Discrete Mathematics

Functions

(c) Marcin Sydow

Contents

- Function
- Injection, surjection and bijection
- Inverse and composition
- Image and inverse image

Definition of a function

Definition: A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Function is denoted as follows:

$$
f: X \rightarrow Y
$$

X is called the domain of f and Y is called co-domain of f.

Functions, cont.

Discrete Mathematics
(c) Marcin Sydow

Elements of X (domain) are called arguments and elements of Y (co-domain) are called values of the function.

Since there is exactly one value ofor each argument, it is possible to write:

$$
f(x)=y
$$

for particular $x \in X$ and $y \in Y$.
Function is also called mapping of X into Y.

Set of all functions

Set of all possible functions that have domain X and co-domain Y is denoted as:

$$
Y^{X}
$$

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:
"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:
"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$
\forall_{x \in X}\left[\exists_{y \in Y}(x, y) \in f\right]
$$

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:
"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$
\forall_{x \in X}\left[\exists_{y \in Y}(x, y) \in f\right]
$$

But how to express that there exists exactly one such y (not more)?:

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:
"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$
\forall_{x \in X}\left[\exists_{y \in Y}(x, y) \in f\right]
$$

But how to express that there exists exactly one such y (not more)?:

$$
\wedge\left[\forall_{y, y^{\prime} \in Y}\left((x, y) \in f \wedge\left(x, y^{\prime}\right) \in f\right) \Rightarrow y=y^{\prime}\right]
$$

Defition of function written with mathematical symbols

Discrete Mathematics
(c) Marcin Sydow

Definition (in natural language): A relation $f \subseteq X \times Y$ is called a function if and only if for each element of $x \in X$ there exists exactly one $y \in Y$ so that $(x, y) \in f$.

Let's translate this to mathematical symbols:
"for each element of $x \in X$ there exists $y \in Y$ so that $(x, y) \in f$ ":

$$
\forall_{x \in X}\left[\exists_{y \in Y}(x, y) \in f\right]
$$

But how to express that there exists exactly one such y (not more)?:

$$
\wedge\left[\forall_{y, y^{\prime} \in Y}\left((x, y) \in f \wedge\left(x, y^{\prime}\right) \in f\right) \Rightarrow y=y^{\prime}\right]
$$

The resulting expression:

$$
\forall_{x \in X}\left[\exists_{y \in Y}(x, y) \in f\right] \wedge\left[\forall_{y, y^{\prime} \in Y}\left((x, y) \in f \wedge\left(x, y^{\prime}\right) \in f\right) \Rightarrow y=y^{\prime}\right]
$$

Example

Discrete
(c) Marcin Sydow

$$
X=\{x \in N: x<5\}
$$

Is the following a function?

Example

Discrete
(c) Marcin Sydow
$X=\{x \in N: x<5\}$
Is the following a function?
$\{(0,1),(1,2),(2,3),(3,4)\}$

Example

Discrete
Mathematics
(c) Marcin Sydow
$X=\{x \in N: x<5\}$
Is the following a function?
$\{(0,1),(1,2),(2,3),(3,4)\}$
$\{(0,1),(1,2),(2,3),(3,4),(4,0)\}$

Example

$X=\{x \in N: x<5\}$
Is the following a function?
$\{(0,1),(1,2),(2,3),(3,4)\}$
$\{(0,1),(1,2),(2,3),(3,4),(4,0)\}$
$\{(0,1),(1,2),(2,3),(3,4),(4,0),(0,2)\}$

Equality of functions

Discrete Mathematics
(c) Marcin Sydow

Two functions $f: X \rightarrow Y$ and $g: A \rightarrow B$ are equal iff the following conditions hold:

■ $X=A$ (equality of domains), $Y=B$ (equality of co-domains)

- $\forall_{x \in X} f(x)=g(x)$

Restriction and extension of a function

Discrete Mathematics
(c) Marcin Sydow

Let $f: X \rightarrow Y$ and $f^{\prime}: X^{\prime} \rightarrow Y$ and $X \subseteq X^{\prime}$
If $f(x)=f^{\prime}(x)$ for all $x \in X$ we say that f^{\prime} is an extension of f and f is a restriction of f '

Graph of a function

Given a function $f: X \rightarrow Y$ if the set of pairs $f=\{(x, y) \in X \times Y: y=f(x)\}$ can be naturally mapped to points in the plane with Cartesian coordinates (e.g. when $X=Y=R$), we can view the f as its graph.

Injection

Discrete
(c) Marcin Sydow

A function $f: X \rightarrow Y$ is injection iff the following holds:

$$
\forall_{x, x^{\prime} \in X} x \neq x^{\prime} \Rightarrow f(x) \neq f\left(x^{\prime}\right)
$$

An injection is also called a "one-to-one" function.

Example

Discrete

Is the following an injection?

