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Probability Space

Probability Space Ω (or Sample Space) is a set of
elementary events or outcomes of an experiment

Event: a subset of the probability space

Example: die, 6 possible outcomes (elementary events)

Probability space: {1, 2, 3, 4, 5, 6}
example event: the number is even A = {2, 4, 6}
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Probability

Probability function of an elementary event x ∈ Ω: f (x)

f : Ω→ [0, 1]∑
x∈Ω f (x) = 1

Probability of an event:

P(A) =
∑

x∈A f (x)
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Classical definiton of discrete probability

If all the elementary events x ∈ Ω are equally likely (i.e.
∀x∈Ωf (x) = 1/|Ω| then the:

classical probability of an event A ⊆ Ω is given by the formula:

P(A) =
|A|
|Ω|

(the above formulation is attributed to P.Laplace)
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Example

Probability that the outcome of flipping a die is even:

Ω = {1, 2, 3, 4, 5, 6}
A = {2, 4, 6}
Classical probability: P(A) = |A|/|Ω| = 3/6 = 0.5

If elementary events (outcomes) are not equally likely, e.g.:

f (1) = 0.2, f (2) = 0.15, f (3) = 0.1, f (4) = 0.5, f (5) = 0.25,
f (6) = 0.35

P(A) = f (2) + f (4) + f (6) = 0.55
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Examples

Compute the probability of the following events (use classical
definition1

outcome of die is divisible by 3
sum of outcomes on 2 dice is 7
a randomly picked card from a deck is “king”

1I.e. assume that all elementary events - outcomes - are equally likely
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Complementary Event

P(A′) = 1− P(A)

Example
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Union of Events

“A1 or A2”: A1 ∪ A2

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

Example
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Conditional Probability

Probability of event A given the event B :

P(A|B) = P(A ∩ B)/P(B)

also called “a posteriori” probability of A if we have additional
information that B happened vs the “a priori” probability of A
(if no additional information of the outcome is given)

Example: A - the outcome of die is even, B - the outcome of
die is more than 3.

compute P(A), P(A|B); P(B); P(B|A)
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Independent Events

Events A,B ⊆ Ω are independent iff the following holds:

P(A ∩ B) = P(A) · P(B)

Interpretation: the fact that one event happened does not
influence the probability of the other (they are “informationally
independent”)

Equivalent formulation: P(A|B) = P(A) (“a posteriori”
probability is the same as “a priori”). Proof
P(A|B) = P(A ∩ B)/P(B) = (P(A) · P(B))/P(B) = P(A)

Example: A - even number on die, B - number greater than 3.

Example 2: A: “king” on a random card from the deck, B:
“diamonds” on a random card from the deck.



Discrete
Mathematics

(c) Marcin
Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes’
theorem

Random
Variable
Distribution

Example
Distributions

Expected
Value

Variance

Covariance

Basic
Inequalities

Total Probability Formula

If the probability space is partitioned by a family of events, so
that: Ω =

⋃n
i=1 Bi and ∀i 6=jBi ∩ Bj = ∅, then for any event

A ⊆ Ω the following formula holds (total probability):

P(A) =
n∑

i=1

P(A|Bi )P(Bi )

Example
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Bayes’ Theorem

Assume A,B ⊆ Ω are two events, so that P(B) > 0.

The Bayes’ Theorem:

P(B|A) =
P(A|B) · P(B)

P(A)

Interpretation: it expresses the conditional probability P(B|A)
in terms of the conditional probability P(A|B). It is useful e.g.
in all situations when it is easier to compute P(A|B) than
P(B|A).

Proof: P(A|B)P(B) = (P(A ∩ B)/P(B))P(B) = P(A ∩ B) =
P(B|A)P(A)

Note: in the denominator it is possible to use the “total
probability formula” for P(B)
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Example

Consider a 2-step experiment:

1 flip a coin: head: use 2 dice, tail: use 1 die
2 sum the outcomes

What is the probability that in the first step we had tail,
conditioned that the resulting sum is smaller than 5.
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Random Variable

A Random Variable is a function X : Ω→ R i.e. it assigns a
real number to each elementary event (outcome of a random
experiment).

