Discrete Mathematics

Basics of Discrete Probability

Bayes'

theorem
Random
Variable
Distribution
(c) Marcin Sydow

Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

Contents

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

- Discrete Probability
- Probability Space
- Conditional Probability

■ Independence

- Total Probability

■ Bayes' Theorem

- Random Variable
- Distribution

■ Discrete Uniform Distribution

- Bernoulli Distribution
- Binomial Distribution

■ Geometric Distribution
■ Expected Value and Variance

- Basic Inequalities

Probability Space

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

Probability Space Ω (or Sample Space) is a set of elementary events or outcomes of an experiment

Event: a subset of the probability space
Example: die, 6 possible outcomes (elementary events)
Probability space: $\{1,2,3,4,5,6\}$
example event: the number is even $A=\{2,4,6\}$

Probability

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

Probability function of an elementary event $x \in \Omega: f(x)$
■ $f: \Omega \rightarrow[0,1]$

- $\sum_{x \in \Omega} f(x)=1$

Probability of an event:
$P(A)=\sum_{x \in A} f(x)$

Classical definiton of discrete probability

Probability
Conditional
Probability
Independence
Total
probabatitity
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

If all the elementary events $x \in \Omega$ are equally likely (i.e. $\forall_{x \in \Omega} f(x)=1 /|\Omega|$ then the:
classical probability of an event $A \subseteq \Omega$ is given by the formula:

$$
P(A)=\frac{|A|}{|\Omega|}
$$

(the above formulation is attributed to P.Laplace)

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

Probability that the outcome of flipping a die is even:
$\Omega=\{1,2,3,4,5,6\}$
$A=\{2,4,6\}$
Classical probability: $P(A)=|A| /|\Omega|=3 / 6=0.5$
If elementary events (outcomes) are not equally likely, e.g.:
$f(1)=0.2, f(2)=0.15, f(3)=0.1, f(4)=0.5, f(5)=0.25$,
$f(6)=0.35$

$$
P(A)=f(2)+f(4)+f(6)=0.55
$$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example

Compute the probability of the following events (use classical definition ${ }^{1}$

- outcome of die is divisible by 3
- sum of outcomes on 2 dice is 7
- a randomly picked card from a deck is "king"
${ }^{1}$ I.e. assume that all elementary events - outcomes - are equally likely

Complementary Event

Discrete
Mathematics
(c) Marcin Sydow

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem

$$
P\left(A^{\prime}\right)=1-P(A)
$$

Example

Random

Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

Union of Events

Discrete

Mathematics

(c) Marcin Sydow

Probability

Conditional Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities
" A_{1} or A_{2} ": $A_{1} \cup A_{2}$

$$
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right)
$$

Example

Conditional Probability

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

Probability of event A given the event B :
$P(A \mid B)=P(A \cap B) / P(B)$
also called "a posteriori" probability of A if we have additional information that B happened vs the "a priori" probability of A (if no additional information of the outcome is given)

Example: A - the outcome of die is even, B - the outcome of die is more than 3.
compute $P(A), P(A \mid B) ; P(B) ; P(B \mid A)$

Independent Events

(c) Marcin Sydow

Probability
Conditional Probability Independence Total probability
Bayes' theorem

Random
Variable
Distribution
Example Distributions

Expected Value

Events $A, B \subseteq \Omega$ are independent iff the following holds:

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Interpretation: the fact that one event happened does not influence the probability of the other (they are "informationally independent')
Equivalent formulation: $P(A \mid B)=P(A)$ ("a posteriori" probability is the same as "a priori"). Proof $P(A \mid B)=P(A \cap B) / P(B)=(P(A) \cdot P(B)) / P(B)=P(A)$
Example: A - even number on die, B - number greater than 3.
Example 2: A: "king" on a random card from the deck, B: "diamonds" on a random card from the deck.

