Discrete Mathematics

Equipollence

(c) Marcin Sydow

Contents

- Equipollence Relation
- Equipollence as Equivalence Relation
- Definition of Cardinality
- Countable Sets

■ Uncountable Sets

- Reals are uncountable

■ Cardinal Numbers

Introduction

Discrete
(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$

Introduction

Discrete
(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question: How to formally define the number of elements of a finite set?

Introduction

Discrete
(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question: How to formally define the number of elements of a finite set?

Much more interesting questions:

Introduction

Discrete
(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question: How to formally define the number of elements of a finite set?

Much more interesting questions: How many elements does an infinite set have?

Introduction

Discrete
(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question:
How to formally define the number of elements of a finite set?
Much more interesting questions:
How many elements does an infinite set have?
Is the number of natural numbers the same as the number of integers?

Introduction

(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question:
How to formally define the number of elements of a finite set?
Much more interesting questions:
How many elements does an infinite set have?
Is the number of natural numbers the same as the number of integers?
Is it the same as the number of real numbers?

Introduction

(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question:
How to formally define the number of elements of a finite set?
Much more interesting questions:
How many elements does an infinite set have?
Is the number of natural numbers the same as the number of integers?
Is it the same as the number of real numbers?
How to formally extend the concept of number of elements to infinite sets?

Introduction

(c) Marcin Sydow

The number of elements of a finite set is a very intuitive concept, for example:
the set $X=\{a, b, c, d\}$ has 4 elements. How many elements does the following set have? $Y=\{1, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ also 4

Question:
How to formally define the number of elements of a finite set?
Much more interesting questions:
How many elements does an infinite set have?
Is the number of natural numbers the same as the number of integers?
Is it the same as the number of real numbers?
How to formally extend the concept of number of elements to infinite sets?

Equipollence Relation between two sets

Two sets X and Y are equipollent if and only if there exists a bijection $f: X \rightarrow Y$ between them (i.e. a function that is injection and surjection).

Denotation: $X \sim Y$
Example: $X=\{a, b, c, d\}$
$Y=\{\{1\}, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$
Are X and Y equipollent? Is there also a bijection $g: Y \rightarrow X$ in this case?

Reminder: any bijection $f: A \rightarrow B$ has its inverse $f^{-1}: B \rightarrow A$, defined as $f^{-1}(b)=a \Leftrightarrow f(a)=b$

Equipollence Relation is Equivalence Relation

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

■ Reflexivity: for any set X it holds that: $X \sim X$ (is equipollent with itself) (why?)

Equipollence Relation is Equivalence Relation

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

■ Reflexivity: for any set X it holds that: $X \sim X$ (is equipollent with itself) (why?)
■ Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)

Equipollence Relation is Equivalence Relation

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

■ Reflexivity: for any set X it holds that: $X \sim X$ (is equipollent with itself) (why?)
■ Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)

- Transitiveness: for any three sets X, Y, Z the following holds: $X \sim Y$ and $Y \sim Z \Rightarrow X \sim Z$ (why?)

Equipollence Relation is Equivalence Relation

Equipollence relation between 2 sets is equivalence relation, since it satisfies:

■ Reflexivity: for any set X it holds that: $X \sim X$ (is equipollent with itself) (why?)
■ Symmetry: for any two sets $X \sim Y \Rightarrow Y \sim X$ (why?)

- Transitiveness: for any three sets X, Y, Z the following holds: $X \sim Y$ and $Y \sim Z \Rightarrow X \sim Z$ (why?)

Hence, equipollence relation is equivalence relation (thus, it has equivallence classes)

Cardinality of a set

(c) Marcin Sydow

Cardinality (or cardinal number) of a set is defined as its equivalence class in terms of equipollence relation, i.e. two sets have the same cardinality (or cardinal number) if they are equipollent.

Example:

The sets $X=\{a, b, c, d\}, Y=\{\{1\}, \emptyset,\{1,2\},\{\{\emptyset\}, 2\}\}$ have the same cardinality. It is also the same as for the set $A=\{1,2,3,4\}$
Note: For finite sets cardinality means the same as the number of elements of the set.
But now we can also talk about cardinality of infinite sets!

Countable sets

A set X is countable if and only if it equipollent with the set of natural numbers \mathcal{N} (infinitely countable) or its finite subset (finitely countable).

