Introduction
to Hard
Computatio-

nal
Problems

Introduction to Hard Computational Problems

Marcin Sydow

Beyond Polynomial-time algorithms

Introduction
to Hard
Computatio-
nal
Problems

pl Most of the computational problems discussed previously are
- solvable by polynomial-time algorithms.

Not all important problems are such. There exist many
important problems for which no algorithm faster than
exponential is known (e.g. TSP, set cover, etc.)

There are even problems for which there are no algorithms at
alll' (famous “Turing’s halting problem”)

Hard and easy problems

Introduction
to Hard
Computatio-
nal
Problems

Marcin

Syl m Euler cycle vs hamiltonian cycle in a graph
m CNF vs DNF satisfiability

m shortest vs longest path in a graph

In each pair above, one problem is computationally easy
(polynomial algorithm exists) and another hard (no polynomial
algorithm is known), despite seemingly similar formulations.

Polynomial Algorithms

Introduction

eduul Loosely speaking, a problem is “polynomial” if there exists an

o algoritm that solves it, whose time complexity is upper-bounded
by a polynomial function of data size

Examples: sorting (O(n logn)), minimum spanning tree,
huffman encoding, etc.

Polynomial problems are widely regarded as being
computationally tractable (“easy”).

Problem:

Honestly, a polynomial algorithm of ©(n%) (for example)
complexity is practically useless (and a ©(2") — exponential —
algorithm would be faster even for medium values of n)

n1%0 — 27 100/gn = n, n/lgn = 100, n =~ 1000

Why polynomial algorithms are regarded as “easy”

Introduction
Hard H H H It I
jusptll The choice of polynomial-time-solvable problems as “easy” is

nal

Bl appealing for several reasons:

in practice, the exponents are not very high and usually get
lower over time (as faster versions of algorithms are
invented)

the family of polynomial algorithms is closed under
summation, multiplication, composition

multiplicative factor hardware acceleration can be
translated into multiplicative factor computation time
acceleration (not true with exponential complexity - an
additive acceleration in this case)

[equivalence in various computational models (e.g. Turing
machine, parallel machines, etc.)

P, NP, NP-complete...

Introduction
to Hard . .
(™ The class of polynomially solvable problems is denoted as P.

nal
Problems

NP is a class of problems such that their (given) solution can
be verified in a polynomial time.

NP — complete is a sub-class of NP representing the hardest
problems in NP.

There is no known polynomial algorithm to solve any
NP-complete problem

However, nobody could prove (for almost 40 years!) that
P # NP

(one of the most famous open problems in computer science)

NP-complete: “hard” problems

Introduction
to Hard
Ssl Thus, once a computational problem has been proved to be
Problems NP-complete it is regarded as being computationally hard (as
no algorithm faster than exponential is known for it nor is likely

to be invented soon)

In such case, the following alternatives (to look for a polynomial
algorithm) can be considered:

exponential algorithms

special cases

]

m approximation algorithms
m probabilistic algorithms
]

heuristics

Optimisation Problem

Introduction
to Hard
Computatio-
nal

St An instance of an optimisation problem: a pair (F,c), where F
is interpreted as a set of feasible solutions and ¢ is the cost
function: ¢: F — Q.

The task in minimisation is to find f € F such that ¢(f) is
minimum possible in F. f is called global optimal solution to
the instance F!

An optimisation problem is a set / of instances of an
optimisation problem.

! Another variant is a maximisation problem, when we look for a feasible
solution f with maximum possible value of ¢(f) — in this case we can call ¢
a profit function

Example of an optimisation problem:
SHORTEST-PATH

Introduction
to Hard
Computatio-

nal Instance: a directed graph G=(V,A), two vertices u,v € V
Froblems (source and target)

Marcin
Sydov

Feasible set: a set of all paths in G that start in u and end in v

Cost function: for a feasible solution f (a path from u to v) it
is its length

SHORTEST-PATH optimisation problem: the set of all
possible graphs and pairs of its vertices

This is a minimisation problem.

(is this problem hard or easy?)

Decision Problems

Introduction

to Hard L : “ v u

IWb M The solution is in the binary form: “yes” or “no
nal

Problems

Example: is the given boolean formula satisfiable?

An optimisation problem can be usually transformed into its
decision version that is not harder.

For example, an instance of the SHORTEST-PATH
optimisation problem with additional parameter k € N can be
viewed as a decision problem: “is there a path from u to v in G
of the length not exceeding k7"

(the problem is not harder since solution to the optimisation
problem automatically solves the decision version, but not the
opposite, in general)

Encoding of Problems

Introduction
to Hard
Computatio-

To be solved by a computer, an abstract problem should be first
S encoded into binary form.

Let Q be an abstract problem represented by the set of
instances |

encoding: e:/ — {0,1}*
(* - “Kleene star”)

Encoding transforms an abstract problem into a concrete
problem, denoted as e(Q)

We say that an algorithm solves a concrete problem in time
O(T(n)) iff for each instance i of size |i| = n (in bits) it finds a
solution in time O(T(n)).

Complexity class P

Introduction
to Hard
Computatio-
nal

Problems Deﬂnltlon

deen A complexity class P is the set of concrete decision problems for
' which there exist algorithms that solve them with complexity
upper-bounded by a polynomial of n (the length of the concrete
problem), i.e. the complexity is O(n¥), for n = |i| problem
length, k - a positive constant (for each problem).

Notice that a decision problem solvable, for example, with a
©(nlogn) complexity (n - size of encoded, concrete problem instance)
isin P (even if “n logn” is not a polynomial of n itself, but is
upper-bounded by such)

Remark on encoding’s “compactness”

Introduction
to Hard
Computatio-
nal
Problems

One can observe that the fact whether a concrete version of an
abstract problem is in P class depends on the “compactness” of
encoding.

