Discrete Mathematics Predicates

(c) Marcin Sydow

Contents

- Predicates
- Quantifiers
- Negation

■ Logical equivalence of predicates

- Nested quantifiers

■ Generalised set operations

An example

Discrete Mathematics
(c) Marcin Sydow

Example:
Let's consider the following expression:

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

An example

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Example:
Let's consider the following expression:
Natural number x is even.

An example

Discrete
Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Example:
Let's consider the following expression:
Natural number x is even.
Is it a proposition?

An example

Discrete
Mathematics

(c) Marcin Sydow

Predicates
Quantifiers

Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Example:
Let's consider the following expression:
Natural number x is even.
Is it a proposition?
Is it a kind of logical statement?

An example

Discrete
Mathematics
(c) Marcin

Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Example:
Let's consider the following expression:
Natural number x is even.
Is it a proposition?
Is it a kind of logical statement?
What can make it a proposition?

An example

Example:
Let's consider the following expression:
Natural number x is even.
Is it a proposition?
Is it a kind of logical statement?
What can make it a proposition?
Substituting any particular value for the variable \times (e.g. 3) will make it a proposition, e.g.:

An example

Example:
Let's consider the following expression:
Natural number x is even.
Is it a proposition?
Is it a kind of logical statement?
What can make it a proposition?
Substituting any particular value for the variable \times (e.g. 3) will make it a proposition, e.g.:

Natural number 2 is even.
Natural number 3 is even.

Predicate

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Let U be some universal set.
A logical expression containing some variable that becomes a proposition when we substitute any particular value from the universe for this variable is called a predicate.

It is also called propositional function.
It is usually denoted similarly to functions, for example: $\phi(x), f(x), \psi(x)$, etc.

Example

Discrete
Mathematics
(c) Marcin Sydow

Assume that the universe U is (N) (natural numbers)

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Example

Discrete
Mathematics
(c) Marcin Sydow

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number

Example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number
$\psi(x): x$ is divisible by 3

Example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number
$\psi(x)$: x is divisible by 3
(these two are examples of atomic predicates)

Example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number
$\psi(x)$: x is divisible by 3
(these two are examples of atomic predicates)
What is literally $\phi(x) \wedge \psi(x)$?

Example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number
$\psi(x)$: x is divisible by 3
(these two are examples of atomic predicates)
What is literally $\phi(x) \wedge \psi(x)$?
x is an even number and x is divisible by 3
(the above is an example of a compound predicate)

Example

Assume that the universe U is (N) (natural numbers)
$\phi(x): x$ is an even number
$\psi(x)$: x is divisible by 3
(these two are examples of atomic predicates)
What is literally $\phi(x) \wedge \psi(x)$?
x is an even number and x is divisible by 3
(the above is an example of a compound predicate) What does it mean in short?
x is divisible by 6

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

U is a set of all animals.

Another example

Discrete
Mathematics

(c) Marcin Sydow

U is a set of all animals.
Let's introduce two atomic predicates concerning animals:

Another example

Discrete
Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x):

Another example

Discrete
Mathematics
(c) Marcin
Sydow

Predicates
Quantifiers

Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal $(\mathrm{x}): x$ is a mammal

Another example

Discrete
Mathematics
(c) Marcin
Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x):

Another example

Discrete
Mathematics
(c) Marcin
Sydow

Predicates
Quantifiers

Logical
equivalence
Negation
Nested quantifiers

Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean

Another example

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal oceanicAnimal (x): x lives in the ocean Now, give an example of animal $a \in U$ that satisfies:

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal (x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies: mammal $(a) \wedge$ oceanicAnimal (a)

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies: mammal $(a) \wedge$ oceanicAnimal(a) (example: dolphin)

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies:
mammal(a) \wedge oceanicAnimal(a) (example: dolphin)
\neg mammal $(a) \wedge$ oceanicAnimal (a)