Example:
number flipped on a die
sum of the numbers on a pair of dice
the number of times a coin must be flipped to obtain the
first head
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Distribution of a Random Variable

The distribution of a random variable X on a probability
space Ω is the set of all pairs r ,P(X = r)

Examples (continued from the previous slide):

{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}
{(2, 1/36), (3, 2/36), ..., (12, 1/36)}
{(1, 1/2), (2, 1/4), (3, 1/8), ...}

Denotation: The fact that a random variable X has given
distribution D is denoted as X ∼ D.
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Distribution of a Random Variable

The distribution of a random variable X on a probability
space Ω is the set of all pairs r ,P(X = r)

Examples (continued from the previous slide):
{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}

{(2, 1/36), (3, 2/36), ..., (12, 1/36)}
{(1, 1/2), (2, 1/4), (3, 1/8), ...}

Denotation: The fact that a random variable X has given
distribution D is denoted as X ∼ D.
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Distribution of a Random Variable

The distribution of a random variable X on a probability
space Ω is the set of all pairs r ,P(X = r)

Examples (continued from the previous slide):
{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}
{(2, 1/36), (3, 2/36), ..., (12, 1/36)}

{(1, 1/2), (2, 1/4), (3, 1/8), ...}

Denotation: The fact that a random variable X has given
distribution D is denoted as X ∼ D.
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Distribution of a Random Variable

The distribution of a random variable X on a probability
space Ω is the set of all pairs r ,P(X = r)

Examples (continued from the previous slide):
{(1, 1/6), (2, 1/6), (3, 1/6), (4, 1/6), (5, 1/6), (6, 1/6)}
{(2, 1/36), (3, 2/36), ..., (12, 1/36)}
{(1, 1/2), (2, 1/4), (3, 1/8), ...}

Denotation: The fact that a random variable X has given
distribution D is denoted as X ∼ D.
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Discrete Uniform Distribution

A random variable has uniform distribution iff all the possible
values of the random variable are equally likely.

Note: there is also a continuous uniform distribution
(denoted as U) that is defined in a different (but analogous)
way. The term “uniform distribution” by default refers to the
continuous case. We used the adjective “discrete” here to make
the distinction.
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Bernoulli Distribution

A random variable X has Bernoulli Distribution with
parameter 0 < p < 1 if there are only 2 possible values of the
variable X:

1 (called “success”)
0 (called “failure”)

with the following probabilities:
P(X = 1) = p (0 < p < 1)
P(X = 0) = q = 1− p

Example: flipping a biased coin with probability of flipping the
head: p.
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Binomial Distribution (Bernoulli Trials)

A random variable X has Bernoulli Distribution with
parameters n ∈ N+ and 0 < p < 1 denoted as X ∼ B(n, p) if it
represents the number of “successes” in n repeated independent
experiments concerning Bernoulli distribution (Bernoulli trials).

The formula for the Binomial Distribution, for k ∈ N and k ≤ n
is as follows:

P(X = k) =

(
n
k

)
pk(1− p)(n−k)

Example: what is the probability of flipping exactly 3 tails in 4
trails, where the probability of flipping tail is p = 0.6.
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Geometric Distribution

A random variable X has geometric distribution iff it represents
the number of Bernoulli trials until the first success occurs:

P(X = k) = (1− p)k−1p
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Expected Value (Expectation) of a Random Variable

The expected value (expectation) of the random variable X is
defined as:

E (X ) =
∑
x∈Ω

f (x)X (x)

or equivalently:

E (X ) =
∑

r∈X (S)

P(X = r) · r

Example: X - number on single die.
E (X ) = 1/6 · 1 + 1/6 · 2 + ...+ 1/6 · 6 = 1/6(1 + ...+ 6) =
1/6 · T (6) = 1/6 · (6 + 1)6/2 = 7/2 = 3.5
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Examples

Let’s compute the expected value for the following cases:

X ∼ B(n, p), E (X ) = np
X is the sum of two dice
if X has the geometric distribution, then E (X ) = 1/p
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Linearity of Expected Value

If X1, ...,Xn are random variables on the same probability space
Ω and a, b ∈ R then the following equations hold:

E (X1 + ...+ Xn) = E (X1) + ...+ E (Xn)

E (aX + b) = aE (X ) + b

Examples:
the expected sum of two dice (now, use the linearity of
expectation)
the expected sum of 100 dice
E (X ), where X ∼ B(n, p) (the expected number of
successes in n Bernoulli trials)
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Independent Random Variables

Two random variables X ,Y on the same probability space Ω are
independent iff:

P(X = r ∩ Y = s) = P(X = r)P(Y = s)

for any r , s ∈ R .

Corollary: E (XY ) = E (X )E (Y )

Interpretation: random variable X does not bring any
information on the random variable Y and vice versa. (e.g. the
air temperature in a given second and the number of seconds
since the beginning of the current minute in a UTC global time,
etc.)



