Discrete Mathematics

Graphs

(c) Marcin Sydow

Contents

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

- Introduction
- Graph

■ Digraph (directed graph)

- Degree of a vertex

■ Graph isomorphism

- Adjacency and Incidence Matrices

■ Graphs vs Relations
■ Path and Cycle

- Connectedness

■ Weakly and strongly connected components
■ Tree

- Rooted tree
- Binary tree

Introduction

Discrete
Mathematics
(c) Marcin

Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

The role of graphs:

- extremely important in computer science and mathematics
- numerous important applications
- modeling the concept of binary relation

Graphs are extensively and intuitively to convey information in visual form.
Here we introduce basic mathematical view on graphs.

Graph (the mathematical definition)

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Graph (undirected graph) is an ordered pair of sets: $G=(V, E)$, where:

- V is the vertex ${ }^{1}$ set
- E is the edge set

■ each edge $e=\{v, w\}$ in E is an unordered pair of vertices from V, called the ends of the edge e.

Vertex can be also called node.

[^0]
Edges and vertices

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

For an edge $e=\{v, w\} \in E$ we say:
■ the edge e connects the vertices v i w
■ the vertices v and w are neighbours or are adjacent in the graph G
\square the edge e is incident to the vertex v (or w).

- a self-loop is an edge of the form (v, v).

If V and E are empty G is the zero graph, if E is empty it is an empty graph

Directed graph (digraph) (mathematical definition)

Directed graph (digraph) is an ordered pair: $G=(V, E)$, where:

- V is the vertex set
- E is the edge set (or arc set)
- each edge $e=(v, w)$ in E is an ordered pair of vertices from V, called the tail and head end of the edge e, respectively.

Example

Simple graphs, multigraphs and hypergraphs

Simple graph: a graph where there are no self-loops (edges or arcs of the form $(v, v))$.

If there are possible multiple edges or arcs between the same pair of vertices we call it a multi-graph.

Notice: in a directed graph (v, w) is a different arc than (w, v) for $v \neq w$.

Picture of a graph

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as

Relation

Paths and Cycles

A given graph can be depicted on a plane (or other 2-dimensional surface) in multiple ways (example).

A picture is only a visual form of representation of a graph.
It is necessary to distinguish between an abstract (mathematical) concept of a graph and its picture (visual representation)

Degree of a vertex

Degree of a vertex v denoted as $\operatorname{deg}(v)$ is the number of edges (or arcs) incident with this vertex.
(note: we assume that each self-loop (v, v) contributes 2 to the degree of the vertex v)

If $\operatorname{deg}(v)=0$ we call it an isolated vertex.
Example

Degree sum theorem (hand-shake theorem)

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as

Relation

Paths and Cycles

Connectednes
Trees

The sum of degrees of all vertices in any graph is always even. (why?)

Degree sum theorem (hand-shake theorem)

The sum of degrees of all vertices in any graph is always even. (why?)

Proof: each edge contributes 2 to the sum of degrees.
Corollary: sum of degrees is twice the number of edges
Corollary: the number of vertices with odd degree must be even.

Example

Degrees in directed graphs

Discrete
Mathematics
(c) Marcin Sydow

Graph

Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

In directed graphs: indegree of a vertex $v(i n d e g(v))$: number of arcs that v is the head of
outdegree of a vertex $v(\operatorname{outdeg}(v))$: number of arcs that v is the tail of

Example

Degree sum theorem for digraphs

The sum of indegrees of all vertices is equal to the sum of outdegrees of all vertices in any directed graph.

Proof: each arc contributes 1 to the indegree sum and 1 to the outdegree sum.

Corollary: sum of indegrees (outdegrees) is equal to the number of arcs in a digraph.

Graph Isomorphism

Two graphs $G_{1}\left(V_{1}, E_{1}\right), G_{2}\left(V_{2}, E_{2}\right)$ are isomorphic \Leftrightarrow there exists a bijection $f: V_{1} \rightarrow V_{2}$ so that:
v, w are connected by an edge (arc) in $G_{1} \Leftrightarrow$ $f(v), f(w)$ are connected by an edge (arc) in G_{2}.

The function f is called isomorphism between graphs G_{1} and G_{2}.
Example
Interpretation: graphs are isomorphic if they are "the same" from the point of view of the graph theory (they can have different names of vertices or be differently depicted, etc.).

