Discrete Mathematics
 Mathematical Induction

(c) Marcin Sydow

Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

Contents

- Mathematical Induction

■ Examples of numerical and non-numerical statements than can be proven by mathematical induction

- Strong Mathematical Induction
- Recursive definitions
- Equivalence of Mathematical Induction with the well-ordering of the natural numbers

Statements about Natural Numbers

Discrete
Mathematics
(c) Marcin Sydow

Introduction Sum Notation

Proof

Examples
Recursive definitions

More proof examples

Imagine a statement concerning all natural numbers greater than some natural value that can be expressed in the form of a predicate:

$$
\forall_{n \geq n_{0}} P(n)
$$

where $n \in N$ is a free natural variable, and n_{0} is the smallest value having the property

Examples of $\forall_{n>n_{0}} P(n)$:
"for any $n \geq 0$ it holds that $n<2^{n "}$
"for any $n \geq 0$ the sum of first n odd numbers is equal to $n^{2 "}$ "for any $n \geq 1$ it holds that $2^{n}<n!$ "

Mathematical Induction

Discrete Mathematics
(c) Marcin Sydow

Introduction Sum Notation

Proof
Examples
Recursive definitions

More proof
examples

The principle of mathematical induction:
If the following 2 conditions hold, for some predicate $P(n)$, $n \in N$:
$1 P\left(n_{0}\right)$ is true for some $n_{0} \in N$ (Basis step)
$2 P(k) \Rightarrow P(k+1)$ is true for any $k \geq n_{0}$ (Inductive step) $)^{1}$
then: the predicate $P(n)$ is true for all $n \geq n_{0}$.
Mathematical Induction is a powerful technique for proving statements concerning natural numbers of the form $\forall_{n \geq n_{0}} P(n)$.

[^0]
Sum notation (reminder)

Discrete Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof
examples
Non-
numerical
examples
Strong

Induction

Let a_{i} be a sequence of numbers indexed by natural index $i \in N$. Then notation:

$$
\sum_{i=i_{0}}^{k} a_{i}
$$

Where:
■ i is the name of the index variable
$\square a_{i}$ is a sequence of numbers indexed by i
Denotes the sum of all the terms of the sequence a_{i} from $a_{i_{0}}$ up to a_{k} (both inclusive):

$$
\sum_{i=i_{0}}^{k} a_{i}=a_{i_{0}}+\cdots+a_{k}
$$

Examples of sum notation

Discrete

Mathematics

(c) Marcin Sydow

Introduction
Sum Notation
Proof
Examples
Recursive

definitions

More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

Examples:

$\sum_{i=2}^{5} i=$

Examples of sum notation

Discrete

Mathematics

(c) Marcin Sydow

Introduction

Sum Notation
Proof

Examples:

$\sum_{i=2}^{5} i=2+3+4+5$
$\sum_{i=4}^{6} i^{2}=$
More proof
examples

Non-

numerical
examples
Strong
Induction
Examples of mistakes

Validity

Examples of sum notation

Discrete Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof examples

Non-

numerical

 examples
Strong

Induction
Examples of mistakes

Validity

Examples:

$\sum_{i=2}^{5} i=2+3+4+5$
$\sum_{i=4}^{6} i^{2}=4^{2}+5^{2}+6^{2}=16+25+36=77$

Product notation

Discrete Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof
examples
Non-
numerical

examples

Strong
Induction
Examples of mistakes

Validity

Let a_{i} be a sequence of numbers indexed by natural index $i \in N$. Then notation:

$$
\prod_{i=i_{0}}^{k} a_{i}
$$

Where:

- i is the name of the index variable
- a_{i} is a sequence of numbers indexed by i

Denotes the product of all the terms of the sequence a_{i} from $a_{i_{0}}$ up to a_{k} (both inclusive):
$\prod_{i=i_{0}}^{k} a_{i}=a_{i_{0}} \cdots \cdots a_{k}$
Example:
$\prod_{i=1}^{n} i=$

