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An example

Example:
Let’s consider the following expression:

Natural number x is even.

Is it a proposition?
Is it a kind of logical statement?
What can make it a proposition?

Substituting any particular value for the variable x (e.g. 3) will
make it a proposition, e.g.:

Natural number 2 is even.

Natural number 3 is even.
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Predicate

Let U be some universal set.

A logical expression containing some variable that becomes a
proposition when we substitute any particular value from the
universe for this variable is called a predicate.

It is also called propositional function.

It is usually denoted similarly to functions, for example:

φ(x), f (x), ψ(x), etc.
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Example

Assume that the universe U is (N) (natural numbers)

φ(x): x is an even number

ψ(x): x is divisible by 3

(these two are examples of atomic predicates)

What is literally φ(x) ∧ ψ(x) ?
x is an even number and x is divisible by 3
(the above is an example of a compound predicate)
What does it mean in short?

x is divisible by 6
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Another example

U is a set of all animals.

Let’s introduce two atomic predicates concerning animals:

mammal(x): x is a mammal

oceanicAnimal(x): x lives in the ocean

Now, give an example of animal a ∈ U that satisfies:

mammal(a) ∧ oceanicAnimal(a) (example: dolphin)

¬mammal(a) ∧ oceanicAnimal(a) (example: shark)

¬mammal(a) ∧ ¬oceanicAnimal(a) (example: stork)

There are more values for a that make the above propositions
true.
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Predicate Logic

Predicate logic is more powerful than propositional logic as it
can express more.

Predicate can be viewed as an extension of proposition by
introducing variables. Predicates, similarly to propositions, can
be atomic or compound, for example:
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Predicate as an expression of “property”

Predicate can be also viewed as a description of some feature of
the object from the universe represented by the variable, e.g.
having some color, being positive, etc.

Examples:

“x > 0”, (“being a positive number”) (positive(x))

“x is green” (“having a green color”) (green(x))

The above predicates are not propositions, since the truth value
depends on the value of the variables that are not (yet)
specified.
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Predicates of two

A predicate can have more than 1 variable, e.g.:

greater(x,y): x is greater than y (universe of x and y:
numbers)

parent(x,y): x is a parent of y (universe of x and y: people)

Any of the above statements becomes a proposition if both x
and y are substituted with particular values from the universe,
e.g.:

greater(3,2)

parent(“Johann Sebastian Bach”, “Carl Philipp
Emanuel Bach”)

“yx > 0 AND x is integer AND y is integer” (“x and y are
integers of the same sign”)
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Another example

The variables in a predicate can have different universa, e.g.:

isCapitalOf(x,y) (x is a capital of y)

Universe of x: cities, universe of y: countries.

isCapitalOf(Warsaw, Poland)
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Predicates of more variables

A predicate can have arbitrarily many variables (but always
fixed, finite number).

example:

playedBridge(a,b,c,d): people a,b,c,d played bridge
together



Discrete
Mathematics

(c) Marcin
Sydow

Predicates

Quantifiers

Logical
equivalence

Negation

Nested
quantifiers

Generalised
operations

Predicates of more variables

A predicate can have arbitrarily many variables (but always
fixed, finite number).

example:

playedBridge(a,b,c,d): people a,b,c,d played bridge
together



Discrete
Mathematics

(c) Marcin
Sydow

Predicates

Quantifiers

Logical
equivalence

Negation

Nested
quantifiers

Generalised
operations

Predicates of more variables

A predicate can have arbitrarily many variables (but always
fixed, finite number).

example:

playedBridge(a,b,c,d): people a,b,c,d played bridge
together



Discrete
Mathematics

(c) Marcin
Sydow

Predicates

Quantifiers

Logical
equivalence

Negation

Nested
quantifiers

Generalised
operations

Free variables of a predicate

Unspecified variables of a predicate are called its free variables.

Examples:
P(x): “x > 0” (x is a free variable)
“yx > 0 AND x is integer AND y is integer” (x and y are free)

Predicate can become a proposition when there are no free
variables.

This may happen in two basic ways:
substituting some concrete value for a variable
quantifying a variable with a quantifier
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Quantifiers

Each free variable of a predicate can be bound by a quantifier
and specifying its domain.

There are 2 basic quantifiers:
universal quantifier: ∀ (“for all”)

existential quantifier” ∃ (“exists”)

Each free variable can be bound by only one quantifier

Note: Each quantifier has its natural range (or scope) of the
variable it bounds, i.e. the part of the predicate associated with
it. If a variable of the same name is outside of its range it is still
free. E.g.:

(∀xP(x)) ∨ Q(x)
(x is still a free variable in this compound predicate!)
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Universal quantifier: examples

P(x): x is a student, universe: all people in this room

∀xP(x): everybody in this room is a student

P(x): “x > 0”

∀xP(x): “for each x, x is positive”
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Examples

When we specify the domain of the quantifier, the predicate
becomes a proposition, e.g.:

Examples:

domain: prime numbers (2,3,5,...)
∀xP(x) “all prime numbers are positive” (true)

domain: integer numbers
∀xP(x)
“all integers are positive” (false)

NOTICE: the choice of domain is necessary to determine the
truth value of the (now) proposition
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Existential quantifier: examples

P(x): “x > 0”

∃xP(x) “there exists number that is positive”

Examples:
domain: integers
∃xP(x)
“there exists integer that is positive” (true)

domain: real numbers less than -1
∃xP(x) “there exists an integer less than -1 that is positive”
(false)
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Logical equivalence of predicates

Two statements built of predicates and quantifiers are logically
equivalent if and only if they have the same truth value no
matter what concrete predicates are substituted and what
domains for its variables are used.

We use the same symbols of equivalence (≡ or ⇔) as in the
case of propositions.

