Diversity in the Quality of Team Work in Collaboration Network: Experiments on Wikipedia

Katarzyna Baraniak¹, Marcin Sydow^{1,4}, Jacek Szejda² and Dominika Czerniawska³

¹Polish-Japanese Academy of Information Technology, Warsaw, Poland

²Educational Research Institute

³Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

⁴Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

AIM AND MOTIVATION OF STUDY

Common access to the Internet makes it possible that virtual open-collaboration environments became an important platform for massive collaborative work.

We study whether and how the interests diversity of editors and experience diversity of editor teams affect the quality of work on the Wikipedia example.

2

CONTRIBUTIONS

- the concept of editor's "interest versatility" and various measures of team diversity
- exploratory analysis of two dumps of Wikipedia (Polish and German), which indicate that diversity is positively correlated with quality of articles
- · deepened statistical analysis of the studied datasets
- · series of experiments with logistic regression, decision trees, Random Forest

MEASURES OF DIVERSITY

VERSATILITY (MEASURE OF INTEREST DIVERSITY)

Let X denote a group of Wikipedia editors.

editor x's interest in category:

$$p_i(x) = t_i(x)/t(x)$$

where t(x) denote the amount of textual content x contributed to all articles and $t_i(x)$ denote the total amount of textual content editor x contributed to a specific category

interest profile of the editor x, denoted as ip(x), as the interest distribution vector over the set of all categories:

$$ip(x) = (p_1(x), \dots, p_k(x))$$
 (1)

Versatility as entropy of interest profile of x:

$$V(x) = H((p_1, p_2, \dots, p_k)) = \sum_{1 \le i \le k} -p_k \log_2(p_k)$$
 (2)

5

STANDARD DEVIATION

Standard deviation of numerical attribute X taking n values: X_1, \ldots, X_n is defined as

$$\mathrm{sd}(X) := \sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i - \mathrm{avg}(X))^2},$$

where $\operatorname{avg}(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an arithmetic mean of attribute X. Standard deviation $\operatorname{sd}(X)$ measures how much (on average) an attribute varies around its arithmetic mean.

5

DATA

DATASETS

Polish Wikipedia wiki-pl March 2015 German Wikipedia wiki-de September 2015

Table: Summary of Datasets wiki-pl and wiki-de

	wiki-pl dataset	wiki-de dataset
editors	126,406	555,355
articles	947,080	1,422,940
editions	16,084,290	61,266,990

MEANS OF MEASURING THE QUALITY OF WIKIPEDIA ARTICLES

quality of articles criteria defined by the Wikipedia community:

- GOOD article (G): "well-written, comprehensive, well-researched, neutral, stable, illustrated"
- FEATURED article (F): (in addition to the above) "length and style guidelines including a lead, appropriate structure and consistent citation"

Table: Analysed groups of editors

co-edited
(normal) neither good nor featured article
(good) at least one good article
(featured) at least one featured article
(good or featured) at least one good or one featured article
(good and featured) at least one good and one featured article

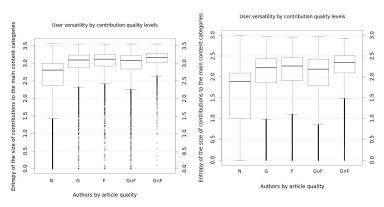

TOPICAL CATEGORIES OF ARTICLES

Table: Wikipedia main content categories

Dataset	Main Content Categories	Dataset	Main Content Categories
wiki-pl	Humanities and Social Sci-	wiki-de	Art & Culture
	ences		Geography
	Natural and Physical Sciences		History
	Art & Culture		Knowledge
	Philosophy		Religion
	Geography		Society
	History		Sport
	Economy		Technology
	Biographies		
	Religion		
	Society		
	Technology		
	Poland		

PRELIMINARY EXPLORATORY ANALYSIS OF THE DATA

Figure: Versatility vs Quality for wiki-pl dataset

Figure: Versatility vs Quality for wiki-de dataset (denotations as on Fig. 1)

PRELIMINARY EXPLORATORY ANALYSIS OF THE DATA: CONTINUATION

Table: Median of versatility and productivity of editors vs. quality for wiki-pl and wiki-de dataset

wiki-pl			wil	ki-de
quality	versatility	productivity	versatility	productivity
G∩F	3.1720	159300	2.351	46080
$G \cup F$	3.011	2992	2.064	1502
F:	3.000	2322	2.053	1283
G:	3.016	3347	2.070	1629
N:	2.807	237	1.891	264