Subgraph and induced graph

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Subgraph of graph $G=(V, E)$ is a graph $H=\left(V^{\prime}, E^{\prime}\right)$ so that $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ and any edge from E^{\prime} has both its ends in V^{\prime}.

Example

A subgraph of G induced by a set of vertices $V^{\prime} \subseteq V$ is a subgraph G^{\prime} of G whose vertex set is V^{\prime} whose edges (arcs) are all edges (arcs) of G that have both ends in V^{\prime}.

Example

Some important graph families

Discrete

Mathematics

(c) Marcin
Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectedness Trees
(all graphs below are simple graphs)

Some important graph families

Discrete
Mathematics
(c) Marcin Sydow
(all graphs below are simple graphs)
■ empty graph N_{n} (n vertices, no edges) (example)

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectednes: Trees

Some important graph families

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles
(all graphs below are simple graphs)

- empty graph N_{n} (n vertices, no edges) (example)

■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)

Some important graph families

(all graphs below are simple graphs)
■ empty graph N_{n} (n vertices, no edges) (example)
■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)
■ bi-partite graph (its set of vertices can be divided into two disjoint sets so that any edges (arcs) are only between the sets) (example)

Some important graph families

(all graphs below are simple graphs)
■ empty graph N_{n} (n vertices, no edges) (example)
■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)

- bi-partite graph (its set of vertices can be divided into two disjoint sets so that any edges (arcs) are only between the sets) (example)
- full bi-partite graph $K_{m, n}$ (a bipartite graph that has all possible edges (arcs))

Some important graph families

(all graphs below are simple graphs)

- empty graph N_{n} (n vertices, no edges) (example)

■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)
■ bi-partite graph (its set of vertices can be divided into two disjoint sets so that any edges (arcs) are only between the sets) (example)
■ full bi-partite graph $K_{m, n}$ (a bipartite graph that has all possible edges (arcs))

- path graph P_{n} (example)

Some important graph families

(all graphs below are simple graphs)

- empty graph N_{n} (n vertices, no edges) (example)

■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)
■ bi-partite graph (its set of vertices can be divided into two disjoint sets so that any edges (arcs) are only between the sets) (example)
■ full bi-partite graph $K_{m, n}$ (a bipartite graph that has all possible edges (arcs))

- path graph P_{n} (example)
- cyclic graph C_{n} (example)

Some important graph families

(all graphs below are simple graphs)

- empty graph N_{n} (n vertices, no edges) (example)

■ full graph K_{n} (a simple graph of n vertices and all possible edges (arcs)) (example)
■ bi-partite graph (its set of vertices can be divided into two disjoint sets so that any edges (arcs) are only between the sets) (example)
■ full bi-partite graph $K_{m, n}$ (a bipartite graph that has all possible edges (arcs))

- path graph P_{n} (example)
- cyclic graph C_{n} (example)

Adjacency Matrix

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

For a graph $G=(V, E)$, having n vertices its adjacency matrix is a square matrix A having n rows and columns indexed by the vertices so that $A[i, j]=1 \Leftrightarrow$ vertices i, j are adjacent, else $A[i, j]=0$.
(in case of self-loop $(i, i), A[i, i]=2$)
Example

Some Simple Observations

Discrete
Mathematics
(c) Marcin Sydow

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

Some Simple Observations

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectedness
Trees

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

- for undirected graphs

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

- for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$
- for simple graphs the diagonal of A contains only zeros

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

- for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$
- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i :

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

- for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$
- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)

Some Simple Observations

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)
■ sum of numbers in a column i :

Some Simple Observations

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)
- sum of numbers in a column i : degree of i (indegree for digraphs)

Some Simple Observations

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)
- sum of numbers in a column i : degree of i (indegree for digraphs)
- for directed graphs A^{T} reflects the graph

Some Simple Observations

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)
- sum of numbers in a column i : degree of i (indegree for digraphs)
- for directed graphs A^{T} reflects the graph with all the arcs "inversed"

Some Simple Observations

(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Some simple relations concerning properties of a graph and properties of its adjacency matrix:

■ for undirected graphs the matrix is symmetric $\left(A^{T}=A\right)$

- for simple graphs the diagonal of A contains only zeros
- sum of numbers in a row i : degree of i (outdegree for digraphs)
- sum of numbers in a column i : degree of i (indegree for digraphs)
- for directed graphs A^{T} reflects the graph with all the arcs "inversed"