It is assumed that encoding is “reasonably” compact. In
particular, it is assumed that binary encoding is used for
numbers (and that all the numbers are rational) which results in
[logan] number of bits for a value n. 2

Notice that unary encoding (which is definitely not a compact one)
can make some complex problems look as polynomially solvable due
to “expensive’ encoding.

2|t does not matter whether a binary positional system is used or
another, since all the logarithms are asymptotically equivalent

Polynomial Relatedness of Encodings

Introduction
to Hard
Computatio-
nal
Problems

Marcin A function £ : {0,1}* — {0,1}* is polynomial-time

S computable iff there exists an algorithm that for any input

x € {0,1}* produces output 7(x) in the polynomially bounded
time complexity O(p(|x])) (p() is a polynomial, |x| is the size of
concrete instance of the problem)

Definition

Given a set / of problem instances, two encodings e1, e are
polynomially related iff there exist two functions 15, 51 that
are polynomial-time computable such that

Vi e I ha(er(i)) = e2(i) and H1(e2(i)) = e1(i)) (and strings not
being instances are mapped to such in both directions)

Introduction
to Hard

Computatio-

nal
Problems

Lemma:
Assume e, & are two polynomially related encodings of an
abstract problem Q. Then, ¢(Q) € P < &(Q) € P

(i.e. membership in P class is independent on polynomially
related encodings)

Proof:

(<) Assume that e;(Q) can be solved with O(n*) time for a constant k
and that the encoding e1 (i) can be computed from ez(i) with O(n€) time
for a constant ¢, where n = |ez(7)|. To solve encoded instance e>(i) of the
problem e;(Q) it suffices to first compute encoding e; (i) (that takes time
O(n°)) and then compute the solution on the output. Its size

le1(7)| = O(n°) since output cannot be (asymptotically) bigger than
running time. Thus the total complexity will be O(|e1(i)|¥) = O(n) a
polynomial of n (q.e.d.)

The proof of the other direction is symmetric.

“Standard” Encoding

Introduction
ey A bit informally, we will assume some “standard” encoding of
omputatio- . . .
L basic objects such as rational numbers?, sets, graphs, etc. that
roblems “ " . .
are “reasonable” (e.g. unary encoding of numbers is not

reasonable in this sense)

More precisely, in the context of the lemma, we will assume
that encoding for all the numbers will be polynomially related to
binary encoding (notice: decimal encoding is such), for a set —
to comma-separated list of elements, etc.

Such “standard” encoding will be denoted by (.) symbols (e.g.
(G) for a graph G).

Now, we can talk directly about abstract problems without
reference to any particular encoding.

3We assume all the numbers used are rational, i.e. of finite precision

Basic Concepts of Formal Languages

Introduction) i
to Hard P class and other important concepts can be defined with help

Computatio-

nal of formal languages.

Problems

Marcin

Sydon Y : a finite alphabet of symbols

A language L over ¥ is any arbitrary subset of strings of
symbols from alphabet.

example: ¥ = {0,1}, L ={10,11,101,111,1011, ...} (prime
numbers in binary)

empty string ¢, X* all finite strings over alphabet

Operations on languages: union,intersection,complement
(L =%*\ L), concatenation LiLy (or power: L¥), closure
(Kleene star): L* = {e}ULUL2UL3U...

Problems as languages

Introduction
to Hard
Computatio-
nal

Problems Each abstract decision problem is characterised by all the “yes”
Yerein instances.

Sydow

Definition

A (concrete) decision problem @, is represented by language L
over alphabet ¥ = {0,1}, such that:

L= {x € ¥* : x is encoding of a “yes” instance of Q}

Example: (PRIME) L = {(p) : p is a prime number}

Decision problems and algorithms

Introduction
to Hard
Computatio-

put We say that algorithm A accepts a string x € {0,1}* if its
Problems output A(x) is 1 (“yes”).

Marcin
Sydov

The language L accepted by an algorithm A is the set of all
strings:
L={xe{0,1}*: A(x) =1}

Similarly, x is rejected by algorithm A iff A(x) = 0.

Even if a language L is accepted be an algorithm, it may not
stop (for example) for some x ¢ L.

If an algorithm A accepts each x € L and rejects each x ¢ L we
say L is decided by A

Complexity class

Introduction
to Hard
Computatio-
nal
Problems

Marcin
Sydov

A complexity class can be viewed as a set of languages decided
by a class of algorithms with specified complexity measure
(a formal definition of a complexity class is a bit more complicated)

For example (the definition of P class):

P ={L C{0,1}*: L is decided by some polynomial algorithm}

Theorem

w2 = {L: L is accepted by a polynomial-time algorithm}

to Har . e I . "o

ST (notice that definition of P used the word “decided” instead)
Problems

Dra{:t Of PrOOf (after Cormen et al. “Introduction to algorithms"):(We should show
that if L is accepted by a polynomial-time algorithm then it is also decided
by some polynomial-time algorithm. We will use so-called “simulation”
approach. Notice that the proof is non-constructive — it only proves the
existence of some object (algorithm) however does not show how to find
(construct) it).

Assume that language L is accepted by a polynomial time algorithm.
Thus, there exist positive integer constants ¢ and k such that A
accepts L after at most cn* steps. Now, imagine an algorithm A’
that, for any input x, simulates cn® steps of A and then checks
whether A has accepted L. If yes, it also accepts x, if not yet, it
rejects x. The simulation overhead can be implemented so that A’ is
still polynomial. We explained an existence of a polynomial-time
algorithm A’ that decides L.

Example: Hamiltonian Cycle Problem

Introduction
to Hard
Computatio-
nal

Problems We call a graph G=(V,E) hamiltonian iff there exists a simple
N (no vertex can be used more than once) cycle that uses all
vertices in V (a hamiltonian cycle).