Example

Discrete

Is the following an injection?
$f: Z \rightarrow Z, f(x)=x^{2}$

Example

Discrete

Is the following an injection?
$f: Z \rightarrow Z, f(x)=x^{2}$
$f: N \rightarrow N, f(x)=x^{2}$

Surjection

Discrete Mathematics
(c) Marcin Sydow

A function $f: X \rightarrow Y$ is surjection iff the following holds:

$$
\forall_{y \in Y} \exists_{x \in X} y=f(x)
$$

A surjection is also called "onto mapping" (or " f maps X onto Y')

Example

Discrete

Is the following a surjection?

Example

Discrete Mathematics
(c) Marcin Sydow

Is the following a surjection?
$f: R \rightarrow Z f(x)=$ floor (x)

Example

Discrete

Is the following a surjection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$

Example

Discrete

Is the following a surjection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow[0,1], f(x)=1 /\left(1+e^{-x}\right)$

Example

Is the following a surjection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow[0,1], f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow(0,1), f(x)=1 /\left(1+e^{-x}\right)$

Bijection

Discrete

A function $f: X \rightarrow Y$ is bijection iff it is injection and surjection.

Example

Discrete

Is the following a bijection?

Example

Discrete Mathematics
(c) Marcin Sydow

Is the following a bijection?
$f: R \rightarrow Z f(x)=$ floor (x)

Example

Discrete

Is the following a bijection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$

Example

Discrete

Is the following a bijection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow[0,1], f(x)=1 /\left(1+e^{-x}\right)$

Example

Is the following a bijection?
$f: R \rightarrow Z f(x)=$ floor (x)
$f: R \rightarrow R, f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow[0,1], f(x)=1 /\left(1+e^{-x}\right)$
$f: R \rightarrow(0,1), f(x)=1 /\left(1+e^{-x}\right)$

Inverse of a function

Discrete Mathematics
(c) Marcin Sydow

If $f: X \rightarrow Y$ is an injection, then the inverse of this function is the (unique) function $f^{-1}: Y \rightarrow X$ defined as follows:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

questions:

Inverse of a function

Discrete Mathematics
(c) Marcin Sydow

If $f: X \rightarrow Y$ is an injection, then the inverse of this function is the (unique) function $f^{-1}: Y \rightarrow X$ defined as follows:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

questions:
is inverse of injection an injection?

Inverse of a function

Discrete Mathematics
(c) Marcin Sydow

If $f: X \rightarrow Y$ is an injection, then the inverse of this function is the (unique) function $f^{-1}: Y \rightarrow X$ defined as follows:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

questions:
is inverse of injection an injection? (yes)

Inverse of a function

Discrete Mathematics
(c) Marcin Sydow

If $f: X \rightarrow Y$ is an injection, then the inverse of this function is the (unique) function $f^{-1}: Y \rightarrow X$ defined as follows:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

questions:
is inverse of injection an injection? (yes)
is inverse of bijecion a bijection?

Inverse of a function

Discrete Mathematics
(c) Marcin Sydow

If $f: X \rightarrow Y$ is an injection, then the inverse of this function is the (unique) function $f^{-1}: Y \rightarrow X$ defined as follows:

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

questions:
is inverse of injection an injection? (yes)
is inverse of bijecion a bijection? (yes)

Example of inverse

Discrete Mathematics
(c) Marcin Sydow
$f: R \rightarrow(0,1), f(x)=1 /\left(1+e^{-x}\right)$
$f(x)=x^{2}$ for non-negative reals $f(x)=2^{x}$, for non-negative reals

Composition of two functions

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$)

Composition of two functions

Discrete Mathematics
(c) Marcin Sydow

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f=f \circ g$?)

Composition of two functions

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f=f \circ g$?)(no)

Composition of two functions

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f=f \circ g$?)(no) is compostion associative? (i.e. is $h \circ(g \circ f)=(h \circ g) \circ f$?)

Composition of two functions

Discrete
Mathematics
(c) Marcin Sydow

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f=f \circ g$?)(no) is compostion associative? (i.e. is $h \circ(g \circ f)=(h \circ g) \circ f ?)($ yes $)$

Composition of two functions

Discrete
Mathematics
(c) Marcin Sydow

For two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ their composition is the function $g \circ f: X \rightarrow Z$ defined as follows for any $x \in X$:

$$
(g \circ f)(x)=g(f(x))
$$

(Notice the order of the functions in the denotation $g \circ f$) is composition commutative? (i.e. is $g \circ f=f \circ g$?)(no) is compostion associative? (i.e. is $h \circ(g \circ f)=(h \circ g) \circ f ?)($ yes $)$
Notice: non-commutativitiy and associativity of compositon

Definition of (infinite) sequence

Discrete
Mathematics
(c) Marcin Sydow

A sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ is a function whose domain is the set of natural numbers $\mathcal{N} a: \mathcal{N} \rightarrow X$, where X is some set. For any number $i \in \mathcal{N} a(i)$ is usually denoted as a_{i}. In particular, if X is a number set, the sequence is numeric (e.g. for $X=\mathcal{R}$ it is a real sequence.