Product notation

Discrete Mathematics
(c) Marcin Sydow

Introduction
Sum Notation
Proof
Examples
Recursive definitions

More proof examples

Let a_{i} be a sequence of numbers indexed by natural index $i \in N$. Then notation:

$$
\prod_{i=i_{0}}^{k} a_{i}
$$

Where:

- i is the name of the index variable

■ a_{i} is a sequence of numbers indexed by i
Denotes the product of all the terms of the sequence a_{i} from $a_{i_{0}}$ up to a_{k} (both inclusive):
$\prod_{i=i_{0}}^{k} a_{i}=a_{i_{0}} \cdots \cdots a_{k}$
Example:
$\prod_{i=1}^{n} i=1 \cdot 2 \cdot \ldots \cdot n=n!$

Triangle Numbers

Discrete

Mathematics

(c) Marcin Sydow

Introduction Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

$$
P(n):
$$

$$
T_{n}=\sum_{i=1}^{n} i=
$$

Triangle Numbers

Discrete

Mathematics

(c) Marcin Sydow

Introduction Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

$$
\begin{gathered}
P(n): \\
T_{n}=\sum_{i=1}^{n} i= \\
1+2+3+\ldots+n=?
\end{gathered}
$$

Triangle Numbers

Discrete

Mathematics

(c) Marcin Sydow

Introduction Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

$$
\begin{gathered}
P(n): \\
T_{n}=\sum_{i=1}^{n} i= \\
1+2+3+\ldots+n=? \\
=\frac{n(n+1)}{2}
\end{gathered}
$$

Triangle Numbers

$$
\begin{gathered}
P(n): \\
T_{n}=\sum_{i=1}^{n} i= \\
1+2+3+\ldots+n=? \\
=\frac{n(n+1)}{2}
\end{gathered}
$$

The sum of n first non-negative natural numbers is called triangle number.

Is the above equation true for all $n \in N$?
(proof by mathematical induction)

Proof of the formula for Triangle Numbers

(c) Marcin Sydow

Introduction Sum Notation

Proof Examples

Recursive definitions

More proof examples

Non-

numerical
examples

Strong

Induction
Examples of mistakes

Basis step:

$P(1)$:
\square left-hand side: $\sum_{i=1}^{1}=1$

- right-hand side: $1 \cdot(1+1) / 2=1$
$P(1)$ holds (i.e. the basis step is done)
Inductive assumption:
$\forall_{k \geq 1} \sum_{i=1}^{k} i=k(k+1) / 2$
Inductive step (the main part of the proof):
$\sum_{i=1}^{k+1} i=\sum_{i=1}^{k} i+(k+1)=k(k+1) / 2+(k+1)=$
$k(k+1) / 2+2(k+1) / 2=(k+2)(k+1) / 2$
The above is equivalent to $P(k+1)$, so that the inductive step is done, what completes the proof for all $n>0$.

Sum of geometric series

Discrete

Mathematics

(c) Marcin Sydow
$a, r \in R, r \neq 1$

$$
P(n):
$$

Introduction

Sum Notation

Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical

examples

Strong

Induction
Examples of mistakes

Validity

Sum of geometric series

Discrete

Mathematics

(c) Marcin Sydow

$$
a, r \in R, r \neq 1
$$

$$
\begin{gathered}
P(n): \\
\sum_{i=0}^{n} a r^{i}= \\
a+a r+a r^{2}+\ldots+a r^{n}=?
\end{gathered}
$$

examples

Non-

numerical

examples

Strong

Induction
Examples of mistakes

Validity

Sum of geometric series

Discrete Mathematics
(c) Marcin Sydow

Introduction Sum Notation
Proof
Examples
Recursive definitions

More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity
$a, r \in R, r \neq 1$

$$
\begin{gathered}
P(n): \\
\sum_{i=0}^{n} a r^{i}= \\
a+a r+a r^{2}+\ldots+a r^{n}=? \\
=\frac{a r^{n+1}-a}{r-1}
\end{gathered}
$$