Now, we can consider a decision problem:
HAM — CYCLE = {(G) : graph G is hamiltonian}

There is no polynomial-time algorithm known to solve this
problem in general. (i.e. all the known algorithms have
exponential or higher complexity wrt input size, e.g. checking
all n! potentially possible permutations of vertices)

The idea of certificate

Introduction
to Hard
Computatio-
nal
Problems

However, if there is provided a “solution” (a path in G) to an
instance of HAM-CYCLE the time to verify whether it is a
correct hamiltonian cycle is polynomial-time solvable.

In general, verification of a provided solution to a problem can
be much faster that finding it.

Such a provided correct “solution” is called a certificate (it is
quick to verify, but may be computationally hard to find it)

Verification Algorithms

Introduction
to Hard
Computatio-
nal
Problems

e A verification algorithm A takes two arguments: an input
string x (e.g. binary encoding of a problem instance) and a
certificate y

A verifies x if, there exists certificate y such that A(x,y) =1
A language verified by a verification algorithm A:

L={xe{0,1}*:3y € {0,1}*A(x,y) =1}

Definition of NP complexity class

Introduction .
G [ikre] Definition
Computatio-
nal

Problems The NP complexity class is the class of languages (decision

Marcin problems) that can be verified by a polynomial-time algorithms.
Sydow

Equivalently, language (decision problem) L is in NP iff there
exists a two-input polynomial-time verification algorithm A and
a positive constant ¢ such that:

L= {x € {0,1}*: Jy(certificate)|y| = O(|x|°) AN A(x,y) =1}

example: HAM-CYCLE is in NP

Remark: NP stands for “non-deterministic polynomial”, which
comes from another, definition of NP via so-called
non-deterministic Turing machines. The above definition is
equivalent, and perhaps easier to understand.

Observation: P C NP

Introduction
to Hard
Computatio-
nal
Problems

If a decision problem (language) is in P it is also in NP.

When a decision problem is in P class its solution (“yes’/"no")
can be found by a polynomial time algorithm A. Why is it in
NP too? If there is provided a certificate y, it can be simply
ignored and the language is accepted only if A accepts it (in
polynomial time). Thus we constructed a polynomial-time
verification algorithm for it.

Thus, P C NP

The most Famous Problem in Computer Science

Introduction
to Hard

RaGall [t is an open problem whether P # NP since 1971.
Problems

Intuitively, P is a class of “easily solvable” decision problems and
NP is a class of “easily verifiable” problems.

Most people believe P # NP but nobody could prove (or
disprove) it. There is a quite strong evidence to support this
hypothesis (the existence of “NP-complete class” - next slides)

But, there is a $1.000.000 prize awaiting for the first person
providing the proof (founded by the “Clay Mathematics
Institute” (Cambridge, US), even if some notable researchers
claim that, this problem perhaps lies out of reach for currently
known tools in mathematics.

co-NP class

Introduction
to Hard
Computatio-

ol co-NP class is the class of languages (decision problems) L with
the property L € NP (that is its complement belongs to NP).

In other words L is in co-NP if it is easy to verify a negative
certificate.

E.g. PRIME is in co-NP (why?)
(a factorisation of a number is a polynomially verifiable
certificate that a number is not a prime)

It is unknown whether NP # co — NP

Of course P C co — NP (for reasons analogous for the NP case)

Reductions

Introduction

sl Intuitively, a problem Q can be reduced to another problem Q’

o if any instance of Q can be “translated” to an instance of Q' so
that the solution of the latter provides a solution to the former

one.

In other words, @ is “not harder” than @'.

More formally, language L1 is polynomial-time reducible to a
language Ly, denoted as Ly <p Ly, if there exists
polynomial-time computable function f : {0,1}* — {0,1}* such
that:

Vx € {0,1}*X cl & f(X) €l

such f is called a reduction function and a polynomial-time
algorithm F that computes it a reduction algorithm.

Introduction
to Hard
Computatio-
nal
Problems

If Ly <p L, then L, € P implies L; € P

Polynomial reductions provide a formal tool for showing that
one problem is “at least as hard as” another problem within a
polynomial-time factor.

(for short proof see e.g. Cormen p.1068, 3rd edition)

NP-complete class (NPC)

Introduction
to Hard
Computatio-
nal
Problems

Definition

A language L C {0,1}* is NP-complete iff:
L € NP and
L' <p L for any language L' € NP

Marcin
Sydow

Thus, NP — complete is the class of the “hardest problems in
NP (because all problems in NP can be translated to them)

If a language satisfies the property 2. (but not necessarily 1.) it
is called NP-hard

Theorem

Introduction
to Hard
Computatio-
nal

Problems If any NP-complete problem is polynomial-time solvable then
el P = NP. Equivalently, if any NP-complete problem is not

polynomial-time solvable then no NP-complete problem is
polynomial-time solvable

Proof: Assume L € P and L € NPC. Thus, forany L’ € NP it
holds that L <p L (NPC definition, property 2) but also, by the
last lemma, L’ € P what proves the first part. The other part,
by contraposition.(quod erat demonstrandum)

The above theorem is a strong evidence for P # NP hypothesis.

Boolean Satisfiability (SAT)
- the first known NP-complete problem in history

Introduction
to Hard
Computatio-
nal
Problems

arcin The first problem proved to be in NP-complete class was
Stk “Boolean Satisfiability” (SAT) by Stephen Cook, who introduced
the concept (“The complexity of theorem-proving procedures”,
Proceedings of 3rd ACM STOC, pp. 151-158, 1971)

SAT: is a given boolean formula satisfiable?

(does there exist an assignment of boolean values to the
variables such that the value of the whole is “true”? (truth
assignment))

Historical importance of SAT

Introduction
to Hard
Computatio-

nal More precisely, Cook showed that any (decision) problem in NP
Froblems class can be reduced in polynomial time to SAT by, so called,

deterministic Turing Machine *

A bit simpler prove can be found at: Garey, Michael R.; David
S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman. ISBN
0716710455.

As a consequence, if there exists any polynomial algorithm for
SAT there exist polynomial algorithms for all problems in NP.