Examples

Incidence matrix

An incidence matrix I of an undirected graph G : the rows correspond to vertices and columns correspond to edges (arcs). $I[v, e]=1 \Leftrightarrow v$ is incident with e (else $\mathrm{I}[\mathrm{v}, \mathrm{e}]=0$)

Example

For directed graphs: the only difference is the distinction between v being the head $(=1)$ or the tail $(=-1)$ of e

Example

Graphs vs relations

Each directed graph naturally represents any binary relation $R \in V \times V$. (i.e. E is the set of all pairs of elements from V that are in the relation)

Example

Each undirected graph naturally represents any symmetric binary relation

Example

Observations on analogies between relations and graphs

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as Relation

Paths and
Cycles
Connectednes
Trees

- reflexive relation:

Observations on analogies between relations and graphs

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as Relation

Paths and
Cycles
Connectedness
Trees

- reflexive relation: self-loop on each vertex
- symmetric relation:

Observations on analogies between relations and graphs

Discrete
Mathematics
(c) Marcin Sydow

Graph

Vertex
Degree
Isomorphism
Graph
Matrices
Graph as Relation

Paths and Cycles

- reflexive relation: self-loop on each vertex
- symmetric relation: undirected graph or always mutual arcs

■ transitive relation:

Observations on analogies between relations and graphs

- reflexive relation: self-loop on each vertex
- symmetric relation: undirected graph or always mutual arcs
- transitive relation: for any path there is a "short" arc
- anti-symmetric relation:

Observations on analogies between relations and graphs

- reflexive relation: self-loop on each vertex
- symmetric relation: undirected graph or always mutual arcs

■ transitive relation: for any path there is a "short" arc
■ anti-symmetric relation: no mutual arcs, always self-loops

- inverse of the relation:

Paths and Cycles

Observations on analogies between relations and graphs

- reflexive relation: self-loop on each vertex
- symmetric relation: undirected graph or always mutual arcs

■ transitive relation: for any path there is a "short" arc
■ anti-symmetric relation: no mutual arcs, always self-loops
■ inverse of the relation: each arc is inversed

Path

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Path: an alternating sequence of vertices and edges $\left(v_{0}, e_{0}, v_{1}, e_{q}, \ldots, v_{k}, e_{k}, \ldots, v_{l}\right)$ so that each edge e_{k} is incident with vertices v_{k}, v_{k+1}. We call it a path from v_{0} to v_{l}.
(sometimes it is convenient to define path just as a subsequence of vertices or edges of the above sequence)

Example

Directed path in a directed graph is defined analogously (the arcs must be directed from v_{k} to v_{k+1}

Paths cont.

simple path: no repeated edges (arcs) elementary path: no repeated vertices

Examples
length of a path: number of its edges (arcs)
(assume: 0-length path is a single vertex)
Example

Distance in graph

Distance between two vertices is the length of a shortest path between them.

The distance function in graphs $d: V \times V \rightarrow N$ has the following properties:

- $d(u, v)=0 \Leftrightarrow u==v$

■ (only in undirected graphs) it is a symmetric function, i.e. $\forall u, v \in V \mathrm{~d}(\mathrm{u}, \mathrm{v})=\mathrm{d}(\mathrm{v}, \mathrm{u})$
\square triangle inequality: $\forall u, v, w \in V$ it holds that

$$
d(u, v)+d(v, w) \geq d(u, w)
$$

Cycle

Discrete
Mathematics
(c) Marcin

Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles
cycle: a path of length at least 3 (2 for directed graphs) where the beginning vertex equals the ending vertex $v_{0}==v_{l}$ (also called a closed path)

Example
analogously: directed cycle, simple cycle, elementary cycle (except the starting and ending vertices there are no repeats)

Examples

Connectedness

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and
Cycles
Connectedness
Trees

A graph is connected \Leftrightarrow for any two its vertices v, w there exists a path from v to w

Example

Connected component of a graph

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and
Cycles
Connectednes:
Trees

Connected component of a graph is its maximal subgraph that is connected.

Example (why "maximal')?

Strongly connected graph

(only for directed graphs)
A directed graph is stronlgy connected \Leftrightarrow for any pair of its vertices v, w there exists a directed path from v to w .

Example
A directed graph is weakly connected \Leftrightarrow for any pair of its vertices v, w there exists undirected path from v,w (i.e. the directions of arcs can be ignored)
note: strong connectedness implies weak connectedness (but not the opposite)

Example

Strongly and weakly connected components

Strongly connected component: a maximal subgraph that is strongly connected

Weakly connected component: a maximal subgraph that is weakly connected

Examples

Tree is a graph that is connected and does not contain cycles (acyclic).