Example:
∀xP(x) ∧ ∀xQ(x) ≡ ∀x(Q(x) ∧ P(x))

the above is an example of a logical equivalence (general law)
since it holds for any domain of the variable x.

Notice: the quantifiers have higher precedence than any other
logical operators.
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Negating the quantifiers
(De Morgan laws for quantifiers)

The 2 following equivalences specify the rules for negating
quantifiers:

¬∀xP(x) ≡ ∃x¬P(x)

¬∃xP(x) ≡ ∀x¬P(x)

They are called “De Morgan’s laws for quantifiers”

Examples:

“It is not true that all people in Warsaw are students”
is equivalent to:
“there is a person in Warsaw that is not a student”

“No person in this room was on the moon”
is equivalent to:
“for each person in this room it is the case that he/she was not
on the moon”
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Nested quantifiers

When a predicate has more than one free variables it is possible
to use nested quantifiers:

Example: for P(x,y) that is “x > y” and domain being the real
numbers:
∀x∀yP(x , y) “each real is greater than all reals”(false)
∀x∃yP(x , y) “for each real x there exists real y so that x is
greater than y” (true)
∃x∀yP(x , y) “there is x that is greater than any real” (false)
∃x∃yP(x , y) “there exist some real x and y such that x is
greater than y” (true)
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The order of nested quantifiers matters!

If the quantifiers are of the same kind they relative order (if
they are neighbours) does not matter, however the order of
different kinds may matter:

Examples:
∀x∀yP(x , y)
is logically equivalent to:
∀y∀xP(x , y)
and both can be read as “each real is greater than all reals”
(false)

However:

∀x∃yP(x , y) “for each real x there exists real y so that x is
greater than y” (true)
∃y∀xP(x , y) “there is y that is greater than any real” (false)
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The order of nested quantifiers matters!

If the quantifiers are of the same kind they relative order (if
they are neighbours) does not matter, however the order of
different kinds may matter:

Examples:
∀x∀yP(x , y)
is logically equivalent to:
∀y∀xP(x , y)
and both can be read as “each real is greater than all reals”
(false)

However:

∀x∃yP(x , y) “for each real x there exists real y so that x is
greater than y” (true)

∃y∀xP(x , y) “there is y that is greater than any real” (false)
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Negating nested quantifiers

When negating nested quantifiers, the negation can “pass” each
quantifier from left to right turning it into the other kind, for
example:

¬∀x∃y∀zP(x , y , z)
≡
∃x¬∃y∀zP(x , y , z)
≡
∃x∀y¬∀zP(x , y , z)
≡
∃x∀y∃z¬P(x , y , z)
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Examples: mixture of subsitutions and quantifiers

Let G(x,y) be “x ≥ y ” (“x is not less than y”), assume domain is
natural numbers for both x and y

It is a predicate with 2 free variables.

Now, for example:

substitution of 0 for y: G(x,0) is a predicate with 1 free
variable (“x is nonnegative”)
quantifying x: ∀xG (x , y) is a predicate with 1 free variable
(“each natural number is not less than y”)
mix of substition and quantification, e.g. ∀xG (x , 0) is now
a proposition (no free variables) “any natural is
non-negative” (true!), etc.
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Examples

∀ε∃δ ∀h (|h| < δ)⇒ (|f (x + h)− f (x)| < ε)

(continuity of function f at point x)

∀x ∀ε∃δ ∀h (|h| < δ)⇒ (|f (x + h)− f (x)| < ε)
(continuity of function f)
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Examples

∀ε∃m ∀n |am+n − b| < ε

(convergence of a sequence a to limit b)

∀x ∀ε∃m ∀n |fm+n(x)− f (x)| < ε

(convergence of a sequence of functions fi to a function f)

∀ε∃m ∀x ∀n |fm+n(x)− f (x)| < ε
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Example: “big O” asymptotic notation

f (n) = O(g(n))

∃c ∃no ∀n (n > n0) ⇒ f (n) ≤ c · g(n)
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Generalised unions and intersections

Imagine we have a family F of sets indexed by a set of indices I
(that can be infinite!):

F = {Fi : i ∈ I}
The generalised union of F, denoted as

⋃
i∈I Fi is defined as

follows:⋃
i∈I Fi = {x : ∃i∈I x ∈ Fi}

The generalised intersection of F, denoted as
⋂

i∈I Fi is
defined as follows:⋂

i∈I Fi = {x : ∀i∈I x ∈ Fi}



Discrete
Mathematics

(c) Marcin
Sydow

Predicates

Quantifiers

Logical
equivalence

Negation

Nested
quantifiers

Generalised
operations

Summary

Predicates
Quantifiers
Negation
Logical equivalence of predicates
Nested quantifiers
Generalised set operations



Discrete
Mathematics

(c) Marcin
Sydow

Predicates

Quantifiers

Logical
equivalence

Negation

Nested
quantifiers

Generalised
operations

Example tasks/questions/problems

definition of predicate, free variable

definition and interpretation of quantifiers (2 kinds)

negating the quantifiers (including nested ones)

practice translating mathematical concepts to the predicate logic.
E.g.:

using only logical and mathematical symbols “=”, “*” define a
predicate Q(x,y) that reads as “x is a divisor of y” for the
domain of integer variables x,y (hint: you can use helper
variables and quantifiers)
using only logical symbols and “<” and “=” write a predicate
specifying that x (a variable) is a maximum in some set S of
numbers (being the domain)

give examples of predicates P(x), Q(x) and domain that show that
the two following statements: (∀xP(x) ∨ Q(x)) and
∀xP(x) ∨ ∀xQ(x) are not logically equivalent. Does any of them
implies the other? (i.e. is any of them a stronger condition?)
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Thank you for your attention.
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