Algorithms and Data Structures

(1) Correctness of Algorithms

(c) Marcin Sydow
Contact Info

dr hab. Marcin Sydow,
SIAM Department, PJATK
room: 311 (main building)
tel.: +48 22 58 44 571
Organisation

15 lectures + 15 tutorials

tutorials: **total of 60 points (max)**

1. **11 small entry tests** 11×2 points = 22 points
2. **2 tests** 2×14 points = 28 points
3. **activity, etc.** = max of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2, 5]$)

examples: $36\text{p} \rightarrow 3+$, $18\text{p} \rightarrow 2$, $52\text{p} \rightarrow 5$, etc.
Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1. 11 small entry tests 11×2 points $= 22$ points
2. 2 tests 2×14 points $= 28$ points
3. activity, etc. $= \max$ of 10 points

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2,5]$)

examples: $36p \rightarrow 3+$, $18p \rightarrow 2$, $52p \rightarrow 5$, etc.

exact math formula: grade $= \min(5, \max(4, \lfloor \frac{\text{score}}{5} \rfloor)) / 2$
Organisation

15 lectures + 15 tutorials

tutorials: total of 60 points (max)

1 11 small entry tests 11×2 points $= 22$ points
2 2 tests 2×14 points $= 28$ points
3 activity, etc. $= \text{max of 10 points}$

Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2, 5]$)

examples: $36p \rightarrow 3+$, $18p \rightarrow 2$, $52p \rightarrow 5$, etc.

exact math formula: $\text{grade} = \min(5, \max(4, \left\lfloor \frac{\text{score}}{5} \right\rfloor)/2)$

after passing tutorials: Exam

(must pass tutorials to take the exam)
Books:

General:

- “Algorithms and Datastructures. The Basic Toolbox” (MS), K. Mehlhorn P. Sanders, Springer 2008
- (Exercises in Polish) G. Mirkowska et al. “Algorytmy i Struktury Danych - Zadania”, wydawnictwo PJWSTK, 2005 (zbiór zadań i ćwiczeń, częściowo z rozwiązaniami)
Additional Examples of Books

- N. Wirth “Algorithms + Data Structures = Programs” (also in Polish)
- A. Aho, J. Hopcroft, J. Ullman “Algorithms and Data Structures” (also in Polish)
- (in Polish) W. Lipski “Kombinatoryka dla Programistów”, WNT 2004

For deeper studies:

- D. Knuth “The Art of Computer Programming” 3 volumes, detailed analyses (also in Polish)
- Ch. Papadimitriou “Computational Complexity” more mathematical (also in Polish)
Algorithm

What does “algorithm” mean?
What does “algorithm” mean?

A recipe (how to do something, list of actions, etc.)

According to historians the word is derived from the (arabic version of the) name “al-Khwarizmi” of a Persian mathematician (A.D. 780-850)

Algorithmics is the heart of computer science
The role of algorithms becomes even more important nowadays (growing data, Internet, search engines, etc.)
Pseudocode

- an abstract notation of algorithm
- looks similar to popular programming languages (Java, C/C++, Pascal)
- plays rather informative role than formal (relaxed syntax formalism)
- literals (numbers, strings, null)
- variables (no declarations, but must be initialized)
- arrays ([] operator) - we assume that arrays are indexed from 0
- operators (assignment =, comparison (e.g. ==), arithmetic (e.g. +, ++, +=), logic (e.g. !)
- functions (including recursion), the return instruction
- conditional statement (IF), loops (FOR, WHILE).
An example of pseudocode usage:

Task: compute sum of numbers in an array of length \(\text{len} \):

\[
\text{sum(array, len)} \{
 \text{sum} = 0
 \text{i} = 0
 \text{while(i < len)}{
 \text{sum} += \text{array}[\text{i}]
 \text{i}++
 }
 \text{return sum}
\}
\]

(it is not any particular programming language but \textit{precisely expresses the algorithm}
For conveniece, sometimes the ‘.’ (dot) operator will be used (object access operator - the same as in Java, C++, etc.)
For example:

\[
\text{if } ((\text{node.left} \neq \text{null}) \&\& (\text{node.value} == 5)) \text{ node.updateLeft()}
\]
What is this course about?