Is the above equation true for all $n \in N$?
(proof by mathematical induction)

Geometric series formula proof

Discrete Mathematics
(c) Marcin Sydow

Introduction
Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

Basis step:
$P(0)$:

- left-hand side: $\sum_{i=0}^{0} a r^{i}=a r^{0}=a \cdot 1=a$
- right-hand side: $\left(a r^{0+1}-a\right) /(r-1)=(r-1) a /(r-1)=a$
the basis step is done.
Inductive assumption: $\sum_{i=0}^{k} a r^{i}=\frac{a r^{k+1}-a}{r-1}$ Inductive step:
$\sum_{i=0}^{k} a r^{i}=\frac{a r^{k+1}-a}{r-1}+a r^{k+1}=\frac{a r^{k+1}-a}{r-1}+\frac{a r^{k+2}-a r^{k+1}}{r-1}=\frac{a r^{k+2}-a}{r-1}$
The inductive step is done what completes the proof.

Recursive Definition

Discrete
Mathematics
(c) Marcin

Sydow

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof
examples
Non-
numerical
examples
Strong

Induction

Examples of mistakes

Validity

Mathematical Induction makes it also possible to define some mathematical objects indexed by natural numbers in a recursive way i.e. the defined object references to itself but for a smaller natural value and some basis object is defined. Recursive definition constists of two parts:

1 basis case
2 recursive (inductive) step

Example of recursive definition

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof
examples

Factorial of n :
Denoted as: n !
It is a product of n first non-zero natural numbers.
Standard definition: $n!=\prod_{i=1}^{n} i=1 \cdot 2 \cdot \ldots \cdot n$
E.g. $3!=1 \cdot 2 \cdot 3=6$

Recursive definition of factorial:
$10!=1$ (basis case)
$2 n!=(n-1)!\cdot n$ (recursive/inductive step)
Example $3!=2!\cdot 3=1!\cdot 2 \cdot 3=0!\cdot 1 \cdot 2 \cdot 3=1 \cdot 1 \cdot 2 \cdot 3=6$ (notice the necessity of providing the basis step to avoid endless recursion!)

Sum of odd naturals

Discrete

Mathematics

(c) Marcin Sydow

$$
P(n):
$$

Introduction

Sum Notation

Proof
Examples
Recursive definitions

$$
\sum_{i=1}^{n} 2 i-1=1+3+5+\ldots+(2 n-1)=?
$$

More proof

 examples
Non-

numerical
examples
Strong
Induction
Examples of mistakes

Validity

Sum of odd naturals

Discrete

Mathematics

(c) Marcin Sydow

Introduction

Sum Notation

Proof
Examples
Recursive

definitions

More proof examples

Non-

numerical

examples

Strong

Induction

Examples of mistakes

Validity

$$
P(n):
$$

$$
\begin{gathered}
\sum_{i=1}^{n} 2 i-1=1+3+5+\ldots+(2 n-1)=? \\
=n^{2}
\end{gathered}
$$

Is the above equation true for all $n \in N$?
(proof by mathematical induction)

Sum of powers of 2

Discrete

Mathematics

(c) Marcin Sydow

$$
P(n):
$$

Introduction
Sum Notation
Proof
Examples
Recursive definitions

More proof examples

Non-

numerical
examples

Strong

Induction
Examples of mistakes

Validity

Sum of powers of 2

Discrete

Mathematics

(c) Marcin Sydow

Introduction
Sum Notation
Proof
Examples
Recursive definitions

More proof examples

Non-

numerical
examples

Strong

Induction
Examples of mistakes

Validity

$$
P(n):
$$

$$
\begin{gathered}
\sum_{i=0}^{n} 2^{n}= \\
1+2+4+\ldots+2^{n}=?
\end{gathered}
$$