Total Probability Formula

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected Value

Variance
Covariance

Basic

Inequalities

If the probability space is partitioned by a family of events, so that: $\Omega=\bigcup_{i=1}^{n} B_{i}$ and $\forall_{i \neq j} B_{i} \cap B_{j}=\emptyset$, then for any event $A \subseteq \Omega$ the following formula holds (total probability):

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Example

Bayes' Theorem

(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total probability
Bayes' theorem

Random
Variable
Distribution
Example Distributions

Expected Value

Variance
Covariance

Assume $A, B \subseteq \Omega$ are two events, so that $P(B)>0$.
The Bayes' Theorem:

$$
P(B \mid A)=\frac{P(A \mid B) \cdot P(B)}{P(A)}
$$

Interpretation: it expresses the conditional probability $P(B \mid A)$ in terms of the conditional probability $P(A \mid B)$. It is useful e.g. in all situations when it is easier to compute $P(A \mid B)$ than $P(B \mid A)$.
Proof: $P(A \mid B) P(B)=(P(A \cap B) / P(B)) P(B)=P(A \cap B)=$ $P(B \mid A) P(A)$

Note: in the denominator it is possible to use the "total probability formula" for $P(B)$

Example

Probability
Conditional
Probability
Independence
Total
probability
Bayes' theorem

Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

Consider a 2-step experiment:
1 flip a coin: head: use 2 dice, tail: use 1 die
2 sum the outcomes
What is the probability that in the first step we had tail, conditioned that the resulting sum is smaller than 5 .

Random Variable

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random Variable
Distribution
Example
Distributions
Expected Value

Variance
Covariance
Basic
Inequalities

A Random Variable is a function $X: \Omega \rightarrow R$ i.e. it assigns a real number to each elementary event (outcome of a random experiment).

Example:

- number flipped on a die
- sum of the numbers on a pair of dice
- the number of times a coin must be flipped to obtain the first head

Distribution of a Random Variable

Probability
Conditional
Probability
Independence
Total
probabifity
Bayes
theorem

Random

Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

The distribution of a random variable X on a probability space Ω is the set of all pairs $r, P(X=r)$

Examples (continued from the previous slide):

Distribution of a Random Variable

(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random

Variable

Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

The distribution of a random variable X on a probability space Ω is the set of all pairs $r, P(X=r)$

Examples (continued from the previous slide):

- $\{(1,1 / 6),(2,1 / 6),(3,1 / 6),(4,1 / 6),(5,1 / 6),(6,1 / 6)\}$

Distribution of a Random Variable

(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

The distribution of a random variable X on a probability space Ω is the set of all pairs $r, P(X=r)$

Examples (continued from the previous slide):

- $\{(1,1 / 6),(2,1 / 6),(3,1 / 6),(4,1 / 6),(5,1 / 6),(6,1 / 6)\}$

■ $\{(2,1 / 36),(3,2 / 36), \ldots,(12,1 / 36)\}$

Distribution of a Random Variable

(c) Marcin Sydow

Probability
Conditional Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected Value

The distribution of a random variable X on a probability space Ω is the set of all pairs $r, P(X=r)$
Examples (continued from the previous slide):

- $\{(1,1 / 6),(2,1 / 6),(3,1 / 6),(4,1 / 6),(5,1 / 6),(6,1 / 6)\}$

■ $\{(2,1 / 36),(3,2 / 36), \ldots,(12,1 / 36)\}$

- $\{(1,1 / 2),(2,1 / 4),(3,1 / 8), \ldots\}$

Denotation: The fact that a random variable X has given distribution D is denoted as $X \sim D$.

Discrete Uniform Distribution

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution

A random variable has uniform distribution iff all the possible values of the random variable are equally likely.

Note: there is also a continuous uniform distribution (denoted as U) that is defined in a different (but analogous) way. The term "uniform distribution" by default refers to the continuous case. We used the adjective "discrete" here to make the distinction.

Bernoulli Distribution

A random variable X has Bernoulli Distribution with parameter $0<p<1$ if there are only 2 possible values of the variable X :

- 1 (called "success")

■ 0 (called "failure")
with the following probabilities:

- $P(X=1)=p(0<p<1)$
- $P(X=0)=q=1-p$

Example: flipping a biased coin with probability of flipping the head: p.

