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Topics covered by this lecture:

Neuron and its properties

Mathematical model of neuron: Perceptron

Perceptron as a classi�er

Perceptron' Learning Rule (Delta Rule)
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Neuron

Human neural system has been a natural source of inspiration

for arti�cial intelligence researchers. Hence the interest in

a neuron � the fundamental unit of the neural system.
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Behaviour of a Neuron

Transmit the neural signal from the �inputs� (dendrites:

the endings of a neural cell contacting with other cells) to

the �output� (neurite, which is often a very long ending,

transmitting the signal to further neurons)

Non-linear signal processing: the output state is not a

simple sum of input signals

Dynamically modify the connections with other neurons via

synapses (connecting elements), which makes it possible to

strengthen or weaken the signal received from other

neurons according to the current task
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Perceptron: an Arti�cial Neuron

Perceptron is a simple mathematical model of a neuron.

Historically, the goal for the work on neural networks was to

gain the ability of generalisation (approximation) and learning,

speci�c for the human brain (according to one of the de�nitions

of arti�cial intelligence).

Currently, arti�cial neural networks focus on less �ambitiuous�,

but more realistic tasks.

A single perceptron can serve as a classi�er or regressor

Perceptron is a building block in more complex arti�cial neural

network structures that can solve practical problems:

supervised or unsupervised learning

controlling complex mechanical devices (e.g. robotics)
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Perceptron - a simple model of natural neuron

A perceptron consists of:

n inputs x1, . . . , xn corresponding to dendrites

n weights w1, . . . ,wn, corresponding to synapses

Each weight wi is attached to the i − th input xi

a threshold Θ

one output y

(All the variables are real numbers)

The output y is computed as follows:

y =

{
1 if

∑
n

i=1 wi · xi = W TX ≥ Θ (perceptron �activated�)

0 else (not �activated�)

W ,X ∈ Rn denote the vector of weights and inputs, respectively



Perceptron

(c) Marcin
Sydow

Summary

The perceptron is activated (y=1) only when the dot product

W TX (sometimes called as �net�) reaches the speci�ed

threshold Θ

We call the perceptron discrete if y ∈ {0, 1} (or {−1, 1})
continuous if y ∈ [0, 1] (or [−1, 1])
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Perceptron: Geometrical Interpretation

The computation of the output of the perceptron has simple

geometrical interpretation.

Consider the n-dimensional input space (each point here is a

potential input vector X ∈ Rn).

The weight vector W ∈ Rn is the normal vector of the

decision hyperplane.

The perceptron is activated (outputs 1) only if the input vector

X is on the same side (of the decision hyperplane) as the

weight vector W .

Moreover, the maximum net value (W TX ) is achieved for X

being close to W , is 0 if they are orthogonal and minimum

(negative) if they are opposite.
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Geometrical Interpretation of Perceptron, cont.

The required perceptron's behavior can be obtained by

adjusting appropriate weights and threshold.

The weight vector W determines the �direction� of the decision

hyperplane. The threshold Θ determines how much decision

hyperplane is moved from the origin (0 point)
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Example: Perceptrons can simulate logical circuits

A single perceptron with appropriately set weights and threshold

can easily simulate basic logical gates:
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Limitations of single perceptron

A single perceptron can �distinguish� (by the value of its

output) only the sets of inputs which are linearly separable in

the input space (i.e. there exists a n-1-dimensional hyperplane

separating the positive and negative cases)

One of the simplest examples of linearly non-separable sets is

logical function XOR (excluding alternative).
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Limitations of a single perceptron

One can see on the pictures below that functions AND and OR

correspond to the linearly separable sets, so we can model each

of them using a single perceptron (as shown in the previous

section), while XOR cannot be modeled by any single

perceptron.
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Network of Perceptrons

The output of one perceptron can be connected to input of

other perceptron(s) (as in neural system). This makes it

possible to extend the computational possibilities of a single

perceptron.

For example, XOR can be simulated by joining 2 perceptrons

and appropriately setting their weights and thresholds.

Remark: by �perceptron� or �multilayer perceptron� one can

also mean a network of connected entities (neurons).
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Example: Iris classi�cation

Single perceptron can distinguish Iris-setosa from 2 other

sub-species

However, it cannot exactly recognise any of the other 2

sub-species
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Perceptron: Overcoming the limitations

Discovery of the above limitations (1969) blocked further

development of neural networks for years.

An obvious method to cope with this problem is to join

perceptrons together (e.g. two perceptrons are enough to

model XOR) to form arti�cial neural networks.

However, it is mathematically far more di�cult to adjust more

complex networks to our needs than in case of a single

perceptron.

Fortunately, the development of e�cient techniques of learning

the perceptron networks (80s of XX century), i.e. automatic

tuning of their weights on the basis of positive and negative

examples, caused the �renaissance� of arti�cial neural networks.
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Perceptron as a Classi�er that can Learn

A single perceptron can be used as a tool in supervised machine

learning, as a binary classi�er (output equal to 0 or 1)

To achieve this, we present a perceptron with a training set of

pairs:

input vector

correct answer (0 or 1)

The perceptron can �learn� the correct answers by appropriately

setting it's weight vector.
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Perceptron's Learning: �Delta Rule�

We apply the �training examples� one by one. If the current

output is the same as the desired, we pass to the next example.

If it is incorrect we apply the following �perceptron learning

rule� to the vector of its weights:

W ′ = W + (d − y)αX

d - desired (correct) output

y - actual output

0 < α < 1 - a parameter, tuned experimentally
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Interpretation of Perceptron Learning Rule

To �force� the perceptron to give the desired ouputs, its weight

vector should be maximally �close� to the positive (y=1) cases.

Hence the formula:

W ′ = W + (d − y)αX

move W towards �positive� X if it outputs 0 instead to 1

(�too weak activation�)

move W away from �negative� X (if it outputs 1 instead of

0) (�too strong activation�)

Usually, the whole training set should be passed several times to

obtain the desired weights of perceptron.
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The Role of Threshold

If the activation threshold Θ is set to 0, the perceptron can

�distinguish� only the classes which are separable by a decision

hyperplane containing the origin of the input space (0 vector)

To �move� the decision hyperplane away from the origin, the

threshold has to be set to some non-zero value.
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Incorporating Threshold into Learning

W TX ≥ Θ

W TX −Θ ≥ 0

Hence, X can be extended by appending −1 (fake n+1-th

input) and W can be extended by appending Θ. Denote by W ′

and X ′ the extended (n+1)-th dimensional vectors. Now we

have:

W ′TX ′ ≥ 0 - the same form as �without� the threshold

Now, the learning rule can be applied to the extended vectors

W ′ and X ′
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Questions/Problems:

desired properties of arti�cial neuron

mathematical formulation of perceptron

how perceptron computes it's output

geometric interpretation of perceptron's computation

mathematical limitations of perceptron

learning rule for perceptron

geometric interpretation of perceptron's learning rule
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Thank you for attention
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