Di	scre	ete	
Math	nem	ati	cs

(c) Marcin Sydow

Order relation Quasi-ord

Prime numbers

GCD and LCM

Discrete Mathematics Order Relation

(c) Marcin Sydow

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Contents

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

numbers

GCD and LCM

- partial order relation
- linear order
- minimal, maximal elements, chains, anti-chains

- dense, continuous, well ordering
- divisibility relation and basic number theory

Order relation

Discrete Mathematics

(c) Marcin Sydow

Order relation

Divisibility

Prime numbers

GCD and LCM A binary relation $R \subseteq X^2$ is called a **partial order** if and only if it is:

1 reflexive

2 anti-symmetric

3 transitive

Denotation: a symbol \leq can be used to denote the symbol of a partial order relation (e.g. $a \leq b$)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Note: a pair (X, \preceq) where \preceq is a partial order on X is also called a **poset**.

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-order

Divisibility

Prime numbers

GCD and LCM

are the following partial orders?:

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-ord

Divisibility

Prime numbers

GCD and LCM are the following partial orders?: " \leq " on pairs of numbers?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discrete Mathematics

(c) Marcin Sydow

Order relation Ouasi-ord

Divisibility

Prime numbers

GCD and LCM are the following partial orders?: " \leq " on pairs of numbers? yes $aRb \Leftrightarrow$ "a divides b" for nonzero integers?

Discrete Mathematics

(c) Marcin Sydow

Order relation

quasi orac

Prime numbers

GCD and LCM are the following partial orders?: "≤" on pairs of numbers? yes

 $\textit{aRb} \Leftrightarrow$ "a divides b" for nonzero integers? yes

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

"<" on pairs of numbers?

Discrete Mathematics

(c) Marcin Sydow

Order relation

Divisibility

Prime numbers

GCD and LCM are the following partial orders?:

" \leq " on pairs of numbers? yes

 $aRb \Leftrightarrow$ "a divides b" for nonzero integers? yes

- "<" on pairs of numbers? no
- \geq on pairs of numbers

Discrete Mathematics

(c) Marcin Sydow

Order relation

Divisibility

Prime numbers

GCD and LCM are the following partial orders?:

" \leq " on pairs of numbers? yes

 $aRb \Leftrightarrow$ "a divides b" for nonzero integers? yes

- "<" on pairs of numbers? no
- \geq on pairs of numbers yes
- \subseteq on pairs of subsets of a given universe?

Discrete Mathematics

(c) Marcin Sydow

Order relation

Divisibility

Prime numbers

GCD and LCM are the following partial orders?:

" \leq " on pairs of numbers? yes

 $aRb \Leftrightarrow$ "a divides b" for nonzero integers? yes

- "<" on pairs of numbers? no
- \geq on pairs of numbers yes
- \subseteq on pairs of subsets of a given universe? yes

Comparable and uncomparable elements

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Prime numbers

GCD and LCM If $\preceq \subseteq X^2$ is a partial order and for some $x, y \in X$ it holds that $x \preceq y$ or $y \preceq x$ we say that elements x, y are **comparable** in *R*.

Otherwise, x and y are **uncomparable**.

If $x \leq y$ and $x \neq y$ we say x is "smaller" than y or that y is "greater" than x.

The word **partial** reflects that not all pairs of the domain of partial order must be comparable.

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM A partial order R that satisfies the following additional 4th condition:

 $\forall x, y \in X \, x \preceq y \lor y \preceq x$

(i.e. all elements of the domain are comparable)

is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM A partial order R that satisfies the following additional 4th condition:

$$\forall x, y \in X \ x \preceq y \lor y \preceq x$$

(i.e. all elements of the domain are comparable)

is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 \leq on pairs of numbers?

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM A partial order R that satisfies the following additional 4th condition:

 $\forall x, y \in X \, x \preceq y \lor y \preceq x$

(i.e. all elements of the domain are comparable)

is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

- \leq on pairs of numbers? yes
- "a divides b" for non-zero integers?

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM A partial order R that satisfies the following additional 4th condition:

 $\forall x, y \in X \, x \preceq y \lor y \preceq x$

(i.e. all elements of the domain are comparable)

is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

 \leq on pairs of numbers? yes

"a divides b" for non-zero integers? no

(show an incomparable pair)

 \subseteq on pairs of subsets of a given universe?

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM A partial order R that satisfies the following additional 4th condition:

 $\forall x, y \in X \, x \preceq y \lor y \preceq x$

(i.e. all elements of the domain are comparable)

is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

(ロ) (型) (E) (E) (E) (O)

 \leq on pairs of numbers? yes

"a divides b" for non-zero integers? no

(show an incomparable pair)

 \subseteq on pairs of subsets of a given universe? no (show an incomparable pair)

Upper and lower bounds

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM If (X, \preceq) is a poset and $A \subseteq X$ so that for all $a \in A$ it holds that $a \preceq u$ for some u, u is called **upper bound of A**. Similarly, if for all $a \in A$ it holds that $I \preceq a$, for some I, I is called an **lower bound of A**.

