Discrete Mathematics

 Relations(c) Marcin Sydow

Contents

- binary relation
- domain, codomain, image, preimage
- inverse and composition
- properties of relations
- closure of relation
- equivalence relation
- order relation

Binary relation

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence
relation
Order
relation
N -ary
relations

Let A, B be two sets. A binary relation between the elements of A and B is any subset of the Cartesian product of A and B, i.e. $R \subseteq A \times B$.

We denote relations by capital letters, e.g. R, S, etc.
We say that two elements $a \in A$ and $b \in B$ are in relation R iff the pair $(a, b) \in R$ (it can be also denoted as: $a R b$).

Examples

- empty relation (no pair belongs to it)
- diagonal relation $\Delta=\{(x, x): x \in X\}$ (it is the "equality" relation)
- full relation: any pair belongs to it (i.e. $R=X^{2}$)

Binary relation as a predicate and as a graph

Binary relation can be represented as a predicate with 2 free variables as follows:

Given a predicate $R(x, y)$, for $x \in X$ and $y \in Y$, the relation is the set of all pairs $(x, y) \in X \times Y$ that satisfy the predicate (i.e. make it true)

Each binary relation can be naturally represented as a graph.

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary
relations
$R(x, y)$: " x is less than y "
The relation R represented by the above predicate is the set of all pairs $(x, y) \in X \times Y$ so that $R(x, y)$ is true (i.e. $x<y$)

Examples of binary relations

Discrete
Mathematics
(c) Marcin Sydow

$$
A=B=\mathcal{N}
$$

- diagonal relation $\Delta(x=y)$

■ $x>y$

- $x \leq y$
$\square x$ is a divisor of y
- x and y have common divisor
- $x^{2}+y^{2} \geq 10$

More examples

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary relations

Examples of relations on the set $P \times P$, where P is the set of all people.

■ $(x, y) \in R \Leftrightarrow \mathrm{x}$ is a son of y

- $(x, y) \in R \Leftrightarrow \mathrm{x}$ is the mother of y
$\square(x, y) \in R \Leftrightarrow \mathrm{x}$ is the father of y
■ $(x, y) \in R \Leftrightarrow \mathrm{x}$ is a grandmother of y

More examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Examples of $R \subseteq P \times C$, where C is the set of all courses in the univeristy for last 5 years.
$\square(p, c) \in R \Leftrightarrow \mathrm{p}$ passed course c

- $(p, c) \in R \Leftrightarrow \mathrm{p}$ attended course c

■ $(p, c) \in R \Leftrightarrow \mathrm{p}$ thinks course c is interesting

Domain and co-domain of relation

For binary relation $R \subseteq A \times B$, the set A is called its domain and B is called its co-domain

Domain and co-domain can be the same set.

Image and pre-image of relation

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary relations

Pre-image of binary relation $R \subseteq X \times Y$: $\{x \in X: \exists y \in Y(x, y) \in R\}$

Image of binary relation $R \subseteq X \times Y$:
$\{y \in Y: \exists x \in X(x, y) \in R\}$

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence
relation
Order
relation
N -ary
relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=$?

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence
relation
Order
relation
N -ary
relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=?\{(5,3),(5,4),(6,3),(6,4),(6,5)\}$ domain of R ?:

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence
relation
Order
relation
N -ary relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=$? $\{(5,3),(5,4),(6,3),(6,4),(6,5)\}$
domain of R?: A co-domain of R ?:

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence
relation
Order
relation
N -ary relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=$? $\{(5,3),(5,4),(6,3),(6,4),(6,5)\}$
domain of R?: A
co-domain of R?: B pre-image of R ?:

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=$? $\{(5,3),(5,4),(6,3),(6,4),(6,5)\}$
domain of R ?: A
co-domain of R?: B
pre-image of R ?: $\{5,6\}$
image of R?:

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary relations
$A=\{1,3,5,6\}, B=\{3,4,5,6,7\}$. Relation $R \subseteq A \times B$ is defined as follows:
$x R y \Leftrightarrow x>y$
$R=$? $\{(5,3),(5,4),(6,3),(6,4),(6,5)\}$
domain of R?: A
co-domain of R?: B
pre-image of R ?: $\{5,6\}$
image of R?: $\{3,4,5\}$

Inverse of relation

Discrete
Mathematics

(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary
relations

If $R \subseteq X \times Y$ is a binary relation then its inverse
$R^{-1} \subseteq Y \times X$ is defined as $R^{-1}=\{(y, x):(x, y) \in R\}$
Examples: what is the inverse of:

$$
\text { "x }<y^{\prime \prime} ?
$$

Inverse of relation

Discrete
Mathematics
(c) Marcin
Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

If $R \subseteq X \times Y$ is a binary relation then its inverse
$R^{-1} \subseteq Y \times X$ is defined as $R^{-1}=\{(y, x):(x, y) \in R\}$
Examples: what is the inverse of:
" $x<y$ '?
" x is a parent of y "?

Composition of relations

(c) Marcin Sydow

Properties
Equivalence relation

Order
relation

If $S \subseteq A \times B$ and $R \subseteq B \times C$ are two binary relations on sets A, B and B, C, respectively, then the composition of these relations, denoted as $R \circ S$ is the binary relation defined as follows:

$$
R \circ S=\left\{(a, c) \in A \times C: \exists_{b \in B}[(a, b) \in R \wedge(b, c) \in S]\right\}
$$

Sometimes it is denoted as $R S$. If $R=S$ then the composition of R with itself: $R \circ R$ can be denoted as R^{2}.

More than 2 relations can be composed. We denote the n-th composition of R with itself as R^{n} (e.g. $R^{3}=R \circ R \circ R$, etc.)

Composition is associative, i.e.:
$(R \circ S) \circ T=R \circ(S \circ T)$

Example

Discrete
Mathematics
(c) Marcin

Sydow

Properties
Equivalence
relation
Order
relation
N -ary relations
$A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\}$
$R=\{(1, a),(2, c),(3, a)\}$,
$S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\}$
$R \circ S=$?

Example

Discrete
Mathematics
(c) Marcin

Sydow

Properties
Equivalence
relation
Order
relation

$$
\begin{aligned}
& A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\} \\
& R=\{(1, a),(2, c),(3, a)\} \\
& S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\} \\
& R \circ S=?\{(1, z),(1, v),(3, z),(3, v),(2, y)\}
\end{aligned}
$$

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations
$A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\}$
$R=\{(1, a),(2, c),(3, a)\}$,
$S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\}$
$R \circ S=?\{(1, z),(1, v),(3, z),(3, v),(2, y)\}$
(some join operations in relational databases are based on this operator)

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations
$A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\}$
$R=\{(1, a),(2, c),(3, a)\}$,
$S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\}$
$R \circ S=?\{(1, z),(1, v),(3, z),(3, v),(2, y)\}$
(some join operations in relational databases are based on this operator)

Is composition commutative?

Example

$A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\}$
$R=\{(1, a),(2, c),(3, a)\}$,
$S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\}$
$R \circ S=?\{(1, z),(1, v),(3, z),(3, v),(2, y)\}$
(some join operations in relational databases are based on this operator)
Is composition commutative?(i.e. is $R \circ S$ the same as $S \circ R$ for any binary relations R, S ?)

Example

$A=\{0,1,2,3,4\}, B=\{a, b, c\}, C=\{x, y, z, v\}$
$R=\{(1, a),(2, c),(3, a)\}$,
$S=\{(a, z),(a, v),(b, x),(b, z),(c, y)\}$
$R \circ S=?\{(1, z),(1, v),(3, z),(3, v),(2, y)\}$
(some join operations in relational databases are based on this operator)

Is composition commutative?(i.e. is $R \circ S$ the same as $S \circ R$ for any binary relations R, S ?)

For what binary relations their composition is commutative?

