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Proposition

Truth: 1 (T)

False: 0 (F)

Proposition:

a declarative statement that is true or that is false

Proposition is a building block of logic.

The area of logic that deals with propositions is called
propositional calculus.
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Examples

Is the following sentence a proposition?

�2+2=4�

yes, it is a true statement

�1 is greater than 1000� yes, it is a false statement

�Warsaw is a capital of Poland� yes, it is a true statement

Is every statement a proposition?

�What is your name?� no (it is a question with no
truth/false value))

�Please sit down� no (it is an imperative with no
truth/false value)

Not every statement is a proposition!
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Truth value of a proposition

We use letters to denote propositional variables: p, q, r , etc.

We use constants:

1 (or T) for �true�

0 (or F) for �false�

The truth value v(p) of a proposition p is true if the
proposition is true, or false if p is false.

Example:
if p is the following proposition �0 < 1�, then v(p) = 1 (true)
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Logical operators

Logical operators are used to create compound propositions
by combining other propositions.

Assume, that p, q are variables representing some propositions:

negation ¬p (�NOT p�)

disjunction: p ∨ q (�p OR q�)

conjunction: p ∧ q (�p AND q�)

exclusive or: p ⊕ q (�either p or q�) (�xor�)

implication: p → q (�if p then q�) (conditional statement)

biconditional: p ↔ q (�p if and only if q�) (equivalence)

The operators can be de�ned with �truth tables� - tables
specifying what is the true value of the given operator
depending on the truth values of its operands
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Negation

¬p: �not p�, �it is not the case that p�, etc.
The negation of a proposition is true only if the proposition is
false and otherwise.

Truth table de�ning the negation depending on the value of its
operand p:

p: ¬p:
T F
F T

Examples:
p: �Warsaw is a capital of Poland�, ¬p: �Warsaw is not a
capital of Poland�
p: �2 < 3�, ¬p: �2 ≥ 3�, etc.
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Disjuntion

p ∨ q: �p OR q�
The disjunction is true if at least one of its operands is true:

p: q: p ∨ q:

F F F
F T T
T F T
T T T

Example:
�Snow is warm or Warsaw is capital of Poland�

(true)

p: �3 > 3� (false)
q: �3 = 3� (true)
p ∨ q: ? (true: �3 ≥ 3�)
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Conjunction

p ∧ q: �p AND q�

The conjunction is true only if both its operands are true

p: q: p ∧ q:

F F F
F T F
T F F
T T T

Examples:
p: �Kraków is in Poland� (true)
q: �Rome is in Poland� (false)
p ∧ q: �Kraków is in Poland and Rome is in Poland�?

(false)
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Exclusive or

p ⊕ q: �p xor q�
Exclusive or is true only if exactly 1 of its operands is true.

p: q p ⊕ q:

F F F
F T T
T F T
T T F

Example:
�(2 > 1) ⊕ (2 > 0)� ?

(false)



Discrete
Mathematics

(c) Marcin
Sydow

Proposition

Operators

Tautology

Laws

Exclusive or

p ⊕ q: �p xor q�
Exclusive or is true only if exactly 1 of its operands is true.

p: q p ⊕ q:

F F F
F T T
T F T
T T F

Example:
�(2 > 1) ⊕ (2 > 0)� ?(false)



Discrete
Mathematics

(c) Marcin
Sydow

Proposition

Operators

Tautology

Laws

Implication (conditional statement)

�p → q�: �p implies q�, �if p then q�, etc.

The �rst proposition in the implication is called �hypothesis� (or
�antecedent� or �premise�)

The second proposition in the implication is called �conclusion� (or
�consequence�)

The implication is false only if the �hypothesis� is true and the
�conslusion� is false, in any other case it is true.
p: q: p → q:

F F T
F T T
T F F
T T T

Examples:
�If Warsaw is the capital of Poland then elephant is a kind of bird�

(false)
�If 2 > 3 then 1 < 2� (true!)
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Biconditional

p ↔ q: �p if and only if q�, �p i� q�

The biconditional is true only if both operands have the same
truth value.

p: q: p ↔ q:

F F T
F T F
T F F
T T T

Examples:
�2 > 3 if and only if 1 < 2�

(false)
�Warsaw is the smallest city in Poland i� elephant is a bird�
(true)
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Transformations of implication

Given the implication �p → q, we call the following forms as
follows:

contraposition: �¬q → ¬p� (it is logically equivalent to
the initial implication)

converse of the implication: �q → p�

inverse of the implication: �¬p → ¬q�

Because of the contraposition, the hypothesis is also called a
su�cient condition for the consequence, and the consequence
is called a necessary condition for the hypothesis (�sine qua
non� condition).
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Conditional statement in natural language

The conditional statement �p → q� has multiple equivalent
forms in natural language, i.e. it can be even �hidden� in some
sentences that do not look as implication at a �rst look.

