

(c) Marcin Sydow

Discrete Mathematics Equipollence

(c) Marcin Sydow

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Contents

Discrete Mathematics

(c) Marcin Sydow

- Equipollence Relation
- Equipollence as Equivalence Relation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- Definition of Cardinality
- Countable Sets
- Uncountable Sets
- Reals are uncountable
- Cardinal Numbers

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Much more interesting questions:

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Much more interesting questions: How many elements does an *infinite set* have?

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

Much more interesting questions:

How many elements does an *infinite set* have?

Is the number of natural numbers the same as the number of integers ?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

Much more interesting questions:

How many elements does an *infinite set* have?

Is the number of natural numbers the same as the number of integers ?

うして ふゆう ふほう ふほう うらつ

Is it the same as the number of real numbers?

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

Much more interesting questions:

How many elements does an *infinite set* have?

Is the number of natural numbers the same as the number of integers ?

Is it the same as the number of real numbers?

How to formally extend the concept of number of elements to infinite sets?

Discrete Mathematics

> (c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:

the set $X = \{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y = \{1, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ also 4

Question:

How to formally define the number of elements of a finite set?

Much more interesting questions:

How many elements does an *infinite set* have?

Is the number of natural numbers the same as the number of integers ?

Is it the same as the number of real numbers?

How to formally extend the concept of number of elements to infinite sets?

Equipollence Relation between two sets

Discrete Mathematics

(c) Marcin Sydow

Two sets X and Y are **equipollent** if and only if there exists a *bijection* $f : X \rightarrow Y$ between them (i.e. a function that is injection and surjection).

Denotation: $X \sim Y$

Example:
$$X = \{a, b, c, d\}$$

 $Y = \{\{1\}, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$

Are X and Y equipollent? Is there also a bijection $g: Y \to X$ in this case?

Reminder: any bijection $f : A \rightarrow B$ has its *inverse* $f^{-1} : B \rightarrow A$, defined as $f^{-1}(b) = a \Leftrightarrow f(a) = b$

Equipollence Relation is Equivalence Relation

Discrete Mathematics

(c) Marcin Sydow

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

Reflexivity: for any set X it holds that: X ~ X (is equipollent with itself) (why?)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Equipollence Relation is Equivalence Relation

Discrete Mathematics

(c) Marcin Sydow

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

- Reflexivity: for any set X it holds that: X ~ X (is equipollent with itself) (why?)
- Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Equipollence Relation is Equivalence Relation

Discrete Mathematics

(c) Marcin Sydow

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

- Reflexivity: for any set X it holds that: X ~ X (is equipollent with itself) (why?)
- Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)
- Transitiveness: for any three sets X, Y, Z the following holds: X ~ Y and Y ~ Z ⇒ X ~ Z (why?)

(c) Marcin Sydow

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

- Reflexivity: for any set X it holds that: X ~ X (is equipollent with itself) (why?)
- Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)
- Transitiveness: for any three sets X, Y, Z the following holds: X ~ Y and Y ~ Z ⇒ X ~ Z (why?)

Hence, equipollence relation is equivalence relation (thus, it has equivallence classes)

Cardinality of a set

Discrete Mathematics

(c) Marcin Sydow **Cardinality** (or **cardinal number**) of a set is defined as its **equivalence class** in terms of equipollence relation, i.e. two sets have the same cardinality (or cardinal number) if they are equipollent.

Example:

The sets $X = \{a, b, c, d\}$, $Y = \{\{1\}, \emptyset, \{1, 2\}, \{\{\emptyset\}, 2\}\}$ have the same cardinality. It is also the same as for the set $A = \{1, 2, 3, 4\}$

Note: For finite sets cardinality means the same as the number of elements of the set.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

But now we can also talk about cardinality of infinite sets!

Countable sets

Discrete Mathematics

(c) Marcin Sydow

A set X is **countable** if and only if it equipollent with the set of natural numbers \mathcal{N} (infinitely countable) or its finite subset (finitely countable).

The cardinal number of infinite countable sets is denoted as \mathfrak{a} (or equivalently as \aleph_0 (aleph zero))

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)?
What is its cardinal number?
 empty set

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)?What is its cardinal number?empty set yes/0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(c) Marcin Sydow

> Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- **1**,2,3

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- $\{1, 2, 3\}$ yes/3

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- $\{1, 2, 3\}$ yes/3
- $\blacksquare \mathcal{N}$

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- $\{1, 2, 3\}$ yes/3
- $\mathcal{N} \text{ yes}/\aleph_0$
- odd natural numbers

Examples

Discrete Mathematics

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- $\{1, 2, 3\}$ yes/3
- \mathcal{N} yes/ \aleph_0
- odd natural numbers yes/ \aleph_0
- all natural numbers greater than 100

Examples

Discrete Mathematics

(c) Marcin Sydow

Is the following set countable (finitely/infinitely)? What is its cardinal number?