Topics:

1. Algorithm Design
2. Algorithm Analysis
3. Data Structures
There is a computational task to be performed on computer.

First, the algorithm should be designed

Then, the algorithm should be implemented (with some programming language)

Algorithm design (and analysis) is a necessary step before programming
Algorithm Specification

How to express the task “to be done” in algorithmics?

Specification expresses the task. Specification consists of:

- (optional) **name** of algorithm and list of its arguments
- **initial condition** (it specifies what is “correct” **input data** to the problem)
- **final condition** (it specifies what is the desired **result** of the algorithm)

The conditions could be expressed in words, assuming it is precise.
Example of a task and its specification

Assuming the task: “given the array and its length compute the sum of numbers in this array”

the corresponding **Specification** could be:

name: sum(Arr, len)

input: (initial condition)
Algorithm gets 2 following arguments (input data):

1. Arr - array of integer numbers
2. len - length of Arr (natural number)

output: (final condition)
Algorithm must return:

- sum - sum of the first len numbers in the array Arr (integer number)

(any algorithm satisfying the above will be regarded as “correct”)
Total Correctness of Algorithm

correct input data is the data which satisfies the initial condition of the specification

correct output data is the data which satisfies the final condition of the specification

Definition

An algorithm is called totally correct for the given specification if and only if for any correct input data it:

1. stops and
2. returns correct output

Notice the split into 2 sub-properties in the definition above.
Partial Correctness of Algorithm

Usually, while checking the correctness of an algorithm it is easier to separately:

1. first check whether the algorithm stops
2. then checking the “remaining part”. This “remaining part” of correctness is called Partial Correctness of algorithm

Definition

An algorithm is **partially correct** if satisfies the following condition: If the algorithm receiving **correct** input data **stops** then its result is correct

Note: Partial correctness **does not make** the algorithm stop.
An example of partially correct algorithm

(computing the sum of array of numbers)

sum(array, len){
 sum = 0
 i = 0
 while(i < len)
 sum += array[i]
 return sum
}

Is this algorithm partially correct? Is it also totally correct?
The “Stop Property”

A proof of total correctness of an algorithm usually assumes 2 separate steps:

1. (to prove that) the algorithm always stops for correct input data (stop property)
2. (to prove that) the algorithm is partially correct (Stop property is usually easier to prove)
Stop property - an example

```java
sum(array, len) {
    sum = 0
    i = 0
    while (i < len) {
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property?

It is enough to observe that:

1. the algorithm stops when the value of variable `i` is greater or equal than `len`
2. value of `len` is a constant and finite natural number (according to the specification of this algorithm)
3. value of `i` increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after finite number of iterations for any input correct data.
Stop property - an example

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1. the algorithm stops when the value of variable `i` is greater or equal than `len`
2. value of `len` is a constant and finite natural number (according to the specification of this algorithm)
3. value of `i` increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after finite number of iterations for any input correct data.
Stop property - an example

```c
sum(array, len)
{
    sum = 0
    i = 0
    while(i < len)
    {
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1. the algorithm stops when the value of variable i is greater or equal than len
Stop property - an example

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1. the algorithm stops when the value of variable i is greater or equal than len
2. value of len is a **constant** and finite natural number (according to the specification of this algorithm)
Stop property - an example

```pseudocode
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1. the algorithm stops when the value of variable i is greater or equal than len
2. value of len is a **constant** and finite natural number (according to the specification of this algorithm)
3. value of i increases by 1 with each iteration of the loop
Stop property - an example

```plaintext
def sum(array, len):
    sum = 0
    i = 0
    while(i < len):
        sum += array[i]
        i++
    return sum
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1. the algorithm stops when the value of variable i is greater or equal than len

2. value of len is a constant and finite natural number (according to the specification of this algorithm)

3. value of i increases by 1 with each iteration of the loop

As the result, the algorithm will certainly stop after finite number of iterations for any input correct data.
Proving the stop property of an algorithm is usually easy. Proving the “remaining part” of its total correctness (i.e. partial correctness) needs usually more work and sometimes invention, even for quite simple algorithms.

Observation: most of activity of algorithms can be expressed in the form of “WHILE loop”. Thus, a tool for examining the correctness of loops would be highly useful.

