Discrete Mathematics

Order Relation

Contents

- partial order relation
- linear order
- minimal, maximal elements, chains, anti-chains
- dense, continuous, well ordering
- divisibility relation and basic number theory

Order relation

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A binary relation $R \subseteq X^{2}$ is called a partial order if and only if it is:

1 reflexive
2 anti-symmetric
3 transitive

Denotation: a symbol \preceq can be used to denote the symbol of a partial order relation (e.g. $a \preceq b$)

Note: a pair (X, \preceq) where \preceq is a partial order on X is also called a poset.

Examples

Discrete
Mathematics
(c) Marcin Sydow

Order relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:

Examples

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers?

Examples

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers? yes
$a R b \Leftrightarrow$ "a divides b" for nonzero integers?

Examples

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers? yes
$a R b \Leftrightarrow$ "a divides b" for nonzero integers? yes " $<$ " on pairs of numbers?

Examples

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers? yes
$a R b \Leftrightarrow$ "a divides b" for nonzero integers? yes
" $<$ " on pairs of numbers? no
\geq on pairs of numbers

Examples

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers? yes
$a R b \Leftrightarrow$ "a divides b" for nonzero integers? yes
" $<$ " on pairs of numbers? no
\geq on pairs of numbers yes
\subseteq on pairs of subsets of a given universe?

Examples

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM
are the following partial orders?:
" \leq " on pairs of numbers? yes
$a R b \Leftrightarrow$ "a divides b" for nonzero integers? yes
" $<$ " on pairs of numbers? no
\geq on pairs of numbers yes
\subseteq on pairs of subsets of a given universe? yes

Comparable and uncomparable elements

Discrete

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

If $\preceq \subseteq X^{2}$ is a partial order and for some $x, y \in X$ it holds that $x \preceq y$ or $y \preceq x$ we say that elements x, y are comparable in R.

Otherwise, x and y are uncomparable.
If $x \preceq y$ and $x \neq y$ we say x is "smaller" than y or that y is "greater" than x.

The word partial reflects that not all pairs of the domain of partial order must be comparable.

Linear order

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A partial order R that satisfies the following additional 4th condition:

■ $\forall x, y \in X x \preceq y \vee y \preceq x$ (i.e. all elements of the domain are comparable) is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)

Linear order

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A partial order R that satisfies the following additional 4th condition:

■ $\forall x, y \in X x \preceq y \vee y \preceq x$ (i.e. all elements of the domain are comparable) is called linear order.

Examples:

which of the following partial orders are linear orders? (in negative cases show at least one pair of incomparable elements)
\leq on pairs of numbers?

Linear order

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A partial order R that satisfies the following additional 4th condition:

■ $\forall x, y \in X x \preceq y \vee y \preceq x$ (i.e. all elements of the domain are comparable)
is called linear order.

Examples:

which of the following partial orders are linear orders?
(in negative cases show at least one pair of incomparable elements)
\leq on pairs of numbers? yes
"a divides b" for non-zero integers?

Linear order

Discrete Mathematics
(c) Marcin Sydow

Order
relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A partial order R that satisfies the following additional 4th condition:

■ $\forall x, y \in X x \preceq y \vee y \preceq x$ (i.e. all elements of the domain are comparable)
is called linear order.

Examples:

which of the following partial orders are linear orders?
(in negative cases show at least one pair of incomparable elements)
\leq on pairs of numbers? yes
"a divides b" for non-zero integers? no
(show an incomparable pair)
\subseteq on pairs of subsets of a given universe?

Linear order

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A partial order R that satisfies the following additional 4th condition:

■ $\forall x, y \in X x \preceq y \vee y \preceq x$ (i.e. all elements of the domain are comparable)
is called linear order.
Examples:
which of the following partial orders are linear orders?
(in negative cases show at least one pair of incomparable elements)
\leq on pairs of numbers? yes
"a divides b" for non-zero integers? no
(show an incomparable pair)
\subseteq on pairs of subsets of a given universe? no
(show an incomparable pair)

Upper and lower bounds

Discrete
Mathematics
(c) Marcin

Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

If (X, \preceq) is a poset and $A \subseteq X$ so that for all $a \in A$ it holds that $a \preceq u$ for some u, u is called upper bound of A. Similarly, if for all $a \in A$ it holds that $I \preceq a$, for some I, I is called an lower bound of A.

Example: $A=(0,1) \subseteq R .5,2,1$ are examples of upper bounds of $A,-13,-1,0$ are examples of lower bounds of A.