*Turing Machine is an important theoretical computation model, that
will be not discussed here, and which is, informally speaking, polynomially
equivalent to current computers

NP-completeness of CIRCUIT-SAT

Introduction
to Hard
Computatio-
nal
Problems

Marcin

S CIRCUIT-SAT: given a boolean circuit answer if there exists a
truth assignment for it.

In their handbook “Introduction to Algorithms”, Cormen et al.
present a draft of a direct proof of NP-completeness of
CIRCUIT-SAT, without refering to the concept of Turing
Machines.

Proving NP-completeness, by definition

Introduction
to Hard
Computatio-
nal
Problems

Wrein By definition, to prove NP-completeness of some problem L, we
- need to show that every problem in NP can be reduced (in
polynomial time) to L (and, that L is in NP).

In particular, this was necessary for the (historically) first
NP-complete problem: SAT.

However, if we already have at least one NP-complete problem
at hand, the technique is simpler

Technique for proving NP-completeness

Introduction
to Hard

SIS Lemma: If L' € NPC and L is a language such that L' <p L

nal

Problems than L is NP-hard. In addition, if L € NP than L € NPC.
Marcin
Sydow

Thus, it suffices to show reduction of a problem L to a known
NP-complete problem to show it is NP-hard.

Proof: Because L' € NPC, we have L” <p L’ for all L" € NP.
Thus, L’ <p L and, by transitivity of <p (exercise) we obtain
L" <p L, i.e. Lis NP-hard. If, additionally, L € NP, by
definition L € NPC.

Notice, that this technique could not be used for proving the
NP-completeness of the “first” known NP-complete problem.
This makes the Cook’s theorem additionally important.

The method to prove NP-completeness

Introduction
to Hard
Computatio-
nal
Problems

. To prove that L is NP-complete:

Sk prove that L € NP

choose a known NP-complete problem [’

describe polynomial-time algorithm that maps every
instance x € {0,1}* of L’ to an instance of L

prove that instance x € L is “positive” if and only if its
mapping in L is positive

This is simpler than proving NP-completeness directly from
definition.

NPC class is growing

Introduction
to Hard
Computatio-
nal
Problems

Marcin
Sydov

Following the Cook’s innvetion (that SATe NPC) in 1971, next
year in 1972 Richard Karp published his famous list of 21
NP-complete combinatorial problems. (Both Cook and Karp
subsequently received Turing Award for their achievements)

Currently, there are many thousand problems proved to be
NP-complete.

Example: reduction from CIRCUIT-SAT to SAT

Introduction
to Hard
Computatio-
nal
Problems

arcin After proving that CIRCUIT-SAT € NPC (see Cormen et al. for
Sydov a draft), we can illustrate the reduction technique on SAT.

SAT is in NP: enough to explain that verification algorithm
works in time that is polynomial function of the problem size

CIRCUIT-SAT can be encoded as a graph G: nodes — logical
gates, arcs — wires connecting the gates, and then the graph
can be encoded in its standard encoding < G > with adjacency
lists. It is a standard encoding of CIRCUIT-SAT.

CIRCUIT-SATe NPC, cont.

Introduction
to Hard .o
@RI The main idea is to repesent each logical gate in the circuit as a
nal

Problems small logical clause of as follows:

Each wire is represented by a logical variable.

NOT gate, with an input (wire) x and output (wire) y is
represented as the following logical clause: y <> —x

similarly, AND gate, with two inputs x1, x> and output y: as
y & x1 N\ xe,

analogously, OR gate: y <> x1 V xo.

Finally, the whole circuit, as the conjuction of the output wire
variable and all the “gate” clauses.

CNF - Conjuctive Normal Form

Introduction
to Hard.

RS Consider a boolean formula containing some (boolean) variables
Problems

literal: a variable or its negation

OR-clause: any number of literals joined by the OR operator
example of OR-clause: x1 V =xo V x4 V Xg

CNF: any number of OR-clauses joined by the AND operator
example of CNF: (x1 V —=x2 V x4) A (x3 V —x)

3-CNF: CNF such that each OR-clause consists of exactly 3
distinct literals
example of 3-CNF: (x; V —x2 V xa) A (x3 V —ix6 V x1)

3-CNF-SAT is NP-complete (reduction from SAT)

Introduction

to Hard 3-CNF-SAT problem: is a given 3-CNF formula satisfiable?

Computatio-
nal

Problems It is NP-complete, can be reduced from SAT(i.e. given arbitrary

boolean formula ¢ transform it to 3-CNF that is satisfiable only if the
original is satisfiable)

using parentheses transform ¢ to its binary parse tree and treat it as
a circuit (leaves are inputs, the root is output) and transform to a
conjuntion of clauses ¢’ as in reduction from CIRCUIT-SAT to SAT

translate ¢’ to CNF ¢” by negating DNF obtained from ¢’ by using
the disjunction of all false cases. Notice: each clause of CNF ¢" has
at most 3 literals (due to binarity of the parse tree)

translate CNF ¢” to 3-CNF ¢’ by substituting each clause with
exactly 2 distinct literals (h V k) with equivalent
(hVEVp)A(hVEV-p)and each clause with exactly 1 distinct
literal / with (IVpVg)A(IVpV=g)AN(IV=pVg)A(lV-pV-q)
(for any assignment of p, g one of the 4 clauses is equivalent to / and
other evaluate to 1)

Introduction
to Hard

Computatio-

nal
Problems

DNF: disjunctive normal form (many AND-clauses joined with
OR)
example: (x3 A —x2 A xa) V (x3 A —1xp)

DNF-SAT problem: is a given DNF formula satisfiable?
This problem is easily solvable in polynomial time

Explanation: a DNF formula is not satisfiable only if all its
AND-clauses are not satisfiable, which can happen only if all
AND clauses contain conjuction of a variable and its negation -
easy to check in polynomial (even linear) time.