- empty set yes/0
- $\{1, 2, 3\}$ yes/3
- \mathcal{N} yes/ \aleph_0
- odd natural numbers yes/ \aleph_0
- all natural numbers greater than 100 yes/ \aleph_0

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Examples of countable sets

Discrete Mathematics

(c) Marcin Sydow

Are the following sets countable? (i.e. are they equipollent with the set of natural numbers)?:

- the set of all integers?
- the set of all possible ordered pairs of natural numbers?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- the set of all pairs of integers?
- the set of rational numbers?

Interpretation of Countability

Discrete Mathematics

> (c) Marcin Sydow

Countability (or cardinality of \aleph_0) can be informally viewed as **the smallest infinity number**.

In this sense, the set of natural numbers is the smallest infinite set.

Important: a countable set X has the following (equivalent) properties:

- all the elements of X can be arranged in a sequence (why?)
- it is possible to "process" all the elements of X one after another in some sequential order so that each separate element will be processed in *finite* time

Important: there exist sets that are not countable. ("larger" sets than $\ensuremath{\mathcal{N}}\xspace)$

Countability vs set operations

Discrete Mathematics

(c) Marcin Sydow

The following statements are true:

- the union A ∪ B of any two countable sets A and B is countable (why?)
- the Cartesian product A × B of any two countable sets A and B is countable (why?)

The above statements can be (by mathematical induction) generalised to any finite number of countable sets.

The set of all possible finite sequences of terms belonging to a countable set is countable

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Uncountable sets

Discrete Mathematics

(c) Marcin Sydow

Any infinite set which is not equipollent with $\ensuremath{\mathcal{N}}$ is called $\ensuremath{\text{uncountable}}.$

Interpretation: uncountable set is a set that has "larger" cardinality than $\mathcal{N}.$ All the elements of uncountable set cannot be arranged in a sequence!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Real numbers are uncountable

Discrete Mathematics

(c) Marcin Sydow

Theorem:

The set of all real numbers is uncountable.

Proof: It suffices to show that for every sequence $a_1, a_2, ...$ of real numbers, there exists a real number x that does not belong to this sequence.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem: The real interval (0,1) is uncountable

Proof: example of a "diagonal proof".

Proof cont.

Discrete Mathematics

(c) Marcin Sydow Lets define a sequence of closed intervals $[p_i, q_i]$ so that:

•
$$q_i - p_i = 1/3^i$$

$$\bullet [p_i, q_i] \subseteq [p_{i-1}, q_{i-1}]$$

•
$$a_i \notin [p_i, q_i]$$

For example, in the closed interval [0,1] let's define $[p_1, q_q]$ as a one of the three: [0, 1/3], [1/3, 2/3], [2/3, 1] that does not contain a_1 . Next, inside the interval $[p_1, q_1]$ let's define subinterval of length 1/9 that does not contain a_2 , etc.

Now, let x be the intersection $\bigcup_{i=1}^{\infty} [p_i, q_i]$ (which is non-empty, since the intervals are closed). Hence, $\forall_i x \neq a_i$ because $a_i \notin [p_i, q_i]$ while $x \in [p_i, q_i]$.

(c) Marcin Sydow

The cardinality of the set of real numbers is denoted as:

$$\mathfrak{c} = |R|$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

and called continuum.

Definition of Addition and multiplication

Discrete Mathematics

(c) Marcir Sydow

For any disjoint sets X, Y we define the operations on their cardinalities as:

$$|X| + |Y| = |X \cup Y|$$

For any sets X, Y:

$$|X| \cdot |Y| = |X \times Y|$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Note: the sets can be infinite or even uncountable

Examples

Discrete Mathematics

(c) Marcir Sydow

The following properties of aleph zero hold:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\mathbf{a} + \mathbf{a} = \mathbf{a}$
- $\mathbf{a} \cdot \mathbf{a} = \mathbf{a}$
- $\bullet \ \mathfrak{a} + n = \mathfrak{a}$
- $\bullet \ \mathfrak{a} \cdot n = \mathfrak{a}$

(n is any finite natural number) Proof: exercise

Properties of cardinal numbers

Discrete Mathematics

(c) Marcin Sydow

For any three cardinal numbers, the associative and distributive law for addition and multiplication hold:

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- $\blacksquare (\mathfrak{m} + \mathfrak{n}) + \mathfrak{p} = \mathfrak{m} + (\mathfrak{n} + \mathfrak{p})$
- $\blacksquare (\mathfrak{m} \cdot \mathfrak{n}) \cdot \mathfrak{p} = \mathfrak{m} \cdot (\mathfrak{n} \cdot \mathfrak{p})$
- $\mathfrak{m}(\mathfrak{n}+\mathfrak{p})=\mathfrak{m}\cdot\mathfrak{n}+\mathfrak{m}\cdot\mathfrak{p}$

Exponentiation of cardinal numbers

Discrete Mathematics

(c) Marcin Sydow

For any two cardinal numbers $\mathfrak{m} = |X|$, $\mathfrak{n} = |Y|$ the exponentiation $\mathfrak{n}^{\mathfrak{m}}$ is defined as the cardinality of the set of all functions $f : X \to Y$ (reminder: denotation of this set is Y^X).

$$\mathfrak{n}^{\mathfrak{m}}=|Y^X|$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Properties of exponetiation

Discrete Mathematics

(c) Marcin Sydow

The following formulas hold for any three cardinal numbers:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

$$\blacksquare \ \mathfrak{n}^{\mathfrak{m}+\mathfrak{p}} = \mathfrak{n}^{\mathfrak{m}} \cdot \mathfrak{n}^{\mathfrak{p}}$$

$$\blacksquare (\mathfrak{mn})^\mathfrak{p} = \mathfrak{m}^\mathfrak{p} \cdot \mathfrak{n}^\mathfrak{p}$$

$$\bullet (\mathfrak{n}^{\mathfrak{m}})^{\mathfrak{p}} = \mathfrak{n}^{\mathfrak{m}\mathfrak{p}}$$

Cardinality of the power set

Discrete Mathematics

(c) Marcin Sydow

Theorem:

For any set X of cardinality \mathfrak{m} the cardinality of its power set (the family of all its subsets) denoted as 2^X is equal to the cardinal number $2^{\mathfrak{m}}$.

Proof: consider the *characteristic function* $f : X \to \{0, 1\}$ of the subset $S \subseteq X$ (1 if the element belongs to S, 0 otherwise).

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Cantor Theorem

Discrete Mathematics

(c) Marcin Sydow

Theorem:

No set has cardinality equal to that of the family of all its subsets. Equivalently: $2^{\mathfrak{m}} \neq \mathfrak{m}$ for any cardinal number \mathfrak{m}

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Set of all sets does not exist

Discrete Mathematics

(c) Marcin Sydow

Theorem:

The set of all sets does not exist.

Proof 1: it is a corollary from the Cantor theorem, since the cardinality of family of all subsets of any set X is different than the cardinality of any subsets of X. Family of all subsets of the "set of all set" (if it existed) would be a subset of it.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Note: it means that the "collection" of all sets is not a set.

Russel antinomy

Discrete Mathematics

(c) Marcin Sydow

(another proof that the "set of all sets" cannot exist) Let's assume the following set is possible to be defined:

$$Z = \{x : x \notin x\}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Now: does Z belong to itself or not?

Russel antinomy

Discrete Mathematics

(c) Marcin Sydow

(another proof that the "set of all sets" cannot exist) Let's assume the following set is possible to be defined:

$$Z = \{x : x \notin x\}$$

Now: does Z belong to itself or not?

 $(x \in Z \Leftrightarrow x \notin x \text{ what is equivalent to } Z \in Z \Leftrightarrow Z \notin Z - \text{contradiction!})$

Note: this can be viewed as "warning" on the limits of the concept of the set.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Inequality of cardinal numbers

Discrete Mathematics

(c) Marcin Sydow

We define: for
$$\mathfrak{m} = |X|$$
, $\mathfrak{n} = |Y|$

$$\mathfrak{m} \leq \mathfrak{n} \Leftrightarrow X \subseteq Y$$

If additionally $\mathfrak{m} \neq \mathfrak{n}$ then we denote it as $\mathfrak{m} < \mathfrak{n}$.

Note: Cantor theorem is equivalent to:

$$\mathfrak{m} < 2^{\mathfrak{m}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note: it is equivalent to say that the relation is antisymmetric. It implies that this relation on cardinal numbers defines a linear order

Example tasks/questions/problems

Discrete Mathematics

> (c) Marcin Sydow

For each of the following: precise definition or ability to compute on the given example (if applicable):

- equipollence relation
- cardinality
- what is aleph zero
- what is continuum
- operations on cardinal numbers
- draft of proof of uncountability of real numbers (or interval (0,1))

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Cantor theorem
- Cantor-Bernstein theorem

(c) Marcin Sydow

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?