Binomial Distribution (Bernoulli Trials)

Discrete Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

A random variable X has Bernoulli Distribution with parameters $n \in N^{+}$and $0<p<1$ denoted as $X \sim B(n, p)$ if it represents the number of "successes" in n repeated independent experiments concerning Bernoulli distribution (Bernoulli trials).
The formula for the Binomial Distribution, for $k \in N$ and $k \leq n$ is as follows:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

Example: what is the probability of flipping exactly 3 tails in 4 trails, where the probability of flipping tail is $p=0.6$.

Geometric Distribution

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

A random variable X has geometric distribution iff it represents the number of Bernoulli trials until the first success occurs:

$$
P(X=k)=(1-p)^{k-1} p
$$

Expected Value (Expectation) of a Random Variable

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected Value

Variance
Covariance

The expected value (expectation) of the random variable X is defined as:

$$
E(X)=\sum_{x \in \Omega} f(x) X(x)
$$

or equivalently:

$$
E(X)=\sum_{r \in X(S)} P(X=r) \cdot r
$$

Example: X - number on single die.

$$
\begin{aligned}
& E(X)=1 / 6 \cdot 1+1 / 6 \cdot 2+\ldots+1 / 6 \cdot 6=1 / 6(1+\ldots+6)= \\
& 1 / 6 \cdot T(6)=1 / 6 \cdot(6+1) 6 / 2=7 / 2=3.5
\end{aligned}
$$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Let's compute the expected value for the following cases:
■ $X \sim B(n, p), E(X)=n p$
■ X is the sum of two dice

- if X has the geometric distribution, then $E(X)=1 / p$

Linearity of Expected Value

Probability

Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected Value

Variance
Covariance

If X_{1}, \ldots, X_{n} are random variables on the same probability space Ω and $a, b \in R$ then the following equations hold:

■ $E\left(X_{1}+\ldots+X_{n}\right)=E\left(X_{1}\right)+\ldots+E\left(X_{n}\right)$

- $E(a X+b)=a E(X)+b$

Examples:

- the expected sum of two dice (now, use the linearity of expectation)
- the expected sum of 100 dice
- $E(X)$, where $X \sim B(n, p)$ (the expected number of successes in n Bernoulli trials)

Independent Random Variables

Two random variables X, Y on the same probability space Ω are independent iff:

$$
P(X=r \cap Y=s)=P(X=r) P(Y=s)
$$

for any $r, s \in R$.
Corollary: $E(X Y)=E(X) E(Y)$
Interpretation: random variable X does not bring any information on the random variable Y and vice versa. (e.g. the air temperature in a given second and the number of seconds since the beginning of the current minute in a UTC global time, etc.)

Variance of Random Variable

Discrete
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example

The variance of a random variable X on a probability space Ω is defined as follows:

$$
\operatorname{Var}(X)=\sum_{x \in \Omega} f(x)(X(x)-E(X))^{2}
$$

Notice: this is the expected value of the expression $(X(x)-E(X))^{2}$ that could be interepreted as the average deviance from the average (expected) value or variability of the random variable.

Theorem:

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(x))^{2}
$$

Interpretation: variance can be viewed as the measure of dispersion of the random variable around its mean (expected/average) value.

Properties of Variance

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance

Basic

Inequalities

Corollary:
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$, for any $a, b \in R$

Standard Deviation

Standard deviation σ_{x} of a random variable X is defined as follows:

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

Interpretation: it is also a measure of variability of X but it has the same units as X (vs variance that has squared units of X) and can be more naturally interpreted.

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem

- $X=-1$ with probability p and $X=1$ with probability $\mathrm{p}-1$
- $X=-100$ with probability p and $X=100$ with probability p-1
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

- $X=-1$ with probability p and $X=1$ with probability $\mathrm{p}-1$
- $X=-100$ with probability p and $X=100$ with probability p-1

Are the expected values different?