Sum of powers of 2

Discrete

Mathematics

(c) Marcin Sydow

Introduction

Sum Notation

Proof
Examples
Recursive

definitions

More proof examples

Non-

numerical

examples

Strong

Induction

Examples of mistakes

Validity

$$
\begin{gathered}
P(n): \\
\sum_{i=0}^{n} 2^{n}= \\
1+2+4+\ldots+2^{n}=? \\
=2^{n+1}-1
\end{gathered}
$$

Is the above equation true for all $n \in N$?
(proof by mathematical induction)

Example of inequality

Discrete

Mathematics

(c) Marcin Sydow

Introduction
Sum Notation
Proof
Examples
Recursive
definitions

$$
\begin{aligned}
& P(n): \\
& n<2^{n}
\end{aligned}
$$

More proof examples

Non-

numerical
examples
Strong
Induction
Examples of mistakes

Validity

Example of inequality

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive

definitions

More proof examples

Non-

numerical examples

Strong

Induction

Examples of mistakes

Validity

$$
\begin{aligned}
& P(n): \\
& n<2^{n}
\end{aligned}
$$

Is the above inequality true for all $n \in N$?
(proof by mathematical induction)

Another Example of inequality

Discrete

Mathematics

(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions

$$
P(n):
$$

More proof examples

Non-

numerical
examples
Strong
Induction
Examples of mistakes

Validity

Another Example of inequality

Discrete Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof

Examples

Recursive
definitions
More proof examples

Non-

numerical examples

Strong

Induction

Examples of mistakes

Validity

$$
\begin{gathered}
P(n): \\
2^{n}<n!
\end{gathered}
$$

For which values of n is the above inequality true?
(proof by mathematical induction)

Harmonic numbers

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof examples

Non-
numerical
examples
Strong

Induction

Examples of mistakes

Validity

A harmonic number H_{n} is defined as:
$H_{n}=\sum_{i=1}^{n} \frac{1}{i}$
For which values of n is the following true:
$H_{2^{n}} \geq 1+\frac{n}{2}$
(proof by mathematical induction)

Example on divisibility

Discrete Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof examples

Non-

numerical examples

Strong

Induction

Examples of mistakes

Validity
$\mathrm{P}(\mathrm{n})$:
$3 \mid\left(n^{3}-n\right)$
for which values of n is the above statement true?
(proof by mathematical induction)

Generalisation of De Morgan Law

Introduction

Sum Notation
Proof
Examples
Recursive definitions

More proof examples

Non-
numerical examples

Strong
Induction
Examples of mistakes

Validity

Let's consider a family of subsets of some universe U : $A_{i} \subset U$, indexed by natural numbers $i \in N$. Let A_{i}^{\prime} denote the complement of A_{i}.
$P(n)$:

$$
\left(\bigcap_{i=1}^{n} A_{i}\right)^{\prime}=\bigcup_{i=1}^{n} A_{i}^{\prime}
$$

For which values of n is the above law true?
(proof by mathematical induction)

Proof of the generalised de Morgan Law

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive

definitions

More proof
examples
Non-
numerical examples

Strong
Induction
Examples of mistakes

Validity

Basis step:
Let's start the induction from $n_{0}=2$.
$P(2):\left(A_{1} \cap A_{2}\right)^{\prime}=A_{1}^{\prime} \cup A_{2}^{\prime}$
This is true since it is a standard de Morgan Law.
Inductive assumption:

$$
\left(\bigcap_{i=1}^{k} A_{i}\right)^{\prime}=\bigcup_{i=1}^{k} A_{i}^{\prime}
$$

Inductive step:
$\left(\bigcap_{i=1}^{k+1} A_{i}\right)^{\prime}=\left(\bigcap_{i=1}^{k} A_{i} \cap A_{k+1}\right)^{\prime}=\left(\bigcap_{i=1}^{k} A_{i}\right)^{\prime} \cup A_{k+1}^{\prime}=$ $\left(\bigcup_{i=1}^{k} A_{i}^{\prime}\right) \cup\left(A_{k+1}\right)^{\prime}=\bigcup_{i=1}^{k+1} A_{i}^{\prime}$
The induction step is done what completes the proof.