Example
Forest is a graph that does not contain cycles (but does not have to be connected)

Example
A leaf of a tree is a vertex that has degree 1 .
Other vertices (nodes) are called internal nodes of a tree.
Example

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin Sydow

The following conditions are equivalent:

Graph

Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectednes
Trees

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and
Cycles
Connectedness
Trees

The following conditions are equivalent:

- T is a tree of n vertices

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectedness
Trees

The following conditions are equivalent:

- T is a tree of n vertices
- T has exactly n -1 edges (arcs) and is acyclic

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

The following conditions are equivalent:

- T is a tree of n vertices
- T has exactly n - 1 edges (arcs) and is acyclic
- T is connected and has exactly $\mathrm{n}-1$ edges (arcs)

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin

Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and
Cycles
Connectednes
Trees

The following conditions are equivalent:

- T is a tree of n vertices
- T has exactly $\mathrm{n}-1$ edges (arcs) and is acyclic
- T is connected and has exactly $\mathrm{n}-1$ edges (arcs)
- T is connected and removing any edge (arc) makes it not connected

Equivalent definitions of a tree

The following conditions are equivalent:

- T is a tree of n vertices
- T has exactly n - 1 edges (arcs) and is acyclic
- T is connected and has exactly n - 1 edges (arcs)
- T is connected and removing any edge (arc) makes it not connected
- any two vertices in T are connected by exactly one elementary path

Equivalent definitions of a tree

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

The following conditions are equivalent:

- T is a tree of n vertices
- T has exactly n - 1 edges (arcs) and is acyclic
- T is connected and has exactly n - 1 edges (arcs)
- T is connected and removing any edge (arc) makes it not connected
- any two vertices in T are connected by exactly one elementary path
- T is acyclic and adding any edge makes exactly one cycle

Rooted tree

Discrete
Mathematics
(c) Marcin Sydow

Graph
Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

A rooted tree is a tree with exactly one distinguished node called its root.

Example

Distinguishing the root introduces a natural hierarchy among the nodes of the tree: the lower the depth the higher the node in the hierarchy.

Picture of a rooted tree: root is at the top, all nodes of the same depth are on the same level, the higher the depth, the lower the level on the picture.

Example

Terminology of rooted trees

A depth of a vertex v of a rooted tree, denoted as $\operatorname{depth}(v)$ is its distance from the root.

Height of a rooted tree: maximum depth of any its node ancestor of a vertex v is any vertex w that lies on any path from the root to v, v is then called a descendant of w (the root does not have ancestors and the leaves do not have descendants)
a ancestor w of a neighbour (adjacent) vertex v is called the parent of v, in this case v is called the child of w.
if vertices u, v have a common parent we call them siblings
Examples

Binary tree

Binary tree is a rooted tree with the following properties:

- each node has maximally 2 children

■ for each child it is specified whether it is left or right child of its parent (max. 1 left child and 1 right child)

Example

Summary

(c) Marcin Sydow

Graph

Vertex
Degree
Isomorphism
Graph
Matrices
Graph as
Relation
Paths and Cycles

Connectedness
Trees

■ Mathematical definition of Graph and Digraph

- Degree of a vertex
- Graph isomorphism
- Adjacency and Incidence Matrices
- Graphs vs Relations
- Path and Cycle

■ Connectedness
■ Weakly and strongly connected components
■ Tree, Rooted tree, Binary tree

Example tasks/questions/problems

(c) Marcin Sydow

- give the mathematical definitions and basic properties of the discussed concepts and their basic properties (in particular: graph, digraph, degree, isomorphism, adjacency/incidence matrix, path and cycle, connectedness and connected components, trees (including rooted and binary trees)

■ make picture of the specified graph of one of the discussed families (full, bi-partite, etc.)

■ given a picture of a graph provide its mathematical form (pair of sets) and adjacency/incidence matrix and vice versa

■ check whether the given graphs are isomorphic and prove your answer

■ find connected components of a given graph (or weakly/strongly connected components for a digraph)

■ specify the height, depth, number of leaves, etc. of a given rooted tree

Discrete
(c) Marcin Sydow

```
Graph
Vertex
Degree
```

Isomorphism
Graph
Matrices
Graph as
Relation
Paths and
Cycles

Connectednes Trees

Thank you for your attention.

[^0]: ${ }^{1}$ plural form: vertices