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

- $X=-1$ with probability p and $X=1$ with probability $\mathrm{p}-1$
- $X=-100$ with probability p and $X=100$ with probability p-1

Are the expected values different? how?

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

■ $X=-1$ with probability p and $X=1$ with probability $\mathrm{p}-1$

- $X=-100$ with probability p and $X=100$ with probability p-1

Are the expected values different? how?
Are the variances different?

Example

Discrete
Mathematics
(c) Marcin Sydow

Probability

Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

■ $X=-1$ with probability p and $X=1$ with probability $\mathrm{p}-1$

- $X=-100$ with probability p and $X=100$ with probability p-1

Are the expected values different? how?
Are the variances different? how?

Variance of sum of independent variables

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

If X_{1}, \ldots, X_{n} are independent random variables on the same space Ω then:

$$
\operatorname{Var}\left(X_{1}+\ldots X_{n}\right)=\operatorname{Var}\left(X_{1}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)
$$

Covariance

The covariance of two random variables X, Y on the probability space Ω is defined by the following formula:

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]=E(X Y)-E(X) E(Y)
$$

Interpretation: covariance is a measure of joint variability of two random variables. If the sign is positive they "grow together on average".

Corollary: if the variables are independent the covariance is 0 . The following holds:

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

Correlation coefficient

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional Probability Independence
Total probability
Bayes theorem

Random
Variable
Distribution
Example
Distributions
Expected Value

Variance
Covariance
Basic
Inequalities

The normalised variant of covariance, called correlation coefficient (or Pearson's correlation) is defined as follows:

$$
\operatorname{Cor}(X, Y)=\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}
$$

Interpetation: it measures the strength of a linear dependance of two random variables. E.g. for complete linear dependence of X and Y, i.e. $X=a Y+b$ the correlation is equal to 1 (if $a>0$) or -1 (if $a<0$).

Chebyshev's Inequality

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

The following inequality holds for any random variable X and positive number $r \in R^{+}$:

$$
P(|X(s)-E(X)| \geq r) \leq \operatorname{Var}(X) / r^{2}
$$

Interpretation: it can be used to assess the upper bound of the probability that a given random variable has the value far from its average, etc.

Markov's Inequality

Discrete
Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

The following inequality holds for any non-negative random variable X and any a>0:

$$
P(X \geq a) \leq E(X) / a
$$

Interpretation: it can be used to assess the upper bound of the probability that the value of random variable is bigger than some value.

Summary

Discrete Mathematics
(c) Marcin Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes
theorem
Random
Variable
Distribution
Example
Distributions
Expected
Value
Variance
Covariance
Basic
Inequalities

- Discrete Probability
- Probability Space
- Conditional Probability
- Independence
- Total Probability

■ Bayes' Theorem

- Random Variable
- Distribution

■ Discrete Uniform Distribution

- Bernoulli Distribution
- Binomial Distribution

■ Geometric Distribution
■ Expected Value and Variance

- Basic Inequalities

Example tasks/questions/problems

Discrete Mathematics
(c) Marcin Sydow

Probability
Conditional Probability
Independence
Total
probability
Bayes'
theorem
Random
Variable
Distribution
Example Distributions

Expected Value

Give the definitions of the basic concepts:

- Probability Space, elementary event, event
- probability, conditional probability, independent events
- total probability, Bayes' theorem
- random variable, distribution of random variable, independent variables
- distributions: discrete uniform, Bernoulli, binomial, geometric
- expected value of a random variable and its properties
- variance, standard deviation, and properties
- covariance, correlation and their interpretations

■ Chebyshev's and Markov's inequalities
Practical computation of the above concepts for a specific simple examples.

Discrete Mathematics
(c) Marcin Sydow

Probability
Conditional Probability
Independence Total probability Bayes
theorem
Thank you for your attention.

Random
Variable
Distribution
Example Distributions

Expected Value

Variance
Covariance
Basic
Inequalities