EXPLORATORY ANALYSIS CONCERNING THE GENDER OF EDITORS

Table: Editors gender vs versatility

	wiki-pl						
n	umber of women	number of men	versatility of women	versatility of men			
G∩F	1.73e+02	3.98e+02	3.25e+00	3.25e+00			
GUF	2.46e+02	5.69e+02	3.18e+00	3.20e+00			
F:	2.00e+01	4.70e+01	3.01e+00	3.02e+00			
G:	5.30e+01	1.24e+02	3.09e+00	3.06e+00			
N:	1.81e+02	4.14e+02	2.87e+00	2.91e+00			
		wil	ki-de				
n	umber of women	number of men	versatility of women	versatility of men			
G∩F	5.53e+002	1.03e+003	2.51e+000	2.41e+000			
GUF	6.43e+002	1.32e+003	2.46e+000	2.44e+000			
F:	3.40e+001	8.00e+001	2.17e+000	2.14e+000			
G:	5.60e+001	2.11e+002	2.07e+000	2.18e+000			
N:	1.95e+002	5.29e+002	1.84e+000	2.00e+000			

EXPERIMENTS WITH QUALITY PREDICTION FOR EDITORS

Two-class prediction problem, where:

- · class C = 1 corresponds to $G \cup F$ editors
- · class C = 0 corresponds to the remaining ones

data randomly split:

- · training set 50% observations
- testing set 50% observations

Classification models:

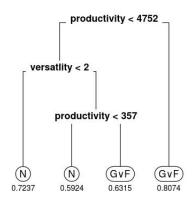
- logistic regression model
- · tree model

EXPLAINING QUALITY WITH LOGISTIC REGRESSION MODEL

Table: Logistic regression model for editors on wiki-pl dataset

	Estimate	Std. Error	z-value	Pr(> z)	
(Intercept)	-5.35e+000	1.11e-001	-48.115	<2e-16***	
versatility	9.32e-001	3.82e-002	24.384	<2e-16***	
productivity	-5.96e-006	2.74e-006	-2.174	0.0297*	
versatility:productivity	6.4e-006	9.18e-007	6.971	3.15e-012***	
Signif. codes: p<0 '***', p<0.001 '**', p<0.01 '*', p<0.05 '.', p<0.1 ' '					

Table: Logistic regression model for editors on wiki-de dataset


	Estimate	Std. Error	z-value	Pr(> z)	
(Intercept)	-3.539e+00	2.183e-02	-162.110	<2e-16***	
versatility	7.879e-01	1.098e-02	71.767	<2e-16***	
productivity	3.214e-06	5.829e-07	5.514	3.52e-08 ***	
versatility:productivity	1.213e-05	3.317e-07	36.581	<2e-16 ***	
Signif. codes: p<0 '***', p<0.001 '**', p<0.01 '*', p<0.05 '.', p<0.1 ' '					

EXPLAINING QUALITY WITH TREE MODEL

Figure: Tree model for wiki-pl dataset

productivity < 8612 productivity < 284.6 versatlity < 3 GvF GvF) 0.7810 0.6572 0.5875 0.8818

Figure: Tree model for wiki-de dataset

PREDICTION RESULTS FOR LOGISTIC REGRESSION AND TREE MODEL

Table: Evaluation measures on testing data for editors on wiki-pl and wiki-de datasets

measure	logistic re-	logistic re-	tree model	tree model
	gression	gression	wiki-pl	wiki-de
	wiki-pl	wiki-de	dataset	dataset
	dataset	dataset		
precision	87.73%	86.85%	74.50%	75.36%
recall	17.72%	17.91%	29.56%	26.04%
accuracy	93.40%	88.53%	93.73%	88.84%
F-measure	29.48%	29.70%	42.33%	38.70%

SUMMARY OF EXPERIMENTAL RESULTS FOR EDITORS

Versatility is the most significant variable according to logistic model and it is also useful for tree.

Both diversity and productivity allow to predict a quality of articles successfully.