Example: $A = (0, 1) \subseteq R$. 5,2,1 are examples of upper bounds of A, -13,-1,0 are examples of lower bounds of A.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Maximal and minimal elements

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-ord

Divisibility

Prime numbers

GCD and LCM

- the element u is maximal element of $A \subseteq X \Leftrightarrow$ there is no element $v \neq u$ in A, so that $u \preceq v$
- the element u is **minimal** element of $A \subseteq X \Leftrightarrow$ there is no element $v \neq u$ in A, so that $v \preceq u$

Note: there can be more than one maximal or minimal element of a set if they are non-comparable (but there might be no maximal or minimal element of a set)

Example: the set $(0,1] \subseteq R$ has no minimal element. The set of odd naturals has no maximal element.

Greatest and Smallest element

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Prime numbers

GCD and LCM An element is **greatest** \Leftrightarrow if it is a unique maximal element and it is comparable with all the other elements.

An element is smallest \Leftrightarrow if it is a unique minimal element and it is comparable with all the other elements.

Note: there could be a unique maximal (minimal) element that is not greatest (smallest), e.g. the poset (Q, \leq) with "artificially" added one element that is not comparable with any other element (it is a unique minimal *and* maximal but is not greatest nor smallest since it is not comparable with anything)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Successor and predecessor

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-ord

Divisibility

Prime numbers

GCD and LCM

- v is a successor of $u \Leftrightarrow v$ is the minimal of all the elements larger than u (denotation: $v \succ u$)
- v is a **predecessor** of $u \Leftrightarrow v$ is the maximal of all the elements smaller than u (denotation: $v \prec u$)

Example: in the poset (N, \leq) every element n has a successor (it is n + 1) and every element except 0 has a predecessor.

In the poset (Q, \leq) no element has a successor nor predecessor.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Chain and antichain

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and LCM

Let (X, \preceq) be a poset:

- $C \subset X$ is called a **chain** \Leftrightarrow all pairs of elements of *C* are comparable
- $A \subset X$ is called an **anti-chain** \Leftrightarrow all pairs of elements of A are uncomparable

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Examples:

- $(\{2, 4, 16, 64\}, |)$ is a chain
- ({3,5,8},|) is an antichain.

Hasse diagram

Discrete Mathematics

> (c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM If each non-minimal element has a predecessor and each non-maximal element has a successor it is possible to make the **Hasse Diagram** of a poset (X, \leq) , which is a visualisation of a poset.

Hasse Diagram of a poset (X, \preceq) is a picture of a directed graph G = (V, E), where vertices are the elements of X (V = X) and directed arcs represent the successor relation $(E = \{(x, y) \in X^2 : x \prec y\})$. By convention, any larger element on Hasse Diagram is placed higher than any smaller element (if they are comparable).

Example: Hasse Diagram of (show which elements are maximal, minimal, largest, smallest, chains, antichains, etc.):

- $\bullet (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, |)$
- $(P(\{a, b, c\}), \subseteq)$

Dense order

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-ord

Divisibility

Prime numbers

GCD and LCM If a poset (X, \preceq) has the following property:

For any pair $x, y \in X$ such that $x \preceq y$ it holds that there exists z so that:

• $z \neq x$ and $z \neq y$

• $x \preceq z$ and $z \preceq y$

We call the poset a dense order

Example: (R, \leq) is a dense order. (N, \leq) is not a dense order.

Notice: Any non-empty dense order must be infinite.

Well ordering

Discrete Mathematics

(c) Marcin Sydow

Order relation

Quasi-orde

Divisibility

Prime numbers

GCD and _CM A poset (X, \preceq) is well-ordered \Leftrightarrow each non-empty subset $A \subset X$ has the smallest element.

Example: (N, \leq) is well-ordered. (Q, \leq) is not well ordered (why?).

Initial Intervals and Real numbers

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM For a poset (X, \preceq) an **initial interval of X** is any subset Y of X that satifies the following property: $y \in Y \Rightarrow \forall_{x \preceq y} x \in Y$.

Example: for the poset (Z, \leq) and any $z \in Z$ the set of the form $Y_z = \{x \in Z : x \leq z\}$ is an initial interval. For the poset (Q, \leq) , any set of the form $(-\infty, a)$, $a \in Q$ or $(-\infty, a]$ is an initial interval.

Real numbers can be defined as all the possible initial intervals of the set of rational numbers that do not have the largest element.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Quasi-order

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM A binary relation $R \subseteq X^2$ is called a **quasi-order** if and only if it is:

1 reflexive

2 transitive

Note: it is "almost" a partial order but without anti-symmetry. Example: Asymptotic notation "Big O" for comparing rates of growth of two functions.

Asymptotic "Big O" notation

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order Divisibility

Prime numbers

GCD and LCM Asymptotic notation for functions: For two functions $f, g: N \to N^+$, $(f, g) \in R$ if and only if $\exists_{c \in Z^+} \exists_{n_0 \in N} \forall_{n \ge n_0} f(n) \le c \cdot g(n)$

We denote this relation as: f(n) = O(g(n)) ("Big O" asymptotic notation).

It serves for comparing the rate of growth of functions.

Interpretation: f(n) = O(g(n)) reads as "the function f has rate of growth not higher than the rate of growth of g".

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Example: $n + 1 = O(n^2)$, n+1 = O(n), $\log(n) = O(n)$, etc. But not $n^2 = O(n)$, etc.

Big O notation is quasi-order

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM is reflexive

is transitive

But is not anti-symmetric, for example: n+1 = O(n), n = O(n+1)but: n is a different function than n+1 1/2 n = O(3n), 3n = O(1/2 n)but 1/2 and 3n are different functions.

Similarity relation

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM A relation that is:

- reflexive
- symmetric

is called a **similarity relation**. (notice: similarity is not necessarily transitive)

Denotation: $x \sim y$

Example: $x, y \in R$: $x \sim y \Leftrightarrow |x - y| \le 1$ is an example of similarity relation.

Divisibility

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Divisibility

Prime numbers GCD and For two integers $a, b \in Z$, $a \neq 0$ we say that a divides $b \Leftrightarrow$ there exists an integer $c \in Z$ so that $b = a \cdot c$.

We say: a is a **factor** of b, b is a **multiple** of a.

Denotation: a|b, if a does not divide b: $a \nmid b$

```
Example: 17|51, 7 / 15
```

How many are there positive integers divisible by $d \in N^+$ not greater than $n \in N^+$ (e.g.: n = 50, d = 17)?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Divisibility

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Divisibility

Prime numbers GCD anc For two integers $a, b \in Z$, $a \neq 0$ we say that a divides $b \Leftrightarrow$ there exists an integer $c \in Z$ so that $b = a \cdot c$.

We say: a is a **factor** of b, b is a **multiple** of a.

Denotation: a|b, if a does not divide b: $a \nmid b$

```
Example: 17|51, 7 / 15
```

How many are there positive integers divisible by $d \in N^+$ not greater than $n \in N^+$ (e.g.: n = 50, d = 17)? $\lfloor n/d \rfloor$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Properties of divisibility

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM For any $a, b, c \in Z$ the following holds:

- if a|b and a|c then a|(b+c)
- if a|b then a|bc for any integer c
- if a|b and b|c then a|c (transitivity)
- if a|b and a|c then a|mb + nc for any $m, n \in Z$

Integer Division

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Divisibility

Prime numbers

GCD and LCM For any $a \in Z$ and $d \in Z^+$ there exist unique integers q and r, where $0 \le r < d$ such that:

$$a = dq + r$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Naming: d - divisor, q - quotient, r - remainder

Denotations:

 $\bullet q = a \operatorname{div} d$

• $r = a \mod d$ (read: "a modulo d")

Congruency modulo m

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM Let $a, b \in Z$ and $m \in Z^+$. A is congruent to b modulo m iff m divides (a-b).

Equivalently: $a \equiv b \pmod{m} \Leftrightarrow$ there exists an integer $k \in Z$ such that a = b + km

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Denotation: $a \equiv b \pmod{m}$

Lemma: $a \equiv b \pmod{m} \Leftrightarrow a \mod{m} = b \mod{m}$

Is congruence equivalence relation?

Congruency modulo m

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM Let $a, b \in Z$ and $m \in Z^+$. A is congruent to b modulo m iff m divides (a-b).

Equivalently: $a \equiv b \pmod{m} \Leftrightarrow$ there exists an integer $k \in Z$ such that a = b + km

Denotation: $a \equiv b \pmod{m}$

Lemma: $a \equiv b \pmod{m} \Leftrightarrow a \mod{m} = b \mod{m}$

Is **congruence equivalence relation**? yes (it is reflexive, symmetric and transitive)

Properties of congruency

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Divisibility

Prime numbers

GCD and LCM For $a, b, c, d \in Z$ and $m \in Z^+$, if: $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then: $a + c \equiv b + d \pmod{m}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

•
$$ac \equiv bd \pmod{m}$$

I

Prime numbers

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order Divisibility

Prime numbers

GCD and LCM A positive integer p > 1 is called **prime number** iff it is divisible only by 1 and itself (p). Otherwise it is called a *composite number*.