Discrete
Mathematics

(c) Marcin
Sydow

Probability
Conditional
Probability
Independence
Total
probability
Bayes’
theorem

Random
Variable
Distribution

Example
Distributions

Expected
Value

Variance

Covariance

Basic
Inequalities

Variance of Random Variable

The variance of a random variable X on a probability space Ω
is defined as follows:

Var(X ) =
∑
x∈Ω

f (x)(X (x)− E (X ))2

Notice: this is the expected value of the expression
(X (x)− E (X ))2 that could be interepreted as the average
deviance from the average (expected) value or variability of the
random variable.

Theorem:
Var(X ) = E (X 2)− (E (x))2

Interpretation: variance can be viewed as the measure of
dispersion of the random variable around its mean
(expected/average) value.
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Properties of Variance

Corollary:

Var(aX + b) = a2Var(X ), for any a, b ∈ R
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Standard Deviation

Standard deviation σx of a random variable X is defined as
follows:

σX =
√

Var(X )

Interpretation: it is also a measure of variability of X but it has
the same units as X (vs variance that has squared units of X )
and can be more naturally interpreted.
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Example

X = −1 with probability p and X = 1 with probability p-1
X = −100 with probability p and X = 100 with probability
p-1

Are the expected values different? how?
Are the variances different? how?
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Example

X = −1 with probability p and X = 1 with probability p-1
X = −100 with probability p and X = 100 with probability
p-1

Are the expected values different?

how?
Are the variances different? how?
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Example

X = −1 with probability p and X = 1 with probability p-1
X = −100 with probability p and X = 100 with probability
p-1

Are the expected values different? how?

Are the variances different? how?
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Example

X = −1 with probability p and X = 1 with probability p-1
X = −100 with probability p and X = 100 with probability
p-1

Are the expected values different? how?
Are the variances different?

how?
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Example

X = −1 with probability p and X = 1 with probability p-1
X = −100 with probability p and X = 100 with probability
p-1

Are the expected values different? how?
Are the variances different? how?
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Variance of sum of independent variables

If X1, ...,Xn are independent random variables on the same
space Ω then:

Var(X1 + ...Xn) = Var(X1) + ...+ Var(Xn)
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Covariance

The covariance of two random variables X ,Y on the
probability space Ω is defined by the following formula:

Cov(X ,Y ) = E [(X−E (X ))(Y−E (Y ))] = E (XY )−E (X )E (Y )

Interpretation: covariance is a measure of joint variability of two
random variables. If the sign is positive they “grow together on
average”.

Corollary: if the variables are independent the covariance is 0.

The following holds:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )
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Correlation coefficient

The normalised variant of covariance, called correlation
coefficient (or Pearson’s correlation) is defined as follows:

Cor(X ,Y ) = ρ(X ,Y ) =
Cov(X ,Y )

σX · σY

Interpetation: it measures the strength of a linear dependance
of two random variables. E.g. for complete linear dependence of
X and Y, i.e. X = aY + b the correlation is equal to 1 (if a>0)
or -1 (if a<0).
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Chebyshev’s Inequality

The following inequality holds for any random variable X and
positive number r ∈ R+:

P(|X (s)− E (X )| ≥ r) ≤ Var(X )/r2

Interpretation: it can be used to assess the upper bound of the
probability that a given random variable has the value far from
its average, etc.
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Markov’s Inequality

The following inequality holds for any non-negative random
variable X and any a > 0:

P(X ≥ a) ≤ E (X )/a

Interpretation: it can be used to assess the upper bound of the
probability that the value of random variable is bigger than
some value.
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Summary

Discrete Probability
Probability Space
Conditional Probability
Independence
Total Probability
Bayes’ Theorem

Random Variable
Distribution

Discrete Uniform Distribution
Bernoulli Distribution
Binomial Distribution
Geometric Distribution

Expected Value and Variance
Basic Inequalities
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Example tasks/questions/problems

Give the definitions of the basic concepts:
Probability Space, elementary event, event
probability, conditional probability, independent events
total probability, Bayes’ theorem
random variable, distribution of random variable,
independent variables
distributions: discrete uniform, Bernoulli, binomial,
geometric
expected value of a random variable and its properties
variance, standard deviation, and properties
covariance, correlation and their interpretations
Chebyshev’s and Markov’s inequalities

Practical computation of the above concepts for a specific
simple examples.
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Thank you for your attention.
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