Also, 2-CNF-SAT is polynomial-time solvable (hint: x V y is
equivalent to —x V y and this can be efficiently solved)

More examples of NP-complete problems

Introduction
to Hard
Computatio-
nal
Problems

CLIQUE
VERTEX COVER
INDEPENDENT-SET
SET-COVER
SET-PACKING
HAM-CYCLE

TSP

SUBSET-SUM

Marcin

Sydoy

CLIQUE problem

Introduction
to Hard_
st CLIQUE optimisation problem: given an undirected graph
Prr:’b:e:s G = (V,E) find the maximum clique in G. (a maximisation
Sydow problem)

(A clique in G is a full subgraph of G)

The decision-version of the CLIQUE problem: CLIQUE: given
an undirected graph G = (V,E) and k € N\ {0} is there a
clique of size k in G?

If k is a constant, the brute-force algorithm (checking all the

possible k-element subsets of V' whether they form a k-clique)
formally has the polynomial complexity ©(k?(n!/k!(n — k)!),

however if k is close to |V/|/2 it becomes exponential.

CLIQUE (decision version) is NP-complete

Introduction
to Hard .
Computatio- (Reduction from 3-CNF-SAT)
nal
Problems

Obviously, CLIQUEE€ NP (verifying if a given subset of a graph is a clique
can be done in polynomial time)

Reduction: given a 3-CNF-SAT instance ¢ consisting of k OR-clauses
construct a 3k-vertex graph G that has a clique iff the corresponding
3-CNF formula is satisfiable.

Idea: For each OR-clause of ¢ create a triple of 3 vertices representing its
literals. The edges are added only between any vertex and all consistent®
vertices in other triples. Now, the literals that evaluate to 1 in the
truth-assignment of ¢ constitute a clique of size k in G. On the other
hand, any k — clique in G corresponds to a truth-assignment of ¢. The

construction can be done in polynomial time.

Stwo literals are consistent except the situations one is a negation of
another

VERTEX-COVER problem

Introduction
to Hard
Computatio-
nal
Problems

— VERTEX-COVER optimisation problem: given a graph
SR G = (V,E) find a minimum vertex cover in G. (a minimisation
problem)

A vertex cover is such a subset of vertices V/ C V that each
edge in E is adjacent with some vertex from V’ (is “covered”).

VERTEX-COVER (decision version): given a graph G = (V, E)
and a natural positive number k answer if there is a vertex
cover in G of size k.

VERTEX-COVER (decision version) is NP-complete

Introduction
to Hard
Computatio-

nal (reduction from CLIQUE)

Problems

Marcin
Sydov

Whether a given set of vertices (“certificate”) is a vertex cover can be
easily verified in polynomial time, so VERTEX-COVERe NP

Let's explain that it is also NP-hard:
Given an instance C of k-clique (decision) problem, construct a graph
that has a vertex cover if and only if C has a k-element clique.

Idea: An undirected graph G = (V, E) has a k-clique if and only if a
complement graph G = (V, E) has a vertex cover of size |V| — k

(A complement of an undirected graph G = (V, E) has the same set
o vertices V and has an edge (u,v), u,v € V only if (u,v) ¢ E.)

INDEPENDENT-SET problem

Introduction
to Hard
Computatio-

o Given a graph G = (V, E), find a maximum subset V' C V
o such that no pair of vertices from V'’ are adjacent in G.
Sydov (maximisation problem)

INDEPENDENT-SET decision version: Given a graph
G = (V, E) and positive natural k answer whether there exists
an independent set of size at least k

INDEPENDENT-SET (decision version) is NP-complete

Idea (reduction from VERTEX-COVER): a set of k vertices
V' C V is independent in G if and only if V' \ V' is a
((|V]| — k)-element) VERTEX-COVER in G.

SET-COVER (decision) problem

Introduction
to Hard
Computatio-

Given a set U of n elements and a family S = {51, ..., Sy} of
o subsets of U and positive natural k, answer whether there exists
. a subfamily of S of at most k subsets such that their union is
Sdon equal to (“covers”) U

Possible interpretation: select the minimum set of people that
have all desired skills in total, etc.

SET-COVER is NP-complete

Idea (reduction from VERTEX-COVER): given an instance
(G =(V,E), k) of VERTEX-COVER we translate it to a
SET-COVER instance as follows. Each vertex v € V
corresponds to the set of edges from E that are incident to v,
and U is the set of all edges E.

SET-PACKING (decision) problem

Introduction
to Hard
Computatio-

el Given a set U of n elements and a family S = {51, ...

Problems

,Sm} of
arcin subsets of U and positive natural k, answer whether there exists
Sydow a subfamily of S of at least k subsets such that no pair of
subsets intersect

Possible interpretation: subsets may correspond to processes
that need non-sharable resources from a set U of all resources
of the system; can we run at least k processes in parallel?

SET-PACKING is NP-complete

Idea: reduction from INDEPENDENT-SET, analogously as
SET-COVER can be reduced from VERTEX-COVER.

HAM-CYCLE problem

Introduction
to Hard
Computatio-
nal
Problems

Yarein A hamiltonian cycle in a graph is a cycle that uses each vertex

Sydov
6

exactly once

HAM-CYCLE (decision) problem: given a graph G = (V, E)
answer whether there exists a hamiltonian cycle in it

HAM-CYCLE is NP-complete (it can be reduced from
VERTEX-COVER, for example, see Cormen et al. for a proof)

5A cycle with no repeated vertices is called.a simple cycle

Travelling Salesman Problem (TSP)

LN TSP optimisation problem: Given a graph G = (V/, E) with

to Hard .))
(@RISR non-negative weights on edges find a hamiltonian cycle C C E

nal

Problems in G with minimum weight (defined as the sum of weights of
i the edges in C). (minimisation problem)

TSP decision version:

Given a graph G = (V, E) with weights on edges and k € N
answer whether there exists a hamiltonian cycle in G with
weight of at most k.