Invariant of a loop is such a tool.

Definition

A loop invariant is a logical predicate such that:
- **IF** it is satisfied **before** entering any single iteration of the loop
- **THEN** it is also satisfied **after** that iteration.
An example of a typical task in algorithmics:

What does the following algorithm “do” (prove your answer): (the names of variables are purposely obscure :))

input: Arr - an array of integers, len > 0 - length of array

```c
alg0r1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Easy? OK. But now it is also necessary to prove the answer. More precisely, the proof of total correctness is needed.
An example of a typical task in algorithmics:

What does the following algorithm “do” (prove your answer): (the names of variables are purposely obscure :))
input: Arr - an array of integers, len > 0 - length of array

```
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Easy? OK.
An example of a typical task in algorithmics:

What does the following algorithm “do” (prove your answer): (the names of variables are purposely obscure :))

input: Arr - an array of integers, len > 0 - length of array

alg1(Arr, len){
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}

Easy? OK. But now it is also necessary to prove the answer. More precisely, the proof of total correctness is needed.
An example - proving total correctness, cont.

2 steps are needed (what steps?)

stop property
An example - proving total correctness, cont.

2 steps are needed (what steps?)

1. proving the stop property of algorithm
An example - proving total correctness, cont.

2 steps are needed (what steps?)

1. proving the stop property of algorithm
2. proving the partial correctness of algorithm
An example - proving total correctness, cont.

2 steps are needed (what steps?)

1. proving the stop property of algorithm
2. proving the partial correctness of algorithm

Stop property?
An example - proving total correctness, cont.

2 steps are needed (what steps?)

1. proving the stop property of algorithm
2. proving the partial correctness of algorithm

Stop property?

```c
algOr1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
    i++
    return x
}
```
2 steps are needed (what steps?)

1. proving the stop property of algorithm
2. proving the partial correctness of algorithm

Stop property?

```python
algo1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

It was easy.
An example - proving total correctness, cont.

2 steps are needed (what steps?)
1. proving the stop property of algorithm
2. proving the partial correctness of algorithm

Stop property?

alg1(Arr, len)
{
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}

It was easy. Now, partial correctness...
Example continued - partial correctness

```
alg1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
    i++
    return x
}
```

we would like to show that “x is a maximum in Arr”
Example continued - partial correctness

```c
alg1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

we would like to show that “x is a maximum in Arr” in mathematical notation it would look like:
Example continued - partial correctness

```java
algort(Arr, len){
  i = 1
  x = Arr[0]
  while(i < len)
    if(Arr[i] > x){
      x = Arr[i]
    }
    i++
  return x
}
```

we would like to show that “x is a maximum in Arr” in mathematical notation it would look like:

\[(\forall 0 \leq j < \text{len} \ x \geq \text{Arr}[j]) \land (\exists 0 \leq j < \text{len} \ (x == \text{Arr}[j]))\]
Example continued - partial correctness

```
algor1(Arr, len) {
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x) {
            x = Arr[i]
        }
    i++
    return x
}
```

we would like to show that “x is a maximum in Arr” in mathematical notation it would look like:

\[(\forall_{0 \leq j < len} x \geq Arr[j]) \land (\exists_{0 \leq j < len} (x == Arr[j]))\]

Ok, but how to show the partial correctness of this algorithm?
Example continued - partial correctness

```javascript
alg01(Arr, len)
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}

we would like to show that “x is a maximum in Arr” in mathematical notation it would look like:
\( (\forall_{0 \leq j < len} x \geq Arr[j]) \land (\exists_{0 \leq j < len} x == Arr[j]) \)

Ok, but how to show the partial correctness of this algorithm?

Answer: we can use a loop invariant.
Example continued - application of invariant

**Target:** \((\forall_{0 \leq j < \text{len}} x \geq Arr[j]) \land (\exists_{0 \leq j < \text{len}} (x == Arr[j]))\)

```python
alg1(Arr, len){
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}
```
Example continued - application of invariant

**Target:** \((\forall 0 \leq j < \text{len} \ x \geq \text{Arr}[j]) \land (\exists 0 \leq j < \text{len} (x == \text{Arr}[j]))\)

```plaintext
alg1(Arr, len)
{
 i = 1
 x = Arr[0]
 while(i < len)
 {
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 }
 return x
}
```

**Invariant:** \((\forall 0 \leq j < i \ x \geq \text{Arr}[j]) \land (\exists 0 \leq j < \text{len} (x == \text{Arr}[j]))\)
Example continued - application of invariant

**Target:** \((\forall_{0 \leq j < \text{len}} x \geq \text{Arr}[j]) \land (\exists_{0 \leq j < \text{len}} (x == \text{Arr}[j]))\)

```plaintext
algor1(Arr, len)
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x)
 x = Arr[i]
 i++
 return x
```

**Invariant:** \(\forall_{0 \leq j < i} x \geq \text{Arr}[j] \land (\exists_{0 \leq j < \text{len}} (x == \text{Arr}[j]))\)

What do we get?
Example continued - application of invariant

Target: \((\forall 0 \leq j < \text{len} \ x \geq \text{Arr}[j]) \land (\exists 0 \leq j < \text{len} \ (x == \text{Arr}[j]))\)

```
alg1(Arr, len){
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}
```

Invariant: \(\forall 0 \leq j < i \ x \geq \text{Arr}[j] \land (\exists 0 \leq j < \text{len} \ (x == \text{Arr}[j]))\)

What do we get? In conjunction with the stop condition of the loop
Example continued - application of invariant

Target: \((\forall_{0\leq j < \text{len}} x \geq \text{Arr}[j]) \land (\exists_{0\leq j < \text{len}} (x == \text{Arr}[j]))\)

```
alg1(Arr, len){
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}
```

Invariant: \(\forall_{0\leq j < i} x \geq \text{Arr}[j] \land (\exists_{0\leq j < \text{len}} (x == \text{Arr}[j]))\)

What do we get? In conjunction with the stop condition of the loop \(i == \text{len}\)
Example continued - application of invariant

**Target:** \((\forall 0 \leq j < len \ x \geq Arr[j]) \land (\exists 0 \leq j < len (x == Arr[j]))\)

```c
alg1(Arr, len){
 i = 1
 x = Arr[0]
 while(i < len)
 if(Arr[i] > x){
 x = Arr[i]
 }
 i++
 return x
}
```

**Invariant:** \(\forall 0 \leq j < i \ x \geq Arr[j] \land (\exists 0 \leq j < len (x == Arr[j]))\)

What do we get? In conjunction with the stop condition of the loop \((i == len)\) we got the proof!

\(((\forall 0 \leq j < i \ x \geq Arr[j]) \land (i == len))\)
Target: \((\forall_{0 \leq j < \text{len}} x \geq \text{Arr}[j]) \land (\exists_{0 \leq j < \text{len}} (x == \text{Arr}[j]))\)

\text{alg1}(\text{Arr}, \text{len})\{ 
    \text{i} = 1 
    \text{x} = \text{Arr}[0] 
    \text{while}(\text{i} < \text{len}) 
        \text{if}(\text{Arr}[\text{i}] > \text{x})\{ 
            \text{x} = \text{Arr}[\text{i}] 
        \} 
        \text{i}++ 
    \text{return } \text{x} 
\}

\text{Invariant: } \forall_{0 \leq j < i} x \geq \text{Arr}[j] \land (\exists_{0 \leq j < \text{len}} (x == \text{Arr}[j])) 

What do we get? In conjunction with the stop condition of the loop \((i == \text{len})\) we got the proof!
\(((\forall_{0 \leq j < i} x \geq \text{Arr}[j]) \land (i == \text{len})) \Rightarrow (\forall_{0 \leq j < \text{len}} x \geq \text{Arr}[j])\)
What you should know after this lecture:

1. Organisation and Passing Rules of this course :)  
2. What is specification  
3. What does “correct input data” mean  
4. Definition of Total Correctness of algorithm  
5. Definition of Partial Correctness of algorithm  
6. What is stop property of an algorithm  
7. Be able to give example of a partially correct algorithm which is not totally correct  
8. Be able to prove stop property of simple algorithms  
9. Definition of invariant of a loop  
10. Be able to invent good invariant for a given loop  
11. Be able to prove total correctness for simple algorithms
Thank you for your attention