Maximal and minimal elements

Discrete Mathematics
(c) Marcin Sydow

Order
relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

- the element u is maximal element of $A \subseteq X \Leftrightarrow$ there is no element $v \neq u$ in A, so that $u \preceq v$
- the element u is minimal element of $A \subseteq X \Leftrightarrow$ there is no element $v \neq u$ in A, so that $v \preceq u$

Note: there can be more than one maximal or minimal element of a set if they are non-comparable (but there might be no maximal or minimal element of a set)

Example: the set $(0,1] \subseteq R$ has no minimal element. The set of odd naturals has no maximal element.

Greatest and Smallest element

Discrete
(c) Marcin

Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

An element is greatest \Leftrightarrow if it is a unique maximal element and it is comparable with all the other elements.

An element is smallest \Leftrightarrow if it is a unique minimal element and it is comparable with all the other elements.

Note: there could be a unique maximal (minimal) element that is not greatest (smallest), e.g. the poset (Q, \leq) with "artificially" added one element that is not comparable with any other element (it is a unique minimal and maximal but is not greatest nor smallest since it is not comparable with anything)

Successor and predecessor

Discrete
Mathematics
(c) Marcin

Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

■ v is a successor of $u \Leftrightarrow v$ is the minimal of all the elements larger than u (denotation: $v \succ u$)
■ v is a predecessor of $u \Leftrightarrow v$ is the maximal of all the elements smaller than u (denotation: $v \prec u$)

Example: in the poset (N, \leq) every element n has a successor (it is $n+1$) and every element except 0 has a predecessor.

In the poset (Q, \leq) no element has a successor nor predecessor.

Chain and antichain

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

Let (X, \preceq) be a poset:

- $C \subset X$ is called a chain \Leftrightarrow all pairs of elements of C are comparable
- $A \subset X$ is called an anti-chain \Leftrightarrow all pairs of elements of A are uncomparable

Examples:

- $(\{2,4,16,64\}, \mid)$ is a chain
- ($\{3,5,8\}, \mid)$ is an antichain.

Hasse diagram

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

If each non-minimal element has a predecessor and each non-maximal element has a successor it is possible to make the Hasse Diagram of a poset (X, \preceq), which is a visualisation of a poset.

Hasse Diagram of a poset (X, \preceq) is a picture of a directed graph $G=(V, E)$, where vertices are the elements of X ($V=X$) and directed arcs represent the successor relation $\left(E=\left\{(x, y) \in X^{2}: x \prec y\right\}\right)$. By convention, any larger element on Hasse Diagram is placed higher than any smaller element (if they are comparable).

Example: Hasse Diagram of (show which elements are maximal, minimal, largest, smallest, chains, antichains, etc.):

- $(\{1,2,3,4,5,6,7,8,9,10\}, \mid)$
- $(P(\{a, b, c\}), \subseteq)$

Dense order

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

If a poset (X, \preceq) has the following property:
For any pair $x, y \in X$ such that $x \preceq y$ it holds that there exists z so that:

■ $z \neq x$ and $z \neq y$
■ $x \preceq z$ and $z \preceq y$
We call the poset a dense order
Example: (R, \leq) is a dense order. (N, \leq) is not a dense order.
Notice: Any non-empty dense order must be infinite.

Well ordering

Order

relation
Quasi-order
A poset (X, \preceq) is well-ordered \Leftrightarrow each non-empty subset $A \subset X$ has the smallest element.

Example: (N, \leq) is well-ordered. (Q, \leq) is not well ordered (why?).

Initial Intervals and Real numbers

Discrete

For a poset (X, \preceq) an initial interval of \mathbf{X} is any subset Y of X that satifies the following property: $y \in Y \Rightarrow \forall_{x \preceq y} x \in Y$.

Example: for the poset (Z, \leq) and any $z \in Z$ the set of the form $Y_{z}=\{x \in Z: x \leq z\}$ is an initial interval. For the poset (Q, \leq), any set of the form $(-\infty, a), a \in Q$ or $(-\infty, a]$ is an initial interval.

Real numbers can be defined as all the possible initial intervals of the set of rational numbers that do not have the largest element.

Quasi-order

Discrete

Mathematics

(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A binary relation $R \subseteq X^{2}$ is called a quasi-order if and only if it is:

1 reflexive
2 transitive

Note: it is "almost" a partial order but without anti-symmetry.
Example: Asymptotic notation "Big O" for comparing rates of growth of two functions.

Asymptotic "Big O" notation

Discrete
(c) Marcin Sydow

Order
relation
Quasi-order
Divisibility
Prime

Asymptotic notation for functions: For two functions $f, g: N \rightarrow N^{+},(f, g) \in R$ if and only if $\exists_{c \in Z^{+}} \exists_{n_{0} \in N} \forall_{n \geq n_{0}} f(n) \leq c \cdot g(n)$

We denote this relation as: $f(n)=O(g(n))$ ("Big O" asymptotic notation).

It serves for comparing the rate of growth of functions.
Interpretation: $f(n)=O(g(n))$ reads as "the function f has rate of growth not higher than the rate of growth of g ".

Example: $n+1=O\left(n^{2}\right), n+1=O(n), \log (n)=O(n)$, etc. But not $n^{2}=O(n)$, etc.

Big O notation is quasi-order

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

- is reflexive
- is transitive

But is not anti-symmetric, for example:
$\mathrm{n}+1=\mathrm{O}(\mathrm{n}), \mathrm{n}=\mathrm{O}(\mathrm{n}+1)$
but: n is a different function than $\mathrm{n}+1$
$1 / 2 \mathrm{n}=\mathrm{O}(3 \mathrm{n}), 3 \mathrm{n}=\mathrm{O}(1 / 2 \mathrm{n})$
but $1 / 2$ and $3 n$ are different functions.

Similarity relation

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

A relation that is:
■ reflexive

- symmetric
is called a similarity relation. (notice: similarity is not necessarily transitive)

Denotation: $x \sim y$
Example: $x, y \in R: x \sim y \Leftrightarrow|x-y| \leq 1$ is an example of similarity relation.

Divisibility

Discrete
Mathematics
(c) Marcin Sydow

Order

relation

For two integers $a, b \in Z, a \neq 0$ we say that a divides $b \Leftrightarrow$ there exists an integer $c \in Z$ so that $b=a \cdot c$.

We say: a is a factor of b, b is a multiple of a.
Denotation: $a \mid b$, if a does not divide $\mathrm{b}: a \nmid b$
Example: 17|51, $7 \nmid 15$
How many are there positive integers divisible by $d \in N^{+}$not greater than $n \in N^{+}$(e.g.: $n=50, \mathrm{~d}=17$)?

Divisibility

Discrete
Mathematics
(c) Marcin Sydow

Order

relation

For two integers $a, b \in Z, a \neq 0$ we say that a divides $b \Leftrightarrow$ there exists an integer $c \in Z$ so that $b=a \cdot c$.

We say: a is a factor of b, b is a multiple of a.
Denotation: $a \mid b$, if a does not divide $\mathrm{b}: ~ a \nmid b$
Example: 17|51, $7 \nmid 15$
How many are there positive integers divisible by $d \in N^{+}$not greater than $n \in N^{+}$(e.g.: $\mathrm{n}=50, \mathrm{~d}=17$)? $\lfloor n / d\rfloor$

Properties of divisibility

Discrete
Mathematics
(c) Marcin Sydow

Order

relation

For any $a, b, c \in Z$ the following holds:

- if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$
- if $a \mid b$ then $a \mid b c$ for any integer c
- if $a \mid b$ and $b \mid c$ then $a \mid c$ (transitivity)
- if $a \mid b$ and $a \mid c$ then $a \mid m b+n c$ for any $m, n \in Z$

Integer Division

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

For any $a \in Z$ and $d \in Z^{+}$there exist unique integers q and r, where $0 \leq r<d$ such that:

$$
a=d q+r
$$

Naming: d - divisor, q - quotient, r - remainder
Denotations:

- $q=a \operatorname{div} d$

■ $r=a \bmod d$ (read: "a modulo d")

Congruency modulo m

Let $a, b \in Z$ and $m \in Z^{+}$. A is congruent to \mathbf{b} modulo \mathbf{m} iff m divides (a-b).

Equivalently: $a \equiv b(\bmod m) \Leftrightarrow$ there exists an integer $k \in Z$ such that $a=b+k m$

Denotation: $a \equiv b(\bmod m)$
Lemma: $a \equiv b(\bmod m) \Leftrightarrow \operatorname{amod} m=b \bmod m$
Is congruence equivalence relation?

Congruency modulo m

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

Let $a, b \in Z$ and $m \in Z^{+}$. A is congruent to \mathbf{b} modulo \mathbf{m} iff m divides (a-b).

Equivalently: $a \equiv b(\bmod m) \Leftrightarrow$ there exists an integer $k \in Z$ such that $a=b+k m$

Denotation: $a \equiv b(\bmod m)$
Lemma: $a \equiv b(\bmod m) \Leftrightarrow \operatorname{amod} m=b \bmod m$
Is congruence equivalence relation? yes (it is reflexive, symmetric and transitive)

Properties of congruency

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

For $a, b, c, d \in Z$ and $m \in Z^{+}$, if: $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then:
$\square a+c \equiv b+d(\bmod m)$
■ $a c \equiv b d(\bmod m)$

Prime numbers

A positive integer $p>1$ is called prime number iff it is divisible only by 1 and itself (p). Otherwise it is called a composite number.