TSP (decision) problem is NP-complete.

Idea (reduction from HAM-CYCLE): given an instance G = (V/, E) of
HAM-CYCLE, construct an instance of TSP as G’ = (V, E’) such that

E' ' ={(i,j):i,j € VAi#j} and weight for each edge (i,;) defined as
w(i,j) = [(i,j) ¢ E] (assume self loops exist in G’ and have weights of 1).
The corresponding instance of TSP is then whether there exists a
hamiltonian cycle of weight (at most) 0 in G.

Reduction types

Introduction
to Hard
Computatio-

nal m Karp Reduction: single reference to the reduction target

Problems

m Cook Reduction: multiple reference, more general (also
called Turing reduction, i.e. a reduction that is polynomial
iff the target sub-routine is polynomial)

Karp reduction (showing Y <p X):
m prove X € NP

m choose Y that is NPC

m take an arbitrary instance sy of Y and show how to
construct in polynomial time an instance sx of X so that:
m if sy is "yes" instance of Y then sx is “yes’ instance of X
m if sx is “yes’ instance of X then sy is “yes” instance of Y

Yet another distinction among reduction types

Introduction y . "
to Hard (after Garey and Johnson's classic textbook: “Computers and

R Intractability”, 1979)

Problems

arcin m Restriction (the simplest, similar to the “Karp” type),

Sydoy e.g.

m VERTEX-COVER <p HITTING-SET (read as
“VERTEX-COVER is a restriction of HITTING-SET")

m EXACT-3-COVER <p MIN-COVER

m Local Replacement (“medium complexity”)
e.g.: SAT <p 3-SAT
m Component Design (the most complex)
e.g.
m 3-SAT <p HAMILTON-CYCLE
m 3-SAT <p 3-DIM-MATCHING
m 3-SAT <p 3-COLORING
m 3-DIM-MATCHING <p SUBSET-SUM

Graph k-Coloring

Introduction
to Hard
Computatio-

L Assign each vertex a color (1 of k) so that neighbours have
roblems .
o different colors

viarcin

Sydov (resource allocation, map coloring, etc.)

is 2-coloring NP-complete? (it is equivalent to checking
whether a graph is bi-partite what can be done in polynomial
time. How? With BFS in O(|V/|+ |E|) time

3-coloring is NP-complete (reduction from 3-SAT, for example)

for k >= 3 k-coloring is NP-complete (reduction from
3-coloring: original graph 4+ k — 3-element clique connected to
all original nodes)

Why NP-completeness is useful for practical
algorithm-designers?

Introduction
to Hard
Computatio-
nal
Problems

Marcin

Syl Assume, we want to solve a new problem. Now assume that
somebody proved it to be an NP-complete problem.

Does it make sense to look for a fast algorithm solving it? Not
really, because unless P = NP there is no such algorithm.

In this situation it is possibly much better to invest the effort in
a different way than looking for a fast exact solution.

Alternatives for dealing with NP-complete problems

ssemaall For a problem proved to be NP-complete there are the following

SRl alternatives for proceeding (since finding an exact fast algorithm

nal
Problems iS Unlikely):

Marcin

Sydow m trying to design exponential-time algorithm that is as fast
as possible

m focus on special cases, and find fast algorithms for them

m work towards a fast approximation algorithm, that does not
solve the problem exactly, but you can prove some bounds
on the solution quality

m (if you cannot do the above) use one of the fast heuristics
to approximately solve the problem, without guarantees on
the quality (this is possibly the least “ambitiuous”
approach, but sometimes necessary)

m device a randomised algorithm, that is expected to be fast

Example

Introduction

to Hard . . .
IMMbl L ets consider another decision problem:

o PARTITION: A - finite set of n items, each item a € A has
Marein weight w(a) € Z+.

e OUTPUT: Can A be partitioned into 2 parts of identical
weights? (i.e. does there exist A" C A, such that

Y aca w(a) = B/2, where B =3, ,w(a))

On one hand: PARTITION is NP-complete (3SAT <p
3-DIM-MATCHING <p PARTITION)

On the other hand: There exists an algorithm that solves
PARTITION in time ©(nB)

Does this mean we have just found the first
polynomial-time algorithm for an NP-complete problem!?

Dynamic-programming algorithm for PARTITION

Introduction

troduct! If B is odd answer no.
(o] ar

Computatio-
nal

Problems Otherwise, for integers 0 <7 < n, 0 <j < B/2 let t(i,j) be
Marcin “true”/"“false” according to the following statement: “there is a
Sydov . . .

: subset of {a1, a2, ..., a;} for which the sum of weights is exactly

j,l.

The t(i,j) table is filled row by row, starting with t(1,;) = true
iff j =0 or w(ay) =,. For i > 1 we set
t(i,j) = t(i —1,j) = true V (w(a;) < jAt(i — 1,5 — w(a;))].

The answer is “yes” iff t(n, B/2) = true.
Time complexity of this (correct!) algorithm is: ©(nB).

Is it a polynomial of the data size?
Not really.

Pseudo-polynomial algorithms

Introduction
to Hard
Computatio-
nal
Problems

Marcin

Syl Since the numbers in the task are represented in binary form
(“reasonable encoding” assumption), ©(nB) can be actually
exponential function of the data size.

The algorithm is polynomial only if the numerical values in the
input are small enough (i.e. polynomial) in the data size

Such algorithms are called pseudo-polynomial algorithms.

Additional definitions

LULER Let's consider an instance 7 of a given problem.
to Hard

Computatio-
nal

Problems Let length(i) and max(i) specify integer functions (interpreted
Marcin as “data size” and “maximum numeric value” in the input)

Sydow

(Two pairs of functions (length,max) and (length’,max’) are
polynomially related iff length(i) < p'(length’ (1)),

length'(i) < p(length(i)) and max(i) < q'(max'(i), length’(i)),
max'(i) < q(max(i), length(i)) for all instances i and some
polynomials p, p’,q,q".)