The cardinal number of infinite countable sets is denoted as \mathfrak{a} (or equivalently as \aleph_{0} (aleph zero))

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$ yes $/ 3$

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$ yes/3
- \mathcal{N}

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$ yes/3
- \mathcal{N} yes $/ \aleph_{0}$

■ odd natural numbers

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$ yes/3
- \mathcal{N} yes $/ \aleph_{0}$
- odd natural numbers yes $/ \aleph_{0}$
- all natural numbers greater than 100

Examples

Is the following set countable (finitely/infinitely)?
What is its cardinal number?

- empty set yes/0
- $\{1,2,3\}$ yes/3
- \mathcal{N} yes $/ \aleph_{0}$
- odd natural numbers yes $/ \aleph_{0}$

■ all natural numbers greater than 100 yes $/ \aleph_{0}$

Examples of countable sets

Discrete
Mathematics
(c) Marcin Sydow

Are the following sets countable? (i.e. are they equipollent with the set of natural numbers)?:

- the set of all integers?
- the set of all possible ordered pairs of natural numbers?

■ the set of all pairs of integers?
■ the set of rational numbers?

Interpretation of Countability

(c) Marcin Sydow

Countability (or cardinality of \aleph_{0}) can be informally viewed as the smallest infinity number.

In this sense, the set of natural numbers is the smallest infinite set.

Important: a countable set X has the following (equivalent) properties:

■ all the elements of X can be arranged in a sequence (why?)
■ it is possible to "process" all the elements of X one after another in some sequential order so that each separate element will be processed in finite time

Important: there exist sets that are not countable. ("larger" sets than \mathcal{N})

Countability vs set operations

The following statements are true:

- the union $A \cup B$ of any two countable sets A and B is countable (why?)
- the Cartesian product $A \times B$ of any two countable sets A and B is countable (why?)

The above statements can be (by mathematical induction) generalised to any finite number of countable sets.

The set of all possible finite sequences of terms belonging to a countable set is countable

Uncountable sets

Any infinite set which is not equipollent with \mathcal{N} is called uncountable.

Interpretation: uncountable set is a set that has "larger" cardinality than \mathcal{N}. All the elements of uncountable set cannot be arranged in a sequence!

Real numbers are uncountable

Theorem:
The set of all real numbers is uncountable.
Proof: It suffices to show that for every sequence a_{1}, a_{2}, \ldots of real numbers, there exists a real number x that does not belong to this sequence.

Theorem: The real interval $(0,1)$ is uncountable Proof: example of a "diagonal proof".

Proof cont.

(c) Marcin Sydow

Lets define a sequence of closed intervals $\left[p_{i}, q_{i}\right]$ so that:

- $q_{i}-p_{i}=1 / 3^{i}$

■ $\left[p_{i}, q_{i}\right] \subseteq\left[p_{i-1}, q_{i-1}\right]$

- $a_{i} \notin\left[p_{i}, q_{i}\right]$

For example, in the closed interval $[0,1]$ let's define $\left[p_{1}, q_{q}\right]$ as a one of the three: $[0,1 / 3],[1 / 3,2 / 3],[2 / 3,1]$ that does not contain a_{1}. Next, inside the interval $\left[p_{1}, q_{1}\right]$ let's define subinterval of length $1 / 9$ that does not contain a_{2}, etc.

Now, let x be the intersection $\bigcup_{i=1}^{\infty}\left[p_{i}, q_{i}\right]$ (which is non-empty, since the intervals are closed). Hence, $\forall_{i} x \neq a_{i}$ because $a_{i} \notin\left[p_{i}, q_{i}\right]$ while $x \in\left[p_{i}, q_{i}\right]$.

Continuum

The cardinality of the set of real numbers is denoted as:

$$
\mathfrak{c}=|R|
$$

and called continuum.

Definition of Addition and multiplication

For any disjoint sets X, Y we define the operations on their cardinalities as:

$$
|X|+|Y|=|X \cup Y|
$$

For any sets X, Y :

$$
|X| \cdot|Y|=|X \times Y|
$$

Note: the sets can be infinite or even uncountable

Examples

The following properties of aleph zero hold:
■ $\mathfrak{a}+\mathfrak{a}=\mathfrak{a}$
$■ \mathfrak{a} \cdot \mathfrak{a}=\mathfrak{a}$
■ $\mathfrak{a}+n=\mathfrak{a}$
■ $\mathfrak{a} \cdot n=\mathfrak{a}$
(n is any finite natural number)
Proof: exercise

Properties of cardinal numbers

For any three cardinal numbers, the associative and distributive law for addition and multiplication hold:

■ $(\mathfrak{m}+\mathfrak{n})+\mathfrak{p}=\mathfrak{m}+(\mathfrak{n}+\mathfrak{p})$
■ $(\mathfrak{m} \cdot \mathfrak{n}) \cdot \mathfrak{p}=\mathfrak{m} \cdot(\mathfrak{n} \cdot \mathfrak{p})$
$■ \mathfrak{m}(\mathfrak{n}+\mathfrak{p})=\mathfrak{m} \cdot \mathfrak{n}+\mathfrak{m} \cdot \mathfrak{p}$

Exponentiation of cardinal numbers

For any two cardinal numbers $\mathfrak{m}=|X|, \mathfrak{n}=|Y|$ the exponentiation $\mathfrak{n}^{\mathfrak{m}}$ is defined as the cardinality of the set of all functions $f: X \rightarrow Y$ (reminder: denotation of this set is Y^{X}).

$$
\mathfrak{n}^{\mathfrak{m}}=\left|Y^{X}\right|
$$

Properties of exponetiation

Discrete
(c) Marcin Sydow

The following formulas hold for any three cardinal numbers:
$■ \mathfrak{n}^{\mathfrak{m}+\mathfrak{p}}=\mathfrak{n}^{\mathfrak{m}} \cdot \mathfrak{n}^{\mathfrak{p}}$
■ $(\mathfrak{m n})^{\mathfrak{p}}=\mathfrak{m}^{\mathfrak{p}} \cdot \mathfrak{n}^{\mathfrak{p}}$
■ $\left(\mathfrak{n}^{\mathfrak{m}}\right)^{\mathfrak{p}}=\mathfrak{n}^{\mathfrak{m p}}$

Cardinality of the power set

Theorem:
For any set X of cardinality \mathfrak{m} the cardinality of its power set (the family of all its subsets) denoted as 2^{X} is equal to the cardinal number 2^{m}.

Proof: consider the characteristic function $f: X \rightarrow\{0,1\}$ of the subset $S \subseteq X$ (1 if the element belongs to $S, 0$ otherwise).

Cantor Theorem

Theorem:
No set has cardinality equal to that of the family of all its subsets. Equivalently: $2^{\mathfrak{m}} \neq \mathfrak{m}$ for any cardinal number \mathfrak{m}

Set of all sets does not exist

Theorem:
The set of all sets does not exist.
Proof 1: it is a corollary from the Cantor theorem, since the cardinality of family of all subsets of any set X is different than the cardinality of any subsets of X. Family of all subsets of the "set of all set" (if it existed) would be a subset of it.

Note: it means that the "collection" of all sets is not a set.

Russel antinomy

(c) Marcin Sydow
(another proof that the "set of all sets" cannot exist)
Let's assume the following set is possible to be defined:

$$
Z=\{x: x \notin x\}
$$

Now: does Z belong to itself or not?

Russel antinomy

(c) Marcin Sydow
(another proof that the "set of all sets" cannot exist)
Let's assume the following set is possible to be defined:

$$
Z=\{x: x \notin x\}
$$

Now: does Z belong to itself or not?
($x \in Z \Leftrightarrow x \notin x$ what is equivalent to $Z \in Z \Leftrightarrow Z \notin Z$ contradiction!)
Note: this can be viewed as "warning" on the limits of the concept of the set.

Inequality of cardinal numbers

We define: for $\mathfrak{m}=|X|, \mathfrak{n}=|Y|$

$$
\mathfrak{m} \leq \mathfrak{n} \Leftrightarrow X \subseteq Y
$$

If additionally $\mathfrak{m} \neq \mathfrak{n}$ then we denote it as $\mathfrak{m}<\mathfrak{n}$.
Note: Cantor theorem is equivalent to:

$$
\mathfrak{m}<2^{\mathfrak{m}}
$$

Cantor-Bernstein Theorem

Theorem:

$$
\mathfrak{m} \leq \mathfrak{n} \wedge \mathfrak{n} \leq \mathfrak{m}
$$

implies that:

$$
\mathfrak{m}=\mathfrak{n}
$$

Note: it is equivalent to say that the relation is antisymmetric. It implies that this relation on cardinal numbers defines a linear order

Example tasks/questions/problems

(c) Marcin Sydow

For each of the following: precise definition or ability to compute on the given example (if applicable):

■ equipollence relation

- cardinality
- what is aleph zero
- what is continuum
- operations on cardinal numbers
- draft of proof of uncountability of real numbers (or interval $(0,1))$
■ Cantor theorem
■ Cantor-Bernstein theorem

Discrete
(c) Marcin Sydow

Thank you for your attention.