The sequence of prime numbers:
2,3,5,7,11,13,17,19,23,29,31,37,41,47...
There is no largest prime (i.e. there are infinitely many primes)

The Fundamental Theorem of Arithmetic

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime numbers

Every positive integer a greater than 1 can be uniquely represented as a prime or product of primes:

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

where each e_{i} is a natural positive number.
Examples:

$$
3=3^{1}
$$

$$
333=3^{2} \cdot 37^{1}
$$

The Fundamental Theorem of Arithmetic

Every positive integer a greater than 1 can be uniquely represented as a prime or product of primes:

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

where each e_{i} is a natural positive number.
Examples:
$3=3^{1}$
$333=3^{2} \cdot 37^{1}$
To test whether a given number a is prime it is enough to check its divisibility by all prime numbers up to $\lfloor\sqrt{a}\rfloor$ (why?)

Infininitude of Primes

Discrete
Mathematics
(c) Marcin Sydow

Order
relation
Quasi-order
Divisibility
Prime numbers

There are infinitely many primes.
Proof: (reductio ad absurdum) Assume that there are only n (finitely many) primes: p_{1}, \ldots, p_{n}. Lets consider the following number: $p=p_{1} \cdot \ldots \cdot p_{n}+1$. The number p is not divisible by any prime (the remainder is 1), so that it is divisible only by 1 and itself. So p is a prime number. But p is different than any of the n primes p_{1}, \ldots, p_{n} (as it is larger), what makes a contradiction of the assumptions.

Prime Number Theorem

The ratio of prime numbers not exceeding $n \in N$ for n tending to infinity has a limit of $n / \ln (n)$.

Example:

 for $n=50$ there are 14 primes not greater than 50. The above approximation works quite well even for such a low value of n since $50 / \ln (50)=12.78$.
Greatest Common Divisor (GCD)

For a pair of numbers $a, b \in Z$ (not both being zero) their greatest common divisor d is the largest integer d such that $d \mid a$ and $d \mid b$.

Denotation: $\operatorname{gcd}(\mathbf{a}, \mathrm{b})$

Examples: $\operatorname{gcd}(10,15)=5, \operatorname{gcd}(17,12)=1$
The numbers $a, b \in Z$ are relatively prime iff $\operatorname{gcd}(a, b)=1$.
Examples: 9 and 20, 35 and 49, etc.

Least Common Multiple (LCM)

Order

relation
Quasi-order
For a pair of positive numbers $a, b \in Z^{+}$their least common multiple $/$ is the smallest number that is divisible by both a and b.

Denotation: $\operatorname{Icm}(\mathbf{a}, \mathbf{b})$
Example: $\operatorname{Icm}(4,6)=12, \operatorname{Icm}(10,8)=40$
Note: for any $a, b \in Z^{+}$the following holds:
$a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$

GCD and LCM vs prime factorisation

For a pair of two positive integers $a, b \in Z^{+}$, consider prime factorisations regarding all prime divisors of a and b of the following form:
$a=p_{1}^{a_{1}} \cdot \ldots \cdot p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} \cdot \ldots \cdot p_{n}^{b_{n}}$, where each a_{i}, b_{i} is a natural number (can be 0).

Then:
$■ \operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdot \ldots \cdot p_{n}^{\min \left(a_{n}, b_{n}\right)}$

- Icm $(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdot \ldots \cdot p_{n}^{\max \left(a_{n}, b_{n}\right)}$

Example: $10=2^{1} 5^{1}, 8=2^{3} 5^{0}$ and $\operatorname{Icm}(10,8)=2^{3} 5^{1}=40$

Examples of Applications

Discrete
Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

- hashing functions $(h(k)=k \bmod m)$
- pseudo-random numbers: $x_{n+1}=\left(a x_{n}+c\right) \bmod m$ (linear congruence method)
- cryptology $(y=(a x+c)$ mod m, in particular "Ceasar's code": $y=(x+3) \bmod 26)$

Summary

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

- partial order relation
- linear order
- minimal, maximal elements, chains, anti-chains
- dense, continuous, well ordering
- divisibility relation and basic number theory

Example tasks/questions/problems

Discrete
Mathematics
(c) Marcin

Sydow

Order
relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

For each of the following: precise definition and ability to compute on the given example (if applicable):

- Order relation and its variants, and concepts (e.g. comparable, minimal, largest, chain, anti-chain, linear order, upper bound, dense order, well-ordered set, etc.)
- divisibility, prime number, fundamental theorem of arithmetic, factorisation into prime numbers, gcd, lcm, congruence, etc.

Discrete Mathematics
(c) Marcin Sydow

Order

relation
Quasi-order
Divisibility
Prime
numbers
GCD and LCM

Thank you for your attention.