An algorithm is pseudo-polynomial iff it is bounded by a
polynomial of length() and max().

A problem is called number problem if there exists no
polynomial p such that max(i) < p(length(i)) for all instances
i

Strong NP-completeness

Introduction
to Hard

RSl We call the problem strongly NP-complete if it contains a

nal

Pt subproblem that is NP-complete and satisfies polynomial bound
: on Max.

PARTITION is not strongly NP-complete (as there exists a
pseudo-polynomial algorithm for it)

Observations:

m If problem is NP-complete and is not a number problem
then it cannot be solved by a pseudo-polynomial
algorithms unless P # NP

m If a problem is strongly NP-complete, then it cannot be
solved by a pseudo-polynomial algorithms unless P = NP

Example: Vertex Cover

Introduction
to Hard
Computatio-
nal
Problems

Vertex Cover, decision version (VC):

Marcin
Sydov

Given a graph G = (V,E), where |V| = n and k € N, is there
a vertex cover of size at most k7

(i.e. such a set of vertices S C V, |S| < k that each edge

e € E hast at least one end in S).

VC is NP-complete (SAT -> 3-SAT -> IS (independent set) ->
VC), so that no polynomial algorithm is likely to exist.

VC, cont

Introduction

troducti However, if k is fixed and small (e.g. k = 3), the method of
Mailenatal checking all” possible subsets of size k has complexity

nal

Problems O(kn - nk) that is polynomial (of n).

Notice: even for relatively small values of n, k this polynomial
algorithm is impractical: e.g. n = 1000, k = 10 would take
more than the age of the Universe on a PC.

Interestingly, there exists an exponential algorithm that would
be faster for small values of n, k!

Observations:
if G has at most k-element vertex cover, then:

m |E| < kd, where d is maximum degree of a node
m|E| <k(n-1)

“In general, checking all potential solutions:is called brute force method

Exponential Algorithm for VC

Introduction
to Hard
bl Assume e = (u,v) € E. G has at most k-element vertex cover

et iff at least one of the graphs G \ {u} or G \ {v} 8 has a vertex
cover of size at most k — 1

If |E|=0 then answer ‘‘yes’’, if |E|>kn then answer ‘‘no”’
Else, take any edge e=(u,v)
recursively check if either G\{u} or G\{v}
has vertex cover T of size k-1
if neither has, then answer ‘‘no?’’

else T+{u} or T+{v} is k-element vertex cover of G

Time complexity of the above algorithm is O(2kkn)
Thus, for our previous example (n = 1000, kK = 10) the
algorithm will find the solution very quickly

8all the edges incident to a node are also removed

Time complexity analysis of the algorithm

Introduction . . .
o Hard Explanation: The recursion tree has height of k, thus the

Computatio-

nal number of recursive calls is bounded by 2k*1. Each recursive
Problems .
call (except the leaves) takes at most O(kn) time.

Marcin
Sydov

Proof (by induction on k): T(n, k) = O(2kkn). Assume c € N
is a constant:

T(n,1) <cn

T(n,k) <2T(n, k — 1)+ ckn

Assume the thesis is true for kK — 1, then:

T(n k) <2T(n—1,k—1)+4 ckn <2c-2k"1(k —1)n+ ckn =
c2kkn — c2kn + ckn < ¢ - 2%kn

Of course, this algorithm is not practical for higher values of k
(as it is exponential in k)

NP-optmisation Problem

Introduction
to Hard NP-optimisation problem 1 consists of:

Computatio-

ol m set of valid instances, Dp, recognisable in polynomial time
(assume: all the numbers are rational, and encoded in
binary, |/| denotes the size of encoded instance /, in bits).

m each instance / € Dp has a set of feasible solutions,
Sn(l) # 0. Each feasible solution s € Sp(/) is of length
bounded by polynomial of |/|. Moreover, there is a
polynomial algorithm that given a pair (/,s) decides
whether s € Sn(/)

m there is a polynomially computable objective function objn
which assigns a nonnegative rational number to each pair
(/,s) (an instance and its feasible solution).

m [1 is specified to be either minimisation of maximisation
problem

NP-optimisation Problems, cont.

Introduction
to Hard

eyl Optimal solution of an instance of a minimisation

Problems (maximisation) problem is a feasible solution which achieves the
i minimum (maximum) possible value of the objective function
(called also “cost” for minimisation or “profit” for

maximisation).

OPTn(1) denotes optimum objective function value for an
instance /

Decision version of an NP-optimisation problem /: a pair (/, B),
where B € Q and the decision problem is stated as “does there
exist a feasible solution to / of cost < B, for minimisation
problem I” (or, analogously “of profit > B", for a maximisation
problem)

Extending the definition of NP-hardness for
optimisation problems

Introduction
to Hard
Computatio-
nal
Problems

Decision version can be “reduced” to optimisation version. (i.e.
polynomial algorithm for optimisation version can solve the
decision version)

NP-optimisation problem can be called NP-hard if its decision
version is NP-hard.

Approximation Algorithm

Introduction
to Hard
Computatio-

nal Let I be a minimisation (maximisation) problem, 6 : Z+ — @+
Froblems a function that has values > 1 (< 1).

Marcin

Sydow

Definition

An algorithm A is a factor § approximation algorithm for I if,
for each instance /, A finds a feasible solution s for / such that:
objn(1,s) < 4(|/]) - OPT(I)

(for maximisation:objn(/, s) > d(|/|) - OPT(I))

Observation: The closer 0 to the value of 1, the better
approximation.

Remark: § can be also a function of some other parameter than
length of input instance (|l]).

Example: Approximation of Vertex Cover

Introduction

to Hard Let's consider an optimisation version of the Vertex Cover:

Computatio-
nal

Problems Given a graph G = (V/, E) find a subset V' C V so that any
Marci edge e € E has at least one edge in V'’ (is “covered”) and V'
has minimum possible size.