All the following examples of forms are logically equivalent to
the implication �p → q�:

�p implies q�, �if p, then q�, �if p, q�, �q if p�

�q when p�, �q whenever p�

�p is a su�cient condition for q�

�q is a necessary condition for p�

�q unless ¬p�, etc.
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Precedence of logical operators in compound
propositions

The usage of multiple propositional variables and operators
makes it possible to create arbitrarily compound propositions.

The operators have the following priorities (precedence):
¬ (the highest priority), ∨ and ∧ (middle priority), → and ↔
(the lowest priority)

We can use parentheses in case of arbitrarity or to force other
precedence.

E.g.: p ∨ ¬q → ¬r ∧ s

Is ok even without parentheses and is equivalent to:
(p ∨ (¬q))→ ((¬r) ∧ s)

But: �p ∨ q ∧ r � is not precise since it can be interpreted as:
�(p ∨ q) ∧ r � or �p ∨ (q ∧ r)�, etc.1

1Some conventions make precedence of ∧ before ∨ and → before ↔,
but for safety it is better to use parentheses, anyway
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Tautology

A compound proposition that is always true, no matter what
are the truth values of its constituent propositions is called a
Tautology2

Tautologies can be used to present some general laws of
propositional calculus, e.g.:

(p → q)↔ (¬q → ¬p) is a tautology (it represents the fact
that any implication is logically equivalent to its
contraposition), etc.

Whether a compound proposition is a tautology can be checked
with the truth table method i.e. checking all possibilities of
truth values of the constituent propositions.

2otherwise it is called a contradiction (always false) or contingency (the
remaining case)
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Example: tautology testing with a truth table

(p → q)↔ (¬q → ¬p):

p q l:p → q r: ¬q → ¬p l ↔ r

F F T T T

F T T T T

T F F F T

T T T T T

Note: if there are 3 variables there are 8 rows (cases) to test all

combinations, for 4 variables there are 16 rows, etc. (always 2n,

where n is the number of di�erent propositional variables)
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Logical Equivalence

Two compound propositions p and q are called logically

equivalent if p ↔ q is a tautology.

We use the denotation p ≡ q (or �p ⇔ q�) for such case.

Note: �≡� (or �⇔�) is not an operator of propositional
calculus3. Rather, �p ⇔ q� means that �compound proposition
q is logically equivalent to p�.

Logical equivalences are used to represent some general laws of
propositional calculus.

Examples:
(p → q) ≡ (¬q → ¬p) (contraposition)
p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r) (distributive law)

Truth tables can be used to prove logical equivalences.
3It is a part of a meta-language of propositional calculus, i.e. it serves

to describe it
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Equivalence: Name:

¬¬p ≡ p double negation law

p ∨ ¬p ≡ T negation laws

p ∧ ¬p ≡ F

p ∧ T ≡ p identity laws

p ∨ F ≡ p

p ∨ T ≡ T domination laws

p ∧ F ≡ F

p ∨ p ≡ p idempotent laws

p ∧ p ≡ p

p ∨ q ≡ q ∨ p commutative laws

p ∧ q ≡ q ∧ p
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r) associative laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r) distributive laws

(p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r)
(¬(p ∧ q) ≡ (¬p ∨ ¬q) De Morgan laws

(¬(p ∨ q) ≡ (¬p ∧ ¬q)
p ∨ (p ∧ q) ≡ p absorption laws

p ∧ (q ∨ p) ≡ p
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Some logical equivalences involving
implications and biconditionals

p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p (contraposition)

¬(p → q) ≡ p ∧ ¬q (negation of implication)

(p → q) ∧ (p → r) ≡ p → (q ∧ r)

p ↔ q ≡ (p → q) ∧ (q → p)

¬(p ↔ q) ≡ p ↔ ¬q (negation of biconditional)
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Example tasks/questions/problems

give the de�nition of proposition and truth value of a proposition

give 2 examples of statements that are propositions and 2 that are not

give the name, denotation, interpretation and truth table for each of
the discussed operators

for each operator give an example of a natural language sentence
that illustrates it

what are the names of the operands of the implication operator?

list at least 5 di�erent ways of expressing �p → q�

what is tautology? what is logical equivalence?

learn by heart and list the discussed logical equivalences

prove the selected 2 tautologies and logical equivalences using truth
tables

take 3 compound natural sentences and translate them to
mathematical form by de�ning its constituent components as
propositional variables and using operators

for a given compound proposition give an example of a natural
language sentence that represents it
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