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal $(\mathrm{x}): ~ x$ is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies: mammal(a) \wedge oceanicAnimal(a) (example: dolphin)
\neg mammal $(a) \wedge$ oceanicAnimal(a) (example: shark)

Another example

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Negation
Nested quantifiers

Generalised operations

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies:
mammal(a) \wedge oceanicAnimal(a) (example: dolphin)
\neg mammal $(a) \wedge$ oceanicAnimal (a) (example: shark)
\neg mammal $(a) \wedge \neg$ oceanicAnimal (a)

Another example

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies: mammal $(a) \wedge$ oceanicAnimal(a) (example: dolphin)
\neg mammal $(a) \wedge$ oceanicAnimal (a) (example: shark)
\neg mammal $(a) \wedge \neg$ oceanicAnimal(a) (example: stork)

Another example

U is a set of all animals.
Let's introduce two atomic predicates concerning animals: mammal (x) : x is a mammal
oceanicAnimal(x): x lives in the ocean
Now, give an example of animal $a \in U$ that satisfies: mammal $(a) \wedge$ oceanicAnimal(a) (example: dolphin) \neg mammal $(a) \wedge$ oceanicAnimal(a) (example: shark)
\neg mammal $(a) \wedge \neg$ oceanicAnimal(a) (example: stork)
There are more values for a that make the above propositions true.

Predicate Logic

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Predicate logic is more powerful than propositional logic as it can express more.

Predicate can be viewed as an extension of proposition by introducing variables. Predicates, similarly to propositions, can be atomic or compound, for example:

Predicate as an expression of "property"

Discrete
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Predicate can be also viewed as a description of some feature of the object from the universe represented by the variable, e.g. having some color, being positive, etc.

Examples:

" $x>0$ ", ("being a positive number") (positive (x))
" x is green" ("having a green color") (green(x))
The above predicates are not propositions, since the truth value depends on the value of the variables that are not (yet) specified.

Predicates of two

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

A predicate can have more than 1 variable, e.g.:

Predicates of two

Discrete Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

A predicate can have more than 1 variable, e.g.: greater $(\mathrm{x}, \mathrm{y}$): x is greater than y (universe of x and y : numbers)

Predicates of two

Discrete Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

A predicate can have more than 1 variable, e.g.: greater $(x, y): x$ is greater than y (universe of x and y : numbers)
parent $(x, y): x$ is a parent of y (universe of x and y : people)

Predicates of two

Discrete Mathematics

(c) Marcin

 SydowPredicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

A predicate can have more than 1 variable, e.g.: greater $(\mathrm{x}, \mathrm{y}): \mathrm{x}$ is greater than y (universe of x and y : numbers)
parent $(x, y): x$ is a parent of y (universe of x and y : people) Any of the above statements becomes a proposition if both x and y are substituted with particular values from the universe, e.g.:

Predicates of two

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

A predicate can have more than 1 variable, e.g.: greater $(\mathrm{x}, \mathrm{y}$): x is greater than y (universe of x and y : numbers)
parent $(x, y): x$ is a parent of y (universe of x and y : people) Any of the above statements becomes a proposition if both x and y are substituted with particular values from the universe, e.g.:
greater $(3,2)$

Predicates of two

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

A predicate can have more than 1 variable, e.g.: greater $(\mathrm{x}, \mathrm{y}$): x is greater than y (universe of x and y : numbers)
parent $(x, y): x$ is a parent of y (universe of x and y : people) Any of the above statements becomes a proposition if both x and y are substituted with particular values from the universe, e.g.:
greater $(3,2)$
parent(‘‘Johann Sebastian Bach’’, 'Carl Philipp
Emanuel Bach'’)

Predicates of two

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

A predicate can have more than 1 variable, e.g.: greater $(x, y): x$ is greater than y (universe of x and y : numbers)
parent $(x, y): x$ is a parent of y (universe of x and y : people) Any of the above statements becomes a proposition if both x and y are substituted with particular values from the universe, e.g.:
greater $(3,2)$
parent(‘'Johann Sebastian Bach’’, 'Carl Philipp
Emanuel Bach'’)
" $y x>0$ AND x is integer AND y is integer" (" x and y are integers of the same sign')

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates

The variables in a predicate can have different universa, e.g.:

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

The variables in a predicate can have different universa, e.g.: isCapitalOf $(x, y)(x$ is a capital of $y)$

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates

The variables in a predicate can have different universa, e.g.: isCapitalOf $(x, y)(x$ is a capital of $y)$

Universe of x : cities, universe of y : countries.