This problem is an NP-optimisation problem and it is NP-hard
because its decision version is NP-hard (and decision version is
“not harder"?)

Thus, no polynomial-time algorithm that finds optimum is
known for this problem.

We will present:
a polynomial time 2-approximation algorithm for Vertex Cover.

%.e. solution to an optimisation version automatically gives a solution
for the decision version

2-approximation Algorithm for Vertex Cover

Introduction
to Hard
Computatio-
nal
Problems

Marcin

Sydoy while(there are edges in E)
take any edge e in E
add both ends of e to the cover C
remove e and all incident edges from E

Number of iterations bounded by |E|

Optimal cover must include at least one of the two ends of each
selected edge, thus: |C| < 2- OPT

Reductions that preserve approximation factor

Introduction
to Hard
Computatio-

E Usually, polynomial-time reductions map optimal solutions to
Problems optimal solutions.

However, it is not necessary, that near-optimal solutions are
mapped to such.

All NP-complete problems are “equally hard” (in terms of
polynomial reduction).

However, NP-complete problems may differ greatly in terms of
“easyness of approximability”

Let’s introduce a formal notion of reductions that preserve
approximation factor.

Example

Introduction
to Hard

(I Consider a 100-vertex graph with minimum vertex cover of size

nal

Problems 49 .

Marcin
Sydov

Assume the 2-approximation algorithm for VC finds a 98-node
solution.

Since a complement of any vertex cover is an independent set,
the algorithm found also an independent set.

What is its approximation ratio?
(100 — 49)/(100 — 98) = 25.5

Thus, the straightforward “reduction” from VC to IS does not
preserve approximation factor.

Factor-preserving reductions

Introduction
to Hard
Computatio- ML

Pl Definition

Problems

. Let My and I, be two minimisation problems (if the problems
Sydow are of maximisation type, the definition is analogous).

An approximation factor preserving reduction from Iy to I
consists of two polynomial algorithms, f and g such that:

m for any instance /; of the problem Ny, h = (/) is an
instance of Iy such that OPTn, (k) < OPTp,(h)

m for any solution t of b, s = g(h,t) is a solution of /; such
that Objnl(/l,s) < Objnz(lz, t)

Observation: the definition is designed so that an
a-approximation algorithm for I, gives an a-approximation
algorithm for Ny

Factor-preserving reductions

Introduction

el Factor-preserving reduction indeed preserves the approximation

nal
Problems faCtor
(i.e. if we have an a-approximation for a problem Iy we will have

a-approximation for IMy:

Proof:
Take instance i1 of problem Iy, compute instance i = (/1) of
15 such that OPTﬂz(i2) < OPTnl(il).

Take a-approximation solution t of ix compute g(i1,t) = s such
that: Objnl(il,s) < Objnz(iz, t) < aOPTnz(iz) < aOPTnl(il)

(the middle inequality is due to the property of being
«a-approximation, the other two due to the definition of
factor-preserving reduction)

Example: TSP with Triangle Inequality

LT Given full graph G = (V, E) with “distances” on edges, such

to Hard

ST that: d(u,v) < d(u,w) + d(w, v) for any u, v, w. (TSP with

nal

Problems triangle inequality is still NP-complete)

Marcin

Sydoy m compute T: MST of G
m make a tour T’ around T (each edge twice)
m remove duplicate vertices by shortcuts (call it T")
MST can be found in polynomial time
|T| < OPT (any TSP-tour minus 1 edge is a ST)
| T'| = 2| T| (each edge twice)
| T"] < |T'| (triangle inequality)

Thus: |T"| <2-OPT

Better algorithms exist (e.g. Christofides Algorithm:
3/2-approximation)

Constant factor approximation for general TSP?

Introduction
to Hard
Computatio-
nal
Problems

Marcin Triangle inequality assumption allows for a constant factor
Svdow approximation for TSP. Without this assumption the TSP
problem is much “harder” in the following way:

Theorem

For a general TSP optimisation problem (in particular, when
triangle inequality does not hold) there is no polynomial-time
a-approximation algorithm for any o > 1, unless P #= NP

Proof (by contradiction): Assume, there is an a-approximation algorithm
for TSP that has polynomial time complexity. We will show that this
algorithm can be used to solve Hamiltonian Cycle (HAM-CYCLE) problem
in polynomial time. Since HAM-CYCLE is NP-complete, this would lead to
a contradiction.

Let G = (V, E) be the graph corresponding to an instance of the
HAM-CYCLE problem. Let's consider a full graph G’ = (V, E’) (thus,

E C E’) and define weights on its edges as follows: w(e) =1 when e € E,
and w(e) = a - |V| + 1 otherwise.

Now, notice that the a-approximation algorithm must find a tour in G’
that corresponds to a hamiltonian cycle in G if such exists, in polynomial
time. Otherwise, the cost of found solution would be at least

(- |V]+1)+ (V]| = 1) = (e + 1)| V|, while an optimum solution,
corresponding to a hamiltonian cycle, would have cost of |V|. Thus, the
cost of solution found would be more than « times higher than OPT that
would contradict the approximation guarantee of the algorithm.

Thus, the a-approximation algorithm for TSP would lead to a
polynomial-time algorithm for HAM-CYCLE which would imply P = NP.

Literature

Introduction
to Hard
Computatio-
nal
Problems

Marcin

Sydoy m Cormen et al. “Introduction to Algorithms”, chapters 34,35
(3rd edition)

m Kleinberg, Tardos “Algorithm Design”, chapters 8,10,11

m Garey, Johnson “Computers and Intractability” (1979,
difficult to get nowadays)

m Papadimitriou “Computational Complexity” (first chapters)
(more advanced textbook)

Introduction
to Hard

Computatio-
nal
Problems

Thank you for attention