Properties

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

The following abstract properties of binary relations are commonly used:

- reflexivity
- symmetry
- counter-symmetry
- anti-symmetry
- transitivity
- connectedness

Reflexivity

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is reflexive iff:
$\forall x \in X x R x$
Examples? (assume X is the set of all positive naturals)

Reflexivity

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is reflexive iff:
$\forall x \in X x R x$
Examples? (assume X is the set of all positive naturals) " x is a divisor of y "?

Reflexivity

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is reflexive iff:
$\forall x \in X x R x$
Examples? (assume X is the set of all positive naturals) " x is a divisor of y "?
$x<y$?

Reflexivity

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is reflexive iff:
$\forall x \in X x R x$
Examples? (assume X is the set of all positive naturals) " x is a divisor of y "?
$x<y$?
diagonal relation Δ (i.e. $x==y$)?

Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is symmetric iff:
$\forall x, y \in X x R y \Rightarrow y R x$
Examples? (assume X is the set of all positive naturals)

Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is symmetric iff:
$\forall x, y \in X x R y \Rightarrow y R x$
Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?

Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is symmetric iff:
$\forall x, y \in X x R y \Rightarrow y R x$
Examples? (assume X is the set of all positive naturals) ' x and y have common divisor'?
$x \leq y$?

Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is symmetric iff:
$\forall x, y \in X x R y \Rightarrow y R x$
Examples? (assume X is the set of all positive naturals) ' x and y have common divisor'?
$x \leq y$?
$x==y$?

Counter-symmetry

Discrete
Mathematics
(c) Marcin
Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

Binary relation $R \subseteq X \times X$ is counter-symmetric iff: $\forall x, y \in X x R y \Rightarrow \neg(y R x)$

Examples? (assume X is the set of all positive naturals)

Counter-symmetry

Binary relation $R \subseteq X \times X$ is counter-symmetric iff: $\forall x, y \in X x R y \Rightarrow \neg(y R x)$

Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?

Counter-symmetry

Binary relation $R \subseteq X \times X$ is counter-symmetric iff:
$\forall x, y \in X x R y \Rightarrow \neg(y R x)$
Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?
$x<y$?

Counter-symmetry

Properties
Equivalence relation

Order
relation
N -ary relations

Binary relation $R \subseteq X \times X$ is counter-symmetric iff:
$\forall x, y \in X x R y \Rightarrow \neg(y R x)$
Examples? (assume X is the set of all positive naturals) ' x and y have common divisor'?
$x<y$?
$x==y$?

Anti-Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

Binary relation $R \subseteq X \times X$ is anti-symmetric iff: $\forall x, y \in X x R y \wedge y R x \Rightarrow x=y$

Examples? (assume X is the set of all positive naturals)

Anti-Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Binary relation $R \subseteq X \times X$ is anti-symmetric iff: $\forall x, y \in X x R y \wedge y R x \Rightarrow x=y$

Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?

Anti-Symmetry

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

Binary relation $R \subseteq X \times X$ is anti-symmetric iff:
$\forall x, y \in X x R y \wedge y R x \Rightarrow x=y$
Examples? (assume X is the set of all positive naturals) ' x and y have common divisor'?
$x \leq y$?

Anti-Symmetry

Binary relation $R \subseteq X \times X$ is anti-symmetric iff:
$\forall x, y \in X x R y \wedge y R x \Rightarrow x=y$
Examples? (assume X is the set of all positive naturals) ' x and y have common divisor'?
$x \leq y$?
" x is a divisor of y " ?

Transitivity

Binary relation $R \subseteq X \times X$ is transitive iff:

$$
\forall(x, y, z) \in X, x R y \wedge y R z \Rightarrow x R z
$$

Examples? (assume X is the set of all positive naturals)

Transitivity

Binary relation $R \subseteq X \times X$ is transitive iff: $\forall(x, y, z) \in X, x R y \wedge y R z \Rightarrow x R z$

Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?

Transitivity

Binary relation $R \subseteq X \times X$ is transitive iff:

$$
\forall(x, y, z) \in X, x R y \wedge y R z \Rightarrow x R z
$$

Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?
$x \leq y$?