Another example

Discrete
Mathematics
(c) Marcin Sydow

Predicates

The variables in a predicate can have different universa, e.g.: isCapitalOf (x, y) (x is a capital of y)
Universe of x : cities, universe of y : countries.
isCapitalOf(Warsaw, Poland)

Predicates of more variables

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

A predicate can have arbitrarily many variables (but always fixed, finite number).

Predicates of more variables

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

A predicate can have arbitrarily many variables (but always fixed, finite number).
example:

Predicates of more variables

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Negation
Nested quantifiers

Generalised operations

A predicate can have arbitrarily many variables (but always fixed, finite number).
example:
playedBridge(a,b,c,d): people a,b,c,d played bridge together

Free variables of a predicate

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Unspecified variables of a predicate are called its free variables.
Examples:
$P(x)$: " $x>0$ " (x is a free variable)
" $y x>0$ AND x is integer AND y is integer" (x and y are free)
Predicate can become a proposition when there are no free variables.

This may happen in two basic ways:

- substituting some concrete value for a variable
- quantifying a variable with a quantifier

Quantifiers

Predicates

Quantifiers

Each free variable of a predicate can be bound by a quantifier and specifying its domain.

There are 2 basic quantifiers:
■ universal quantifier: \forall ("for all")

Quantifiers

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Each free variable of a predicate can be bound by a quantifier and specifying its domain.

There are 2 basic quantifiers:
■ universal quantifier: \forall ("for all")
■ existential quantifier" \exists ("exists")

Quantifiers

Each free variable of a predicate can be bound by a quantifier and specifying its domain.

There are 2 basic quantifiers:
■ universal quantifier: \forall ("for all")
■ existential quantifier" \exists ("exists")
Each free variable can be bound by only one quantifier

Quantifiers

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Each free variable of a predicate can be bound by a quantifier and specifying its domain.

There are 2 basic quantifiers:

- universal quantifier: \forall ("for all")

■ existential quantifier" \exists ("exists")
Each free variable can be bound by only one quantifier
Note: Each quantifier has its natural range (or scope) of the variable it bounds, i.e. the part of the predicate associated with it. If a variable of the same name is outside of its range it is still free. E.g.:
$\left(\forall_{x} P(x)\right) \vee Q(x)$
(x is still a free variable in this compound predicate!)

Universal quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$\mathrm{P}(\mathrm{x})$: x is a student, universe: all people in this room

Universal quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$\mathrm{P}(\mathrm{x})$: x is a student, universe: all people in this room
$\forall_{x} P(x)$: everybody in this room is a student

Universal quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$\mathrm{P}(\mathrm{x})$: x is a student, universe: all people in this room
$\forall_{x} P(x)$: everybody in this room is a student $P(x): " x>0$ "

Universal quantifier: examples

$\mathrm{P}(\mathrm{x})$: x is a student, universe: all people in this room
$\forall_{x} P(x)$: everybody in this room is a student
$P(x): " x>0$ "
$\forall_{x} P(x)$: "for each x, x is positive"

Examples

Discrete
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

When we specify the domain of the quantifier, the predicate becomes a proposition, e.g.:

Examples:

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When we specify the domain of the quantifier, the predicate becomes a proposition, e.g.:

Examples:
domain: prime numbers $(2,3,5, \ldots)$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When we specify the domain of the quantifier, the predicate becomes a proposition, e.g.:

Examples:
domain: prime numbers ($2,3,5, \ldots$)
$\forall_{x} P(x)$ "all prime numbers are positive" (true)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

When we specify the domain of the quantifier, the predicate becomes a proposition, e.g.:

Examples:
domain: prime numbers $(2,3,5, \ldots)$
$\forall_{x} P(x)$ "all prime numbers are positive" (true)
domain: integer numbers
$\forall_{x} P(x)$
"all integers are positive" (false)

Examples

(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

When we specify the domain of the quantifier, the predicate becomes a proposition, e.g.:

Examples:
domain: prime numbers $(2,3,5, \ldots)$
$\forall_{x} P(x)$ "all prime numbers are positive" (true)
domain: integer numbers
$\forall_{x} P(x)$
"all integers are positive" (false)
NOTICE: the choice of domain is necessary to determine the truth value of the (now) proposition

Existential quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow
$P(x): " x>0 "$

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Existential quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$P(x)$: " $x>0$ "
$\exists_{x} P(x)$ "there exists number that is positive"

Existential quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$P(x)$: " $x>0$ "
$\exists_{x} P(x)$ "there exists number that is positive"

Examples:

Existential quantifier: examples

Discrete
Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$P(x)$: " $x>0$ "
$\exists_{x} P(x)$ "there exists number that is positive"

Examples:

 domain: integers
Existential quantifier: examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations
$P(x)$: " $x>0$ "
$\exists_{x} P(x)$ "there exists number that is positive"
Examples:
domain: integers
$\exists_{x} P(x)$
"there exists integer that is positive" (true)
domain: real numbers less than -1
$\exists_{x} P(x)$ "there exists an integer less than -1 that is positive" (false)

Logical equivalence of predicates

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Two statements built of predicates and quantifiers are logically equivalent if and only if they have the same truth value no matter what concrete predicates are substituted and what domains for its variables are used.

Logical equivalence of predicates

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Two statements built of predicates and quantifiers are logically equivalent if and only if they have the same truth value no matter what concrete predicates are substituted and what domains for its variables are used.

We use the same symbols of equivalence (\equiv or \Leftrightarrow) as in the case of propositions.

Logical equivalence of predicates

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested

Two statements built of predicates and quantifiers are logically equivalent if and only if they have the same truth value no matter what concrete predicates are substituted and what domains for its variables are used.

We use the same symbols of equivalence (\equiv or \Leftrightarrow) as in the case of propositions.

Example:
$\forall_{x} P(x) \wedge \forall_{x} Q(x) \equiv \forall_{x}(Q(x) \wedge P(x))$
the above is an example of a logical equivalence (general law) since it holds for any domain of the variable x.

Notice: the quantifiers have higher precedence than any other logical operators.

Negating the quantifiers
 (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

The 2 following equivalences specify the rules for negating quantifiers:

$$
\square \neg x P(x) \equiv \exists x \neg P(x)
$$

Negating the quantifiers (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
\square \forall x P(x) & \equiv \exists x \neg P(x) \\
-\neg \exists x P(x) & \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers"

Negating the quantifiers (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
\square \forall x P(x) & \equiv \exists x \neg P(x) \\
\square \neg x P(x) & \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers" Examples:
"It is not true that all people in Warsaw are students"

Negating the quantifiers (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers" Examples:
"It is not true that all people in Warsaw are students" is equivalent to:

Negating the quantifiers
 (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers" Examples:
"It is not true that all people in Warsaw are students" is equivalent to:
"there is a person in Warsaw that is not a student"

Negating the quantifiers (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
& \neg \forall x P(x) \equiv \exists x \neg P(x) \\
& \neg \exists x P(x) \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers" Examples:
"It is not true that all people in Warsaw are students" is equivalent to:
"there is a person in Warsaw that is not a student"
"No person in this room was on the moon" is equivalent to:

Negating the quantifiers
 (De Morgan laws for quantifiers)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