Example from graph theory: Number of edges in a tree

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive

definitions

More proof
examples
Non-
numerical examples

Strong

Induction

Examples of mistakes

Validity
$\mathrm{P}(\mathrm{n})$: any tree having n vertices has exactly $\mathrm{n}-1$ edges.
For which values of n is the above statement true?
(proof by mathematical induction)

Number of edges in a tree, cont.

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical examples

Strong

Induction

Examples of mistakes

Validity

Tree: a graph that is connected and does not have cycles.
Fact: each tree has at least 1 leaf (why?)

Non-numeric example: tiling of checkerboards

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical examples

Strong

Induction

Examples of mistakes

Validity
$\mathrm{P}(\mathrm{n})$: Each checkerboard of size $2^{n} \times 2^{n}$ with exactly 1 square removed can be tiled using L-shaped pieces covering 3 squares each.

For which values of n is the above statement true? (proof by mathematical induction)

Strong Mathematical Induction

Discrete
(c) Marcin Sydow

Introduction Sum Notation

It is a variant of mathematical induction that makes it possible to use a stronger variant of inductive assumption:
If the following 2 conditions hold, for some predicate $P(n)$, $n \in N$:
$1 P\left(n_{0}\right)$ is true for some $n_{0} \in N$ (Basis step)
$2 P(1) \wedge P(2) \wedge \cdots \wedge P(k) \Rightarrow P(k+1)$ is true for any $k \geq n_{0}$ (Inductive step)
then: the predicate $P(n)$ is true for all $n \geq n_{0}$.
Strong mathematical induction is logically equivalent to standard mathematical induction (i.e. one implies another) and both are equivalent to the well-ordering of the natural numbers.

Example: number of edges of a tree

Discrete
Mathematics
(c) Marcin

Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity

Let's now use strong induction to prove:
$\mathrm{P}(\mathrm{n})$: each n -vertex tree has exactly n - 1 edges.
(proof by strong induction)
Observation: removing 1 edge from a tree results in 2 smaller trees. (because any edge is not part of any cycle)

Notice: in this kind of proof it is easier to use strong mathematical induction here than the standard one.

Prime factorisation

Discrete
Mathematics
(c) Marcin Sydow

Introduction

Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong
Induction
$\mathrm{P}(\mathrm{n})$: a number n is a product of primes for which values of n is the above statement true? (proof by strong induction)
Notice: it is easier to use strong mathematical induction in this proof.

Examples of Mistakes in Mathematical Induction

The typical mistakes in Mathematical Induction can be the following:

- ignoring the basis step (even if the inductive step can be done!)
- wrong induction step

Both: the basis step and the inductive step are necessary to construct a valid proof by mathematical induction.

Example of Mistake of ignoring the basis step

(c) Marcin Sydow

Introduction

Sum Notation
Proof

Examples

Recursive
definitions
More proof
examples
Non-
numerical
examples
Strong

Induction

Examples of mistakes

Prove that for all $n \in N$ the following holds:
$P(n): n+2<n$
Let's ignore the basis step and proceed directly to the inductive step:

Inductive assumption:
$P(k): k+2<k$.
Inductive step:
$P(k+1):(k+1)+2=(k+2)+1<k+1$
The inductive step can be proven! But $P(k)$ is not true for any k since the basis step is missing (the basis step is not true for any $k \in N!$)

Another example of mistake

Discrete Mathematics
(c) Marcin Sydow

Introduction Sum Notation

Proof
Examples
Recursive definitions

More proof examples

Non-

numerical

examples

Strong

Induction

Examples of mistakes

Validity

Let's prove the statement: $P(n)$: any set of n cars is of the same color (i.e. all the cars have the same color!)