Image of a set

For a function $f: X \rightarrow Y$ and a set $A \subseteq X$ the image of A is the set $f(A) \subseteq Y$ defined as follows:

$$
f(A)=\left\{y \in Y: \exists_{x \in A} y=f(x)\right\}
$$

(to avoid misunderstanding of the denotation $f(A)$ we assume that $A \notin X$)

Inverse image of a set

Discrete Mathematics
(c) Marcin Sydow

For a function $f: X \rightarrow Y$ and a set $B \subseteq Y$ the inverse image of B is the set $f^{-1}(B) \subseteq X$ defined as follows:

$$
f^{-1}(B)=\{x \in X: f(x) \in B\}
$$

(to avoid misunderstanding of the denotation $f^{-1}(B)$ we assume that $B \notin Y$)

Image of union

Discrete

Assume that $f: X \rightarrow Y$.
For any sets $A, A^{\prime} \subseteq X$ the following holds:

$$
f\left(A \cup A^{\prime}\right)=f(A) \cup f\left(A^{\prime}\right)
$$

Image of intersection

Assume that $f: X \rightarrow Y$.
For any sets $A, A^{\prime} \subseteq X$ the following holds:

$$
f\left(A \cap A^{\prime}\right) \subseteq f(A) \cap f\left(A^{\prime}\right)
$$

(the equality does not hold in general: example?)

Example

$f: Z \rightarrow N, f(x)=x^{2}$
A is the set of negative integers, A^{\prime} is the set of positive integers.
What is $A \cap A^{\prime}$?
What is $f\left(A \cap A^{\prime}\right)$?
What is $f(A)$?
What is $f\left(A^{\prime}\right)$?
What is $f(A) \cap f\left(A^{\prime}\right)$?

Image of intersection cont.

Discrete Mathematics
(c) Marcin Sydow

What property of the function f would suffice for the equality:

$$
f\left(A \cap A^{\prime}\right)=f(A) \cap f\left(A^{\prime}\right)
$$

?

Image of intersection cont.

Discrete Mathematics
(c) Marcin Sydow

What property of the function f would suffice for the equality:

$$
f\left(A \cap A^{\prime}\right)=f(A) \cap f\left(A^{\prime}\right)
$$

?
The above equality holds if the function f is an injection.

Image of difference

Discrete Mathematics
(c) Marcin Sydow

Assume that $f: X \rightarrow Y$.
For any sets $A, A^{\prime} \subseteq X$ the following holds:

$$
f\left(A \backslash A^{\prime}\right) \subseteq f(A) \backslash f\left(A^{\prime}\right)
$$

(the equality does not hold in general: example?)

Inverse image of union

Discrete Mathematics
(c) Marcin Sydow

Assume that $f: X \rightarrow Y$.
For any two sets $B, B^{\prime} \subseteq Y$ the following holds:

$$
f^{-1}\left(B \cup B^{\prime}\right)=f^{-1}(B) \cup f^{-1}\left(B^{\prime}\right)
$$

(notice: we do not assume that f is an injection)

Inverse image of intersection

Discrete Mathematics
(c) Marcin Sydow

Assume that $f: X \rightarrow Y$.
For any two sets $B, B^{\prime} \subseteq Y$ the following holds:

$$
f^{-1}\left(B \cap B^{\prime}\right)=f^{-1}(B) \cap f^{-1}\left(B^{\prime}\right)
$$

(notice: we do not assume that f is an injection)

Inverse image of difference

Assume that $f: X \rightarrow Y$.
For any two sets $B, B^{\prime} \subseteq Y$ the following holds:

$$
f^{-1}\left(B \backslash B^{\prime}\right)=f^{-1}(B) \backslash f^{-1}\left(B^{\prime}\right)
$$

(notice: we do not assume that f is an injection)

Composition of image and inverse image

Assume that $f: X \rightarrow Y$.
For any $A \subseteq X$ the following holds:

$$
A \subseteq f^{-1}(f(A))
$$

Composition of image and inverse image

Assume that $f: X \rightarrow Y$.
For any $A \subseteq X$ the following holds:

$$
A \subseteq f^{-1}(f(A))
$$

For what conditions the equality holds?

Composition of image and inverse image

Assume that $f: X \rightarrow Y$.
For any $A \subseteq X$ the following holds:

$$
A \subseteq f^{-1}(f(A))
$$

For what conditions the equality holds? (for f being an injection)
i.e. if f is an injection then $A=f^{-1}(f(A))$.

Composition of image and inverse image, cont.

Discrete
(c) Marcin Sydow

For any $B \subseteq f(X)$ the following holds:

$$
f\left(f^{-1}(B)\right)=B
$$

Composition of image and inverse image, cont.

Discrete Mathematics
(c) Marcin Sydow

For any $B \subseteq f(X)$ the following holds:

$$
f\left(f^{-1}(B)\right)=B
$$

Why the assumption $B \subseteq f(X)$ above is important? (give an example)

Discrete Mathematics
(c) Marcin Sydow

Thank you for your attention.

