same for

each business class in a system.

• Is there a way to unified them. To avoid writing

many times the same code?

• Of course – we will utilize an inheritance in the

Java language.

• Another approach: template classes (Java

generics) – a homework for volunteers.

Design and Analysis of Information Systems (MAS), lecture 04 37

An Extent Management

• Let’s create a class which will be a super
class for all business classes in our
application.

• Let’s call them the ObjectPlus and
equip with:

• A persistency,

• An extent management,

• ?

• We will use the first approach: a class
extent within the same business class.

Design and Analysis of Information Systems (MAS), lecture 04 38

The Universal Extent Management

• Because all business classes inherit from the
one class, we are not able to use an ordinary
container.

• We will employ a special map storing keys and
values:

• The key will be a name of a particular business
class,

• The value will be a container storing its extent
(references to all existing objects of the class).

• The map will contain not a single extent but all
of them.

Design and Analysis of Information Systems (MAS), lecture 04 39

The Universal Extent

Design and Analysis of Information Systems (MAS), lecture 04 40

The Universal Extent (2)

The mapping container

„Movie”

„Actor”

:Movie

„Terminator 1”

:Movie

„Terminator 2”

:Movie

„Terminator 3”

:Movie

„Commando”

:Actor

„Arnold Schwarzenegger”

:Actor

„Michael Biehn”

:Actor

„Kristanna Loken”

Map<Class, List<ObjectPlus>> List<ObjectPlus>

List<ObjectPlus>

• The constructor of each business class will refer to a
super constructor.

Design and Analysis of Information Systems (MAS), lecture 04 41

The Universal Extent (3)

public class Movie2 extends ObjectPlus implements Serializable {

// Business implementation

private String title;

private float price;

private LocalDate additionDate;

/**

* The constructor.

*/

public Movie2(String title, LocalDate additionDate, float price) {

// Call the constructor from the super class

super();

this.title = title;

this.additionDate = additionDate;

this.price = price;

}

// [...] business implementation
}

• The superclass constructor takes care of adding the
object to a proper extent.

Design and Analysis of Information Systems (MAS), lecture 04 42

The Universal Extent (4)

public abstract class ObjectPlus implements Serializable {
private static Map<Class, List<ObjectPlus>> allExtents = new Hashtable<>();

/**
* Constructor.
*/

public ObjectPlus() {
List<ObjectPlus> extent = null;
Class theClass = this.getClass();

if(allExtents.containsKey(theClass)) {
// An extent of this class already exist
extent = allExtents.get(theClass);

}
else {

// An extent does not exist - create a new one
extent = new ArrayList();
allExtents.put(theClass, extent);

}

extent.add(this);
}

// [...]
}

• It is also quite easy making the extents persistent (using
the serialization).

Design and Analysis of Information Systems (MAS), lecture 04 43

The Universal Extent (5)

public class ObjectPlus implements Serializable {
private static Map<Class, List<ObjectPlus>> allExtents = new Hashtable<>();

// [...]

public static void writeExtents(ObjectOutputStream stream) throws IOException {
stream.writeObject(allExtents);

}

public static void readExtents(ObjectInputStream stream) throws IOException,
ClassNotFoundException {

allExtents = (Hashtable) stream.readObject();
}

// [...]
}

• We use a generic method

• Return Iterable<T> type

• The result is of a specific type, e.g. Iterable<Movie2>

Modelowanie i Analiza Systemów Informacyjnych (MAS), wykład 4 44

Getting the extent

public class ObjectPlus implements Serializable {
private static Map<Class, List<ObjectPlus>> allExtents = new Hashtable<>();

// [...]

public static <T> Iterable<T> getExtent(Class<T> type) throws
ClassNotFoundException {

if(allExtents.containsKey(type)) {
return (Iterable<T>) allExtents.get(type);

}

throw new ClassNotFoundException(
String.format("%s. Stored extents: %s",

type.toString(),
allExtents.keySet()));

}}

Iterable<Movie2> movieExtent =
ObjectPlus.getExtent(Movie2.class);
for (var movie : movieExtent) {

System.out.println(movie.getTitle());
}

• Some of class methods could also benefit from the
general functionality placed in the super class, i.e.
showing the extent.

Design and Analysis of Information Systems (MAS), lecture 04 45

The Universal Class Methods

public class ObjectPlus implements Serializable {
private static Map<Class, List<ObjectPlus>> allExtents = new Hashtable<>();

// [...]

public static void showExtent(Class theClass) throws Exception {
List<ObjectPlus> extent = null;

if(allExtents.containsKey(theClass)) {
// Extent of this class already exist
extent = allExtents.get(theClass);

}
else {

throw new Exception("Unknown class " + theClass);
}

System.out.println("Extent of the class: " + theClass.getSimpleName());

for(Object obj : extent) {
System.out.println(obj);

}
}

}

• Showing the extent using previously defined
functionality.

Design and Analysis of Information Systems (MAS), lecture 04 46

The Universal Class Methods (2)

public class Movie2 extends ObjectPlus implements Serializable {

// [...]

public static void showExtent() throws Exception {
ObjectPlus.showExtent(Movie2.class);

}

// [...]
} Extent of the class: Movie2

Movie: Terminator 1, id: mt.mas.Movie2@7a5d012c

Movie: Terminator 2, id: mt.mas.Movie2@68837a77

Extent of the class: Movie2

Movie: Terminator 1, id: mt.mas.Movie2@4c70fda8

Movie: Terminator 2, id: mt.mas.Movie2@224edc67

• What can be improved in the
proposed solution
(ObjectPlus) in the area of
the presented topics?

o A homework for volunteers
(description, source codes)
with extra points to the exam.

Design and Analysis of Information Systems (MAS), lecture 04 47

ObjectPlus v2?

• Some terms belonging to object-orientedness do
exist in popular programming languages.

• Unfortunately, some of them do not exist with
the same semantics.

• In most cases, the non existing constructs could
be implemented:

• manually using a few different approaches,

• Using some existing libraries.

• It is possible and useful to put the entire
functionality for managing the class extent in a
special super class.

Design and Analysis of Information Systems (MAS), lecture 04 48

The Summary

Download source files for all MAS lectures

Modelowanie i Analiza Systemów Informacyjnych (MAS), wykład 4 49

Source files

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures
http://www.mtrzaska.com/plik/mas/mas-source-files-lectures