Basis step (let's start from $n_{0}=1$):
$P(1)$: any set of 1 car if of the same color (true)
Inductive assumption:
$P(k)$: any set of k cars if of the same color.
Inductive step:
Let's prove $P(k+1)$: any set of $k+1$ cars is of the same color.
The set of the first k cars has the same color (by inductive assumption). The set of last k cars also is of the same color (again: inductive assumption). Thus, since the middle k-1 cars $(2,3, \ldots, k)$ are common for the two sets, all the $k+1$ cars have the same color.

Where is the mistake?

Why does the mathematical Induction work?

Equivalence to well ordering.
Well ordering of natural numbers:
(reminder:)
A set is well ordered if its any non-empty subset has the smallest element.

The set of natural numbers, ordered by the \leq relation is well-ordered.

General properties of Natural Numbers

Discrete Mathematics
(c) Marcin Sydow

Introduction Sum Notation

Proof
Examples
Recursive definitions

More proof examples

Non-

numerical examples

Strong Induction

Examples of mistakes

Validity

The following conditions ${ }^{2}$ come from the Peano's system of axioms of natural numbers: $(S(n)$ denotes the successor function, $S(n)=n+1$, e.g. $S(0)=1, S(1)=2$, etc.)
$10 \in N$
2 for any $n \in N$ it holds that $S(n) \in N$ (its successor is also in N)
3 every element of N except 0 is a successor of exactly 1 element
4 induction axiom ${ }^{3}$: if a set $A \subseteq N$ satisfies 2 conditions:

- $0 \in A$
- for any $n \in N$ the fact that $n \in S$ implies that also $S(n) \in N$
Then it holds that $A=N$.

[^1]
Why does the Mathematical Induction work?

Discrete
Mathematics
(c) Marcin

Sydow

Introduction

Sum Notation
Proof
Examples
Recursive
definitions
More proof
examples
Non-
numerical examples

Strong

Induction

Examples of mistakes

Validity

The principle of mathematical induction is implied by the fact that the natural numbers are well-ordered.
hint: imagine the smallest element s of the set of natural numbers that do not satisfy the property $P(n)$ and the number p such that $s=S(p)$. Hence, s must be either smaller then n_{0} or it would lead to a contradiction with the inductive step.

Summary

- Mathematical Induction

■ Examples of numerical and non-numerical statements than can be proven by mathematical induction

- Strong Mathematical Induction
- Equivalence of Mathematical Induction with the well-ordering of the natural numbers

Example tasks/questions/problems

- Formulate the principle of mathematical induction
- Formulate the principle of strong mathematical induction
- How mathematical induction is implied by the fact that natural numbers are well ordered
- disprove or prove by mathematical induction that for any $n \in N$:
- $\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6$
- $\sum_{i=1}^{n} i^{3}=(n(n+1) / 2)^{2}$
- $\sum_{i=1}^{n} i \cdot i!=(n+1)!-1$
- the number of all subsets of n-element set is 2^{n}
- $n^{2}+n$ is always even
- $3 \mid\left(n^{3}+2 n\right)$
- $5 \mid\left(n^{5}-n\right)$
- $6 \mid\left(n^{3}-n\right)$

Discrete

Mathematics

(c) Marcin Sydow

Introduction
Sum Notation Proof
Examples
Recursive definitions

More proof examples

Non-
numerical
examples
Strong
Induction
Examples of mistakes

Validity
Thank you for your attention.

[^0]: ${ }^{1} P(k)$ is called "inductive assumption"

[^1]: ${ }^{2}$ conditions $1-3$ are first-order logic the condition 4 is a second-order logic (quantifies set variable)
 ${ }^{3}$ Induction axiom is logically equivalent to the well-ordering property of natural numbers.