Transitivity

Binary relation $R \subseteq X \times X$ is transitive iff:

$$
\forall(x, y, z) \in X, x R y \wedge y R z \Rightarrow x R z
$$

Examples? (assume X is the set of all positive naturals) " x and y have common divisor'?

$$
x \leq y ?
$$

$$
x==y ?
$$

Closure of a relation

Discrete Mathematics
(c) Marcin Sydow

A closure of a binary relation R with regard to (wrt) some property P is the binary relation S such that the following conditions hold:

- S has the property P
- $R \subseteq S(S$ "extends" $R)$

■ S is the smallest (with regard to inclusion) relation satisfying the two above conditions (i.e. for any T such that $R \subseteq T$ it holds that $S \subseteq T$.

The property P can be for example: transitivity, symmetry, reflexivity, etc.

Notice: the closure of relation may not exist (example?:

Closure of a relation

Discrete Mathematics
(c) Marcin Sydow

A closure of a binary relation R with regard to (wrt) some property P is the binary relation S such that the following conditions hold:

- S has the property P
- $R \subseteq S(S$ "extends" $R)$

■ S is the smallest (with regard to inclusion) relation satisfying the two above conditions (i.e. for any T such that $R \subseteq T$ it holds that $S \subseteq T$.

The property P can be for example: transitivity, symmetry, reflexivity, etc.

Notice: the closure of relation may not exist (example?: a counter-symmetric closure of a symmetric relation, etc.)

Examples: How to compute the closure of a relation?

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R ?

Examples: How to compute the closure of a relation?

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R ? $R \cup \Delta$
- symmetric closure of R ?

Examples: How to compute the closure of a relation?

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R ? $R \cup \Delta$
- symmetric closure of R ? $R \cup R^{-1}$
- transtitive closure of R ?

Examples: How to compute the closure of a relation?

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

If R is a binary relation, lets consider how to compute its reflexive, symmetric and transitive closure:

- reflexive closure of R ? $R \cup \Delta$

■ symmetric closure of R ? $R \cup R^{-1}$

- transtitive closure of R ? $R \cup R^{2} \cup R^{3} \ldots=\bigcup_{i \in N^{+}} R^{i}$

Examples: transitive closure of relation

For a binary relation $R \subseteq X^{2}$ its transitive closure is defined as the smallest relation T so that T is transitive and $R \subseteq T$ Example: transitive closure of:

Examples: transitive closure of relation

For a binary relation $R \subseteq X^{2}$ its transitive closure is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:
" x is a son of y "?

Examples: transitive closure of relation

For a binary relation $R \subseteq X^{2}$ its transitive closure is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:
" x is a son of y "?
" $x==y$ '?

Examples: transitive closure of relation

For a binary relation $R \subseteq X^{2}$ its transitive closure is defined as the smallest relation T so that T is transitive and $R \subseteq T$

Example: transitive closure of:
" x is a son of y "?
" $x==y$ '?
" $x \geq y$ "?

Equivalence relation

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

A binary relation $R \subseteq X^{2}$ is equivalence relation iff it is:

- reflexive
- symmetric
- transitive

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Examples? (assume X is the set of all positive naturals)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Examples? (assume X is the set of all positive naturals)

$$
x==y ?
$$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

Examples? (assume X is the set of all positive naturals)
$x==y$?
" x and y have common divisor'?

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary
relations

Examples? (assume X is the set of all positive naturals)
$x==y$?
" x and y have common divisor'?
$x \leq y$?

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Examples? (assume X is the set of all positive naturals)
$x==y$?
" x and y have common divisor'?
$x \leq y$?
" $x-y$ is even"?

Equivalence class

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

An equivalence class of the element $x \in X$ of the equivalence relation $R \subseteq X^{2}$ is defined as:

$$
[x]_{R}=\{y \in X: x R y\}
$$

(notice that, due to symmetry of equivalence relation, $x R y$ is equivalent to $y R x$)
For $[x]_{R}, x$ is called the representative of this equivalence class.

There can be many representatives of the same equivalence class.