The sequence of prime numbers:

2,3,5,7,11,13,17,19,23,29,31,37,41,47...

There is no largest prime (i.e. there are infinitely many primes)

The Fundamental Theorem of Arithmetic

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM Every positive integer *a* greater than 1 can be **uniquely** represented as a prime or product of primes:

$$a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

where each e_i is a natural positive number.

Examples: $3 = 3^{1}$ $333 = 3^{2} \cdot 37^{1}$

The Fundamental Theorem of Arithmetic

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM Every positive integer *a* greater than 1 can be **uniquely** represented as a prime or product of primes:

$$a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$

where each e_i is a natural positive number.

Examples:

$$3 = 3^1$$

 $333 = 3^2 \cdot 37^1$

To test whether a given number *a* is prime it is enough to check its divisibility by all prime numbers up to $|\sqrt{a}|$ (why?)

Infininitude of Primes

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM There are infinitely many primes.

Proof: (reductio ad absurdum) Assume that there are only n (finitely many) primes: $p_1, ..., p_n$. Lets consider the following number: $p = p_1 \cdot ... \cdot p_n + 1$. The number p is not divisible by any prime (the remainder is 1), so that it is divisible only by 1 and itself. So p is a prime number. But p is different than any of the n primes $p_1, ..., p_n$ (as it is larger), what makes a contradiction of the assumptions.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Prime Number Theorem

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM The ratio of prime numbers not exceeding $n \in N$ for n tending to infinity has a limit of n/ln(n).

Example:

for n = 50 there are 14 primes not greater than 50. The above approximation works quite well even for such a low value of n since 50/ln(50) = 12.78.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Greatest Common Divisor (GCD)

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM For a pair of numbers $a, b \in Z$ (not both being zero) their **greatest common divisor** d is the largest integer d such that d|a and d|b.

Denotation: gcd(a,b)

Examples: gcd(10,15)=5, gcd(17,12)=1

The numbers $a, b \in Z$ are relatively prime iff gcd(a,b)=1.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Examples: 9 and 20, 35 and 49, etc.

Least Common Multiple (LCM)

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order Divisibility

Prime numbers

GCD and LCM For a pair of positive numbers $a, b \in Z^+$ their least common multiple *l* is the smallest number that is divisible by both a and b.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Denotation: Icm(a,b)

Example: lcm(4,6)=12, lcm(10,8)=40

Note: for any $a, b \in Z^+$ the following holds: $ab = gcd(a, b) \cdot lcm(a, b)$

GCD and LCM vs prime factorisation

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM For a pair of two positive integers $a, b \in Z^+$, consider prime factorisations regarding all prime divisors of a and b of the following form:

 $a = p_1^{a_1} \cdot \ldots \cdot p_n^{a_n}$ and $b = p_1^{b_1} \cdot \ldots \cdot p_n^{b_n}$, where each a_i, b_i is a natural number (can be 0).

Then:

$$gcd(a, b) = p_1^{min(a_1, b_1)} \cdot ... \cdot p_n^{min(a_n, b_n)}$$

$$lcm(a, b) = p_1^{max(a_1, b_1)} \cdot ... \cdot p_n^{max(a_n, b_n)}$$

Example: $10 = 2^{1}5^{1}$, $8 = 2^{3}5^{0}$ and $lcm(10,8)=2^{3}5^{1} = 40$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Examples of Applications

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-ord

Divisibility

Prime numbers

GCD and LCM

- hashing functions $(h(k) = k \mod m)$
- pseudo-random numbers: x_{n+1} = (ax_n + c)mod m (linear congruence method)
- cryptology (y = (ax + c) mod m, in particular "Ceasar's code": y = (x + 3)mod26)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Summary

Discrete Mathematics

(c) Marcin Sydow

- Order relation Quasi-ord
- Divisibility

Prime numbers

GCD and LCM

- partial order relation
- linear order
- minimal, maximal elements, chains, anti-chains

- dense, continuous, well ordering
- divisibility relation and basic number theory

Example tasks/questions/problems

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-order

Prime numbers

GCD and LCM For each of the following: precise definition and ability to compute on the given example (if applicable):

- Order relation and its variants, and concepts (e.g. comparable, minimal, largest, chain, anti-chain, linear order, upper bound, dense order, well-ordered set, etc.)
- divisibility, prime number, fundamental theorem of arithmetic, factorisation into prime numbers, gcd, lcm, congruence, etc.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Discrete Mathematics

(c) Marcin Sydow

Order relation Quasi-orde

Prime

GCD and LCM

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?