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Order relation

A binary relation R ⊆ X 2 is called a partial order if and only if
it is:

1 reflexive
2 anti-symmetric
3 transitive

Denotation: a symbol � can be used to denote the symbol of a
partial order relation (e.g. a � b)

Note: a pair (X ,�) where � is a partial order on X is also
called a poset.
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Examples

are the following partial orders?:

“≤” on pairs of numbers? yes
aRb ⇔ “a divides b” for nonzero integers? yes
“<” on pairs of numbers? no
≥ on pairs of numbers yes
⊆ on pairs of subsets of a given universe? yes
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are the following partial orders?:
“≤” on pairs of numbers? yes
aRb ⇔ “a divides b” for nonzero integers? yes
“<” on pairs of numbers? no
≥ on pairs of numbers yes
⊆ on pairs of subsets of a given universe? yes



Discrete
Mathematics

(c) Marcin
Sydow

Order
relation
Quasi-order

Divisibility

Prime
numbers

GCD and
LCM

Comparable and uncomparable elements

If �⊆ X 2 is a partial order and for some x , y ∈ X it holds that
x � y or y � x we say that elements x , y are comparable in R .

Otherwise, x and y are uncomparable.

If x � y and x 6= y we say x is “smaller” than y or that y is
“greater” than x.

The word partial reflects that not all pairs of the domain of
partial order must be comparable.
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Linear order

A partial order R that satisfies the following additional 4th
condition:

∀x , y ∈ X x � y ∨ y � x
(i.e. all elements of the domain are comparable)

is called linear order.

Examples:
which of the following partial orders are linear orders?
(in negative cases show at least one pair of incomparable
elements)

≤ on pairs of numbers? yes
“a divides b” for non-zero integers? no
(show an incomparable pair)
⊆ on pairs of subsets of a given universe? no
(show an incomparable pair)
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Upper and lower bounds

If (X ,�) is a poset and A ⊆ X so that for all a ∈ A it holds
that a � u for some u, u is called upper bound of A. Similarly,
if for all a ∈ A it holds that l � a, for some l, l is called an
lower bound of A.

Example: A = (0, 1) ⊆ R . 5,2,1 are examples of upper bounds
of A, -13,-1,0 are examples of lower bounds of A.
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Maximal and minimal elements

the element u is maximal element of A ⊆ X ⇔ there is no
element v 6= u in A, so that u � v
the element u is minimal element of A ⊆ X ⇔ there is no
element v 6= u in A, so that v � u

Note: there can be more than one maximal or minimal element
of a set if they are non-comparable (but there might be no
maximal or minimal element of a set)

Example: the set (0, 1] ⊆ R has no minimal element. The set of
odd naturals has no maximal element.
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Greatest and Smallest element

An element is greatest ⇔ if it is a unique maximal element and
it is comparable with all the other elements.

An element is smallest ⇔ if it is a unique minimal element and
it is comparable with all the other elements.

Note: there could be a unique maximal (minimal) element that
is not greatest (smallest), e.g. the poset (Q,≤) with
“artificially” added one element that is not comparable with any
other element (it is a unique minimal and maximal but is not
greatest nor smallest since it is not comparable with anything)
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Successor and predecessor

v is a successor of u ⇔ v is the minimal of all the
elements larger than u (denotation: v � u)
v is a predecessor of u ⇔ v is the maximal of all the
elements smaller than u (denotation: v ≺ u)

Example: in the poset (N,≤) every element n has a successor
(it is n + 1) and every element except 0 has a predecessor.

In the poset (Q,≤) no element has a successor nor predecessor.
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Chain and antichain

Let (X ,�) be a poset:

C ⊂ X is called a chain ⇔ all pairs of elements of C are
comparable
A ⊂ X is called an anti-chain ⇔ all pairs of elements of A
are uncomparable

Examples:
({2, 4, 16, 64}, |) is a chain
({3, 5, 8}, |) is an antichain.
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Hasse diagram

If each non-minimal element has a predecessor and each
non-maximal element has a successor it is possible to make the
Hasse Diagram of a poset (X ,�), which is a visualisation of a
poset.

Hasse Diagram of a poset (X ,�) is a picture of a directed
graph G = (V ,E ), where vertices are the elements of X
(V = X ) and directed arcs represent the successor relation
(E = {(x , y) ∈ X 2 : x ≺ y}). By convention, any larger
element on Hasse Diagram is placed higher than any smaller
element (if they are comparable).

Example: Hasse Diagram of (show which elements are maximal,
minimal, largest, smallest, chains, antichains, etc.):

({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, |)
(P({a, b, c}),⊆)
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Dense order

If a poset (X ,�) has the following property:

For any pair x , y ∈ X such that x � y it holds that there exists
z so that:

z 6= x and z 6= y
x � z and z � y

We call the poset a dense order

Example: (R,≤) is a dense order. (N,≤) is not a dense order.

Notice: Any non-empty dense order must be infinite.
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Well ordering

A poset (X ,�) is well-ordered ⇔ each non-empty subset
A ⊂ X has the smallest element.

Example: (N,≤) is well-ordered. (Q,≤) is not well ordered
(why?).
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Initial Intervals and Real numbers

For a poset (X ,�) an initial interval of X is any subset Y of
X that satifies the following property: y ∈ Y ⇒ ∀x�y x ∈ Y .

Example: for the poset (Z ,≤) and any z ∈ Z the set of the
form Yz = {x ∈ Z : x ≤ z} is an initial interval. For the poset
(Q,≤), any set of the form (−∞, a), a ∈ Q or (−∞, a] is an
initial interval.

Real numbers can be defined as all the possible initial
intervals of the set of rational numbers that do not have
the largest element.
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Quasi-order

A binary relation R ⊆ X 2 is called a quasi-order if and only if
it is:

1 reflexive
2 transitive

Note: it is “almost” a partial order but without anti-symmetry.

Example: Asymptotic notation “Big O” for comparing rates of
growth of two functions.
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Asymptotic “Big O” notation

Asymptotic notation for functions: For two functions
f , g : N → N+, (f , g) ∈ R if and only if
∃c∈Z+ ∃n0∈N ∀n≥n0 f (n) ≤ c · g(n)

We denote this relation as: f (n) = O(g(n)) (“Big O”
asymptotic notation).

It serves for comparing the rate of growth of functions.

Interpretation: f (n) = O(g(n)) reads as “the function f has rate
of growth not higher than the rate of growth of g”.

Example: n + 1 = O(n2), n+1 = O(n), log(n) = O(n), etc.
But not n2 = O(n), etc.
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Big O notation is quasi-order

is reflexive
is transitive

But is not anti-symmetric, for example:
n+1 = O(n), n = O(n+1)
but: n is a different function than n+1
1/2 n = O(3n), 3n = O(1/2 n)
but 1/2 and 3n are different functions.
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Similarity relation

A relation that is:
reflexive
symmetric

is called a similarity relation. (notice: similarity is not
necessarily transitive)

Denotation: x ∼ y

Example: x , y ∈ R : x ∼ y ⇔ |x − y | ≤ 1 is an example of
similarity relation.
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Divisibility

For two integers a, b ∈ Z , a 6= 0 we say that a divides b ⇔
there exists an integer c ∈ Z so that b = a · c .

We say: a is a factor of b, b is a multiple of a.

Denotation: a|b, if a does not divide b: a - b

Example: 17|51, 7 - 15

How many are there positive integers divisible by d ∈ N+ not
greater than n ∈ N+ (e.g.: n = 50, d = 17)?

bn/dc
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Divisibility

For two integers a, b ∈ Z , a 6= 0 we say that a divides b ⇔
there exists an integer c ∈ Z so that b = a · c .

We say: a is a factor of b, b is a multiple of a.

Denotation: a|b, if a does not divide b: a - b

Example: 17|51, 7 - 15

How many are there positive integers divisible by d ∈ N+ not
greater than n ∈ N+ (e.g.: n = 50, d = 17)? bn/dc
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Properties of divisibility

For any a, b, c ∈ Z the following holds:
if a|b and a|c then a|(b + c)
if a|b then a|bc for any integer c
if a|b and b|c then a|c (transitivity)
if a|b and a|c then a|mb + nc for any m, n ∈ Z
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Integer Division

For any a ∈ Z and d ∈ Z+ there exist unique integers q and
r , where 0 ≤ r < d such that:

a = dq + r

Naming: d - divisor, q – quotient, r – remainder

Denotations:
q = a div d
r = a mod d (read: “a modulo d”)
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Congruency modulo m

Let a, b ∈ Z and m ∈ Z+. A is congruent to b modulo m iff
m divides (a-b).

Equivalently: a ≡ b (mod m) ⇔ there exists an integer k ∈ Z
such that a = b + km

Denotation: a ≡ b (mod m)

Lemma: a ≡ b (mod m) ⇔ a mod m = b mod m

Is congruence equivalence relation?

yes (it is reflexive,
symmetric and transitive)
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Congruency modulo m

Let a, b ∈ Z and m ∈ Z+. A is congruent to b modulo m iff
m divides (a-b).

Equivalently: a ≡ b (mod m) ⇔ there exists an integer k ∈ Z
such that a = b + km

Denotation: a ≡ b (mod m)

Lemma: a ≡ b (mod m) ⇔ a mod m = b mod m

Is congruence equivalence relation? yes (it is reflexive,
symmetric and transitive)
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Properties of congruency

For a, b, c , d ∈ Z and m ∈ Z+, if:
a ≡ b (mod m) and c ≡ d (mod m) then:

a + c ≡ b + d (mod m)
ac ≡ bd (mod m)
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Prime numbers

A positive integer p > 1 is called prime number iff it is
divisible only by 1 and itself (p). Otherwise it is called a
composite number.

The sequence of prime numbers:

2,3,5,7,11,13,17,19,23,29,31,37,41,47...

There is no largest prime (i.e. there are infinitely many primes)
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The Fundamental Theorem of Arithmetic

Every positive integer a greater than 1 can be uniquely
represented as a prime or product of primes:

a = pe1
1 pe2

2 ...pen
n

where each ei is a natural positive number.

Examples:
3 = 31

333 = 32 · 371

To test whether a given number a is prime it is enough to check
its divisibility by all prime numbers up to b

√
ac (why?)
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Infininitude of Primes

There are infinitely many primes.

Proof: (reductio ad absurdum) Assume that there are only n
(finitely many) primes: p1, ..., pn. Lets consider the following
number: p = p1 · ... · pn + 1. The number p is not divisible by
any prime (the remainder is 1), so that it is divisible only by 1
and itself. So p is a prime number. But p is different than any
of the n primes p1, ..., pn (as it is larger), what makes a
contradiction of the assumptions.
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Prime Number Theorem

The ratio of prime numbers not exceeding n ∈ N for n tending
to infinity has a limit of n/ln(n).

Example:
for n = 50 there are 14 primes not greater than 50. The above
approximation works quite well even for such a low value of n
since 50/ln(50) = 12.78.



Discrete
Mathematics

(c) Marcin
Sydow

Order
relation
Quasi-order

Divisibility

Prime
numbers

GCD and
LCM

Greatest Common Divisor (GCD)

For a pair of numbers a, b ∈ Z (not both being zero) their
greatest common divisor d is the largest integer d such that
d |a and d |b.

Denotation: gcd(a,b)

Examples: gcd(10,15)=5, gcd(17,12)=1

The numbers a, b ∈ Z are relatively prime iff gcd(a,b)=1.

Examples: 9 and 20, 35 and 49, etc.
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Least Common Multiple (LCM)

For a pair of positive numbers a, b ∈ Z+ their least common
multiple l is the smallest number that is divisible by both a and
b.

Denotation: lcm(a,b)

Example: lcm(4,6)=12, lcm(10,8)=40

Note: for any a, b ∈ Z+ the following holds:
ab = gcd(a, b) · lcm(a, b)
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GCD and LCM vs prime factorisation

For a pair of two positive integers a, b ∈ Z+, consider prime
factorisations regarding all prime divisors of a and b of the
following form:

a = pa1
1 · ... · pan

n and b = pb1
1 · ... · pbn

n , where each ai , bi is a
natural number (can be 0).

Then:
gcd(a, b) = pmin(a1,b1)

1 · ... · pmin(an,bn)
n

lcm(a, b) = pmax(a1,b1)
1 · ... · pmax(an,bn)

n

Example: 10 = 2151, 8 = 2350 and lcm(10,8)=2351 = 40
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Examples of Applications

hashing functions (h(k) = k mod m)
pseudo-random numbers: xn+1 = (axn + c)mod m (linear
congruence method)
cryptology (y = (ax + c) mod m, in particular “Ceasar’s
code”: y = (x + 3)mod26)
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Summary

partial order relation
linear order
minimal, maximal elements, chains, anti-chains
dense, continuous, well ordering
divisibility relation and basic number theory
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Example tasks/questions/problems

For each of the following: precise definition and ability to
compute on the given example (if applicable):

Order relation and its variants, and concepts (e.g.
comparable, minimal, largest, chain, anti-chain, linear
order, upper bound, dense order, well-ordered set, etc.)
divisibility, prime number, fundamental theorem of
arithmetic, factorisation into prime numbers, gcd, lcm,
congruence, etc.
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Thank you for your attention.
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