Partition of a set

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

A family F of non-empty subsets of some set X is called partition of X if the following two conditions hold:

- for any two different $A, B \in F$ it holds that $A \cap B=\emptyset$
$\square X$ is the union of all sets from $F(X=\bigcup F)$
Each set from F is called a partition block.
Examples?

Partition of a set

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

A family F of non-empty subsets of some set X is called partition of X if the following two conditions hold:

- for any two different $A, B \in F$ it holds that $A \cap B=\emptyset$
$\square X$ is the union of all sets from $F(X=\bigcup F)$
Each set from F is called a partition block.
Examples?
odd an even numbers form two blocks of partition of integers

Properties of equivalence classes

(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary relations

If $[x]_{R}$ and $[y]_{R}$ are two equivalence classes of some equivalence relation R , then either:

- $[x]_{R} \cap[y]_{R}=\emptyset$ (do not intersect) or:
- $[x]_{R}==[y]_{R}$ (are identical)

Since $\forall x \in X[x]_{R} \neq \emptyset$ (due to reflexivity of R), and different equivalence classes are disjoint the following holds:

The equivalence classes partition the domain of the equivalence relation.

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary relations

What are the equivalence classes of the following equivalence relations?

- $\mathrm{x}=\mathrm{=} \mathrm{y}$

■ " x has the same diploma supervisor as y "

Quotient of the set by equivalence relation R (operation of abstraction)

Discrete
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

Given an equivalence relation $R \subseteq X^{2}$ we call the family of all its equivalence classes the quotient of \mathbf{X} by R :
$X / R=\left\{[x]_{R}: x \in X\right\}$
(the similarity to division symbol for numbers is not coincidental, since it has some similar properties)

The X / R operation is also called the "abstraction operation", i.e. we abstract from any properties that are indifferent for the equivalence relation R.

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

What is X / R if:

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

What is X / R if:
■ X is the set of natural numbers and R is equality $(x=y)$?

Example

Discrete
Mathematics
(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary
relations

What is X / R if:
■ X is the set of natural numbers and R is equality $(x=y)$?
■ P is the set of students and R is the set of pairs of students that have the same diploma supervisor?

Order

(c) Marcin Sydow

Properties

Equivalence relation

Order
relation
N -ary
relations

Consider a relation $R \subseteq X^{2}$ is called a partial order and four properties:

1 reflexive
2 anti-symmetric
3 transitive
$4 \forall x, y \in X x R y \vee y R x$
Relation R is:

- partial order if it satisfies conditions 1-3 above
- quasi order if it satisfies only 1 and 2

■ linear order if it satisfies all conditions 1-4 above

Examples

Discrete
Mathematics
(c) Marcin Sydow

Properties
Equivalence
relation
Order
relation
N -ary
relations

Is the following relation a partial order, quasi order, linear order, ?

- \leq (on numbers) ?
- Δ (on any set)? (" $x=y$ ")
- < (on numbers)
$■ \subseteq$ (on sets) ?

Generalisation: n-ary relation

Discrete
Mathematics
(c) Marcin

Sydow

Properties
Equivalence relation

Order
relation
N -ary
relations

An n-ary relation R, for $n \in \mathcal{N}$ is defined as $R \subseteq X_{1} \times X_{2} \ldots X_{n}$. Binary relation is a special case for $n=2$.
In particular, for:
■ $n=1,1$-ary relation is the set of some elements of the domain that satisfy some property (e.g. even numbers, etc.)
■ $n=0,0$-ary relation, that is empty can be theoretically interpreted as a constant in the domain of the relation (e.g. " 0 " in natural numbers) that has some special properties

Example tasks/questions/problems

Properties
Equivalence
relation
Order
relation
N -ary relations

For each of the following: precise definition and ability to compute on the given example (if applicable):

- Relation and basic concepts
- Properties of binary relations
- Composition and inverse

■ Equivalence relation, equivalence classes

Discrete Mathematics
（c）Marcin Sydow

Properties
Equivalence relation

Order
relation
Thank you for your attention．
N －ary relations