The 2 following equivalences specify the rules for negating quantifiers:

$$
\begin{aligned}
\neg \forall x P(x) & \equiv \exists x \neg P(x) \\
\neg \exists x P(x) & \equiv \forall x \neg P(x)
\end{aligned}
$$

They are called "De Morgan's laws for quantifiers" Examples:
"It is not true that all people in Warsaw are students" is equivalent to:
"there is a person in Warsaw that is not a student"
"No person in this room was on the moon" is equivalent to:
"for each person in this room it is the case that he/she was not on the moon"

Nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When a predicate has more than one free variables it is possible to use nested quantifiers:

Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:

Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"

Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)

Nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Negation
Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall_{x} \exists_{y} P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$

Nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Negation
Nested quantifiers

Generalised operations

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall_{x} \exists_{y} P(x, y)$ "for each real x there exists real y so that x is greater than y " (true)

Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall x \exists y P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$ (true)
$\exists_{x} \forall_{y} P(x, y)$ "there is x that is greater than any real"

Nested quantifiers

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall x \exists y P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$ (true)
$\exists_{x} \forall_{y} P(x, y)$ "there is x that is greater than any real" (false)

Nested quantifiers

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall x \exists y P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$ (true)
$\exists_{x} \forall_{y} P(x, y)$ "there is x that is greater than any real" (false)
$\exists_{x} \exists_{y} P(x, y)$ "there exist some real x and y such that x is greater than y "

Nested quantifiers

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When a predicate has more than one free variables it is possible to use nested quantifiers:

Example: for $\mathrm{P}(\mathrm{x}, \mathrm{y})$ that is " $\mathrm{x}>\mathrm{y}$ " and domain being the real numbers:
$\forall_{x} \forall_{y} P(x, y)$ "each real is greater than all reals"(false)
$\forall x \exists y P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$ (true)
$\exists_{x} \forall_{y} P(x, y)$ "there is x that is greater than any real" (false)
$\exists_{x} \exists_{y} P(x, y)$ "there exist some real x and y such that x is greater than $y^{\prime \prime}$ (true)

The order of nested quantifiers matters!

Discrete Mathematics
(c) Marcin Sydow

Predicates

Quantifiers

Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

If the quantifiers are of the same kind they relative order (if they are neighbours) does not matter, however the order of different kinds may matter:

The order of nested quantifiers matters!

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

If the quantifiers are of the same kind they relative order (if they are neighbours) does not matter, however the order of different kinds may matter:

Examples:

$\forall_{x} \forall_{y} P(x, y)$
is logically equivalent to:

The order of nested quantifiers matters!

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers

Logical
equivalence
Negation
Nested

If the quantifiers are of the same kind they relative order (if they are neighbours) does not matter, however the order of different kinds may matter:

Examples:

$\forall_{x} \forall_{y} P(x, y)$
is logically equivalent to:
$\forall_{y} \forall_{x} P(x, y)$
and both can be read as "each real is greater than all reals" (false)

The order of nested quantifiers matters!

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested

If the quantifiers are of the same kind they relative order (if they are neighbours) does not matter, however the order of different kinds may matter:

Examples:

$\forall_{x} \forall_{y} P(x, y)$
is logically equivalent to:
$\forall_{y} \forall_{x} P(x, y)$
and both can be read as "each real is greater than all reals" (false)

However:
$\forall_{x} \exists_{y} P(x, y)$ "for each real x there exists real y so that x is greater than y " (true)

The order of nested quantifiers matters!

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested

If the quantifiers are of the same kind they relative order (if they are neighbours) does not matter, however the order of different kinds may matter:

Examples:

$\forall_{x} \forall_{y} P(x, y)$
is logically equivalent to:
$\forall_{y} \forall_{x} P(x, y)$
and both can be read as "each real is greater than all reals" (false)

However:
$\forall_{x} \exists_{y} P(x, y)$ "for each real x there exists real y so that x is greater than $y^{\prime \prime}$ (true)
$\exists_{y} \forall_{x} P(x, y)$ "there is y that is greater than any real" (false)

Negating nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

When negating nested quantifiers, the negation can "pass" each quantifier from left to right turning it into the other kind, for example:

Negating nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

When negating nested quantifiers, the negation can "pass" each quantifier from left to right turning it into the other kind, for example:
$\neg \forall x \exists y \forall z P(x, y, z)$
三
三

Negating nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When negating nested quantifiers, the negation can "pass" each quantifier from left to right turning it into the other kind, for example:
$\neg \forall x \exists y \forall z P(x, y, z)$
三
$\exists x \neg \exists y \forall z P(x, y, z)$
三
E

Negating nested quantifiers

Discrete
Mathematics
（c）Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When negating nested quantifiers，the negation can＂pass＂each quantifier from left to right turning it into the other kind，for example：
$\neg \forall x \exists y \forall z P(x, y, z)$
三
$\exists x \neg \exists y \forall z P(x, y, z)$
三
$\exists x \forall y \neg \forall z P(x, y, z)$
三

Negating nested quantifiers

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

When negating nested quantifiers, the negation can "pass" each quantifier from left to right turning it into the other kind, for example:

$$
\begin{aligned}
& \neg \forall x \exists y \forall z P(x, y, z) \\
& \equiv \\
& \exists x \neg \exists y \forall z P(x, y, z) \\
& \equiv \\
& \exists x \forall y \neg \forall z P(x, y, z) \\
& \equiv \\
& \exists x \forall y \exists z \neg P(x, y, z)
\end{aligned}
$$

Examples: mixture of subsitutions and quantifiers

(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Let $G(x, y)$ be " $x \geq y$ " (" x is not less than y "), assume domain is natural numbers for both x and y

It is a predicate with 2 free variables.

Examples: mixture of subsitutions and quantifiers

(c) Marcin Sydow

Predicates

Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Let $G(x, y)$ be " $x \geq y$ " (" x is not less than y "), assume domain is natural numbers for both x and y

It is a predicate with 2 free variables.
Now, for example:

- substitution of 0 for y : $G(x, 0)$ is a predicate with 1 free variable (" x is nonnegative")

Examples: mixture of subsitutions and quantifiers

(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Negation
Nested quantifiers

Generalised operations

Let $G(x, y)$ be " $x \geq y$ " (" x is not less than y "), assume domain is natural numbers for both x and y

It is a predicate with 2 free variables.
Now, for example:

- substitution of 0 for y : $G(x, 0)$ is a predicate with 1 free variable (" x is nonnegative")
- quantifying x : $\forall_{x} G(x, y)$ is a predicate with 1 free variable ("each natural number is not less than y ")

Examples: mixture of subsitutions and quantifiers

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations

Let $G(x, y)$ be " $x \geq y$ " (" x is not less than y "), assume domain is natural numbers for both x and y

It is a predicate with 2 free variables.
Now, for example:

- substitution of 0 for y : $G(x, 0)$ is a predicate with 1 free variable (" x is nonnegative")
- quantifying x : $\forall_{x} G(x, y)$ is a predicate with 1 free variable ("each natural number is not less than y ")
- mix of substition and quantification, e.g. $\forall_{x} G(x, 0)$ is now a proposition (no free variables) "any natural is non-negative" (true!), etc.

Examples

Discrete

Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations
$\forall \epsilon \exists \delta \forall h(|h|<\delta) \Rightarrow(|f(x+h)-f(x)|<\epsilon)$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations
$\forall \epsilon \exists \delta \forall h(|h|<\delta) \Rightarrow(|f(x+h)-f(x)|<\epsilon)$
(continuity of function f at point x)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates

Quantifiers

Logical
equivalence
Negation
Nested quantifiers
$\forall \epsilon \exists \delta \forall h(|h|<\delta) \Rightarrow(|f(x+h)-f(x)|<\epsilon)$
(continuity of function f at point x)
$\forall x \forall \epsilon \exists \delta \forall h(|h|<\delta) \Rightarrow(|f(x+h)-f(x)|<\epsilon)$ (continuity of function f)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers

$$
\forall \epsilon \exists m \forall n\left|a_{m+n}-b\right|<\epsilon
$$

Nested quantifiers

Examples

Discrete

Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations
$\forall \epsilon \exists m \forall n\left|a_{m+n}-b\right|<\epsilon$
(convergence of a sequence a to limit b)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers
$\forall \epsilon \exists m \forall n\left|a_{m+n}-b\right|<\epsilon$
(convergence of a sequence a to limit b)
$\forall x \forall \epsilon \exists m \forall n\left|f_{m+n}(x)-f(x)\right|<\epsilon$

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers
$\forall \epsilon \exists m \forall n\left|a_{m+n}-b\right|<\epsilon$
(convergence of a sequence a to limit b)
$\forall x \forall \epsilon \exists m \forall n\left|f_{m+n}(x)-f(x)\right|<\epsilon$
(convergence of a sequence of functions f_{i} to a function f)

Examples

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested quantifiers

Generalised operations
$\forall \epsilon \exists m \forall n\left|a_{m+n}-b\right|<\epsilon$
(convergence of a sequence a to limit b)
$\forall x \forall \epsilon \exists m \forall n\left|f_{m+n}(x)-f(x)\right|<\epsilon$
(convergence of a sequence of functions f_{i} to a function f)
$\forall \epsilon \exists m \forall x \forall n\left|f_{m+n}(x)-f(x)\right|<\epsilon$

Example: "big O" asymptotic notation

Discrete

Mathematics

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence

$$
f(n)=O(g(n))
$$

Negation
Nested quantifiers

Example: "big O" asymptotic notation

Discrete
Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

$$
f(n)=O(g(n))
$$

$$
\exists c \exists n_{0} \forall n\left(n>n_{0}\right) \Rightarrow f(n) \leq c \cdot g(n)
$$

Generalised unions and intersections

(c) Marcin Sydow

Predicates
Quantifiers
Logical
equivalence
Negation
Nested
quantifiers
Generalised operations

Imagine we have a family \mathcal{F} of sets indexed by a set of indices I (that can be infinite!):
$\mathcal{F}=\left\{F_{i}: i \in I\right\}$
The generalised union of F, denoted as $\bigcup_{i \in I} F_{i}$ is defined as follows:

$$
\bigcup_{i \in I} F_{i}=\left\{x: \exists_{i \in I} x \in F_{i}\right\}
$$

The generalised intersection of F, denoted as $\bigcap_{i \in I} F_{i}$ is defined as follows:
$\bigcap_{i \in I} F_{i}=\left\{x: \forall_{i \in I} x \in F_{i}\right\}$

Summary

- Predicates
- Quantifiers
- Negation

■ Logical equivalence of predicates

- Nested quantifiers

■ Generalised set operations

Example tasks/questions/problems

Discrete
(c) Marcin Sydow

- definition of predicate, free variable
- definition and interpretation of quantifiers (2 kinds)
- negating the quantifiers (including nested ones)
- practice translating mathematical concepts to the predicate logic. E.g.:

■ using only logical and mathematical symbols "=", "*" define a predicate $Q(x, y)$ that reads as " x is a divisor of y " for the domain of integer variables x, y (hint: you can use helper variables and quantifiers)
■ using only logical symbols and " $<$ " and " $=$ " write a predicate specifying that \times (a variable) is a maximum in some set S of numbers (being the domain)

■ give examples of predicates $P(x), Q(x)$ and domain that show that the two following statements: $\left(\forall_{x} P(x) \vee Q(x)\right)$ and $\forall_{x} P(x) \vee \forall_{x} Q(x)$ are not logically equivalent. Does any of them implies the other? (i.e. is any of them a stronger condition?)

Discrete Mathematics
(c) Marcin Sydow

Predicates
Quantifiers
Logical equivalence

Thank you for your attention.
Negation
Nested
quantifiers
Generalised operations