EXPERIMENTAL RESULTS FOR TEAMS

ATTRIBUTES OF TEAMS

Table: Attributes of Teams

Name	Description
versatility	entropy of distribution vector over main categories
mean productivity in arti-	mean amount of editors' contribution in bytes to individ-
cle	ual article
mean total productivity	mean amount of editors' contribution in bytes to all arti-
	cles on the Wikipedia
the size of team	the number of editors who contributes in one article
mean tenure in article	mean number of days spent on article
mean tenure in Wikipedia	mean number of days spent on the Wikipedia
std. dev. productivity in	standard deviation of the number of editors' contribution
art	bytes to individual article
std. dev total productiv-	standard deviation of editors' contribution bytes to all ar-
ity	ticles on the Wikipedia
std. dev tenure in article	standard deviation of number of days between the first
	and the last editors contribution to individual article
std.dev tenure in	standard deviation of number of days spent on the
wikipedia	Wikipedia

PRELIMINARY EXPLORATORY DATA ANALYSIS FOR TEAMS

Table: Median of team features vs. quality articles of wiki-pl dataset

quality	versatility	mean pro-	mean total	sd produc-	sd total
		ductivity in	productivity	tivity in arti-	product.
		articles		cles	
GUF	3.26e+000	1.80e+003	4.52e+006	6.84e+003	5.35e+006
F	3.26e+000	2.93e+003	4.31e+006	9.62e+003	5.42e+006
G	3.26e+000	1.73e+003	4.58e+006	6.10e+003	5.33e+006
N	3.53e+000	4.99e+002	5.88e+006	7.96e+002	5.96e+006
quality	team size	mean tenure	mean tenure	sd tenure in	sd tenure in
		in article	in Wikipedia	article	Wikipedia
GUF	2.00e+001	1.25e+002	1.81e+003	3.56e+002	8.46e+002
F	3.30e+001	1.44e+002	1.85e+003	4.11e+002	9.02e+002
G	1.70e+001	1.20e+002	1.80e+003	3.37e+002	8.20e+002
N	4.00e+000	7.71e+000	1.81e+003	4.39e+001	8.15e+002

PRELIMINARY EXPLORATORY DATA ANALYSIS FOR TEAMS: CONTINUATION

Table: Median of team features vs. quality articles of wiki-de dataset

quality	versatility	mean prod-	mean total	sd product.	sd total
		uct. in art.	product.	in art.	product.
GUF	2.65e+000	1.16e+003	5.94e+006	6.05e+003	1.31e+007
F	2.65e+000	1.44e+003	6.12e+006	8.09e+003	1.37e+007
G	2.65e+000	9.98e+002	5.82e+006	4.98e+003	1.27e+007
N	2.62e+000	4.07e+002	6.16e+006	9.10e+002	9.20e+006
quality	team size	mean tenure	mean tenure	sd tenure in	sd tenure in
		in article	in Wikipedia	article	Wikipedia
GUF	7.45e+001	in article 1.02e+002	in Wikipedia 2.09e+003	article 3.33e+002	Wikipedia 1.05e+003
GUF F	7.45e+001 8.60e+001		100000		<u> </u>
		1.02e+002	2.09e+003	3.33e+002	1.05e+003

EXPERIMENTS WITH QUALITY PREDICTION FOR TEAMS

Two-class prediction problem, where:

- · class C = 1 corresponds to $G \cup F$ teams
- \cdot class C = 0 corresponds to the remaining ones

data randomly split:

- · training set 50% observations
- testing set 50% observations

Classification models:

- · logistic regression model
- · random forest model

LOGISTIC REGRESSION ANALYSIS

Table: Logistic regression model for teams on wiki-pl dataset

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-7.571e+00	7.565e-01	-10.008	< 2e-16 ***
versatility	7.718e-01	2.373e-01	3.253	0.00114 **
mean productivity in article	-2.401e-04	1.574e-05	-15.255	< 2e-16 ***
mean total productivity	2.157e-08	1.330e-08	1.622	0.10478
size of team	1.205e-02	7.014e-04	17.186	< 2e-16 ***
mean tenure in article	-1.220e-02	7.373e-04	-16.550	< 2e-16 ***
mean tenure in wikipedia	-3.530e-04	8.435e-05	-4.185	2.86e-05 ***
sd productivity in art	1.499e-04	7.349e-06	20.402	< 2e-16 ***
sd total productivity	-7.840e-08	1.353e-08	-5.797	6.75e-09 ***
sd tenure in article	7.298e-03	3.180e-04	22.949	< 2e-16 ***
sd tenure in wikipedia	-7.214e-04	1.234e-04	-5.845	5.05e-09 ***
Signif. codes: p<0 '***', p<0.0	001 '**', p<0.01	L '*', p<0.05 '.'	, p<0.1 ' '	

LOGISTIC REGRESSION ANALYSIS: CONTINUATION

Table: Logistic regression model for teams on wiki-de dataset

	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	-1.408e+01	7.165e-01	-19.658	< 2e-16 ***		
versatility	1.937e+00	2.578e-01	7.514	5.71e-14 ***		
mean productivity in article	-5.218e-05	7.794e-06	-6.695	2.15e-11 ***		
mean total productivity	-2.578e-07	1.205e-08	-21.395	< 2e-16 ***		
size of team	1.138e-02	1.948e-04	58.401	< 2e-16 ***		
mean tenure in article	-1.602e-02	7.732e-04	-20.721	< 2e-16 ***		
mean tenure in Wikipedia	1.495e-03	7.863e-05	19.018	< 2e-16 ***		
sd productivity in art	2.782e-05	2.328e-06	11.950	< 2e-16 ***		
sd total productivity	9.789e-08	4.222e-09	23.184	< 2e-16 ***		
sd tenure in article	7.838e-03	2.722e-04	28.799	< 2e-16 ***		
sd tenure in wikipedia	-1.626e-04	1.227e-04	-1.326	0.185		
Signif. codes: p<0 '***', p<0.001 '**', p<0.01 '*', p<0.05 '.', p<0.1 ' '						

IMPORTANCE OF DIVERSITY MEASURES IN QUALITY PREDICTIONS

Table: Random Forest importance for wiki-pl dataset

	1 1	1 2
	lmp1	Imp2
versatility	5.20e+001	1.16e+002
mean productivity in article	3.25e+001	1.33e+002
mean total productivity	2.71e+001	1.16e+002
size of team	3.84e+001	1.01e+002
mean tenure in article	1.28e+001	8.07e+001
mean tenure in Wikipedia	2.23e+001	8.75e+001
sd productivity in art	3.13e+001	1.73e+002
sd total productivity	4.38e+001	1.19e+002
sd tenure in article	1.16e+001	8.35e+001
sd tenure in Wikipedia	4.02e+001	1.05e+002

IMPORTANCE OF DIVERSITY MEASURES: CONTINUATION

Table: Random Forest importance for wiki-de dataset

	lmp1	lmp2
versatility	5.37e+001	2.40e+002
mean productivity in article	2.50e+001	3.00e+002
mean total productivity	1.16e+001	1.91e+002
size of team	3.43e+001	3.52e+002
mean tenure in article	7.25e+000	1.97e+002
mean tenure in Wikipedia	3.61e+001	3.14e+002
sd productivity in art	2.51e+001	3.97e+002
sd total productivity	1.69e+001	1.95e+002
sd tenure in article	7.23e+000	1.96e+002
sd tenure in Wikipedia	1.42e+001	1.97e+002

MODEL

Table: Evaluation measures on testing data for teams on wiki-pl and wiki-de datasets

measure	logistic re-	logistic re-	random for-	random for-
	gression	gression	est model	est wiki-de
	teams wiki-	teams wiki-	wiki-pl	dataset
	pl dataset	de dataset	dataset	
precision	15.90%	27.50%	70.60%	52.80%
recall	1.10%	3.40%	5.68%	7.34%
accuracy	99.70%	99.60%	99.70%	99.60%
F-measure	2.06%	6.05%	10.50%	12.90%

SUMMARY OF EXPERIMENTAL RESULTS FOR TEAMS

The experiments clearly indicate that diversity of teams in combination with other properties of teams allows to predict the quality of articles very successfully.

CONCLUSIONS AND FUTURE WORK

- the interest diversity of single authors and teams has positive influence on their work quality
- it is possible to predict the quality of Wikipedia articles using diversity measures and some other properties of teams successfully
- · take into account some other features of editors and teams
- develop an intelligent decision-support tool for suggesting how to build a successful editor team in order to produce high-quality article