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1 Polish-Japanese Institute of Information Technology,
Research Center, ul. Koszykowa 86, 02-008 Warsaw, Poland

wkos@pjwstk.edu.pl
2 Institute of Fundamental Technological Research, PAS (IPPT PAN),
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Abstract. Algebra of ordered fuzzy numbers (OFN) is defined to handle with
fuzzy inputs in a quantitative way, exactly in the same way as with real numbers.
Additional two structures: algebraic and normed (topological) are introduced to
define a general form of defuzzyfication operators. A useful implementation of a
Fuzzy Calculator allows counting with the general type membership relations.

1 Introduction

Nowadays, fuzzy approach is helpful while dealing with non-exact data involving hu-
man vagueness in large multimedia databases. In real-life problems both parameters
and data used in mathematical modelling are vague. The vagueness can be described by
fuzzy numbers and sets.

Communication, data mining, pattern recognition, system modelling, diagnosis, im-
age analysis, fault detection and others are fields where clustering plays an important
role. However, in practice constructed clusters overlap, and some data vectors belong
to several clusters with different degrees of membership. A natural way to describe this
situation results in implementing the fuzzy set theory [18,21], where the membership
of a vector xk to the i-th cluster Ui is a value from the unit interval [0, 1]. Approximate
reasoning, on the other hand, by means of compositional fuzzy rules of inference can
help in dealing with uncertainty inherent in the processed knowledge, especially when
building a fuzzy decision support system for decision making tasks in different domains
of applications [25,27,28].

All those situations require well known fuzzy logic and even more – arithmetics of
fuzzy numbers, in order to perform operations on fuzzy observations. Fuzzy concepts
have been introduced in order to model such vague terms as observed values of some
physical or economic terms, like pressure values or stock market rates, that can be
inaccurate, can be noisy or can be difficult to measure with an appropriate precision
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because of technical reasons. In our daily life there are many cases where observations
of objects in a population are fuzzy. In modern complex and large-scale systems it is
difficult to adopt the systems using only exact data. Also in this case, it is inevitable to
adopt non-exact data involving human vagueness. In this way we are approaching the
concept of the fuzzy observation.

The commonly accepted theory of fuzzy numbers [1] is that set up in [4] by Dubois
and Prade in 1978, who proposed a restricted class of membership functions, called
(L, R)–numbers with two so-called shape functions: L and R. (L, R)–numbers can
be used for the formalisation of basic vague terms. However, approximations of fuzzy
functions and operations are needed if one wants to follow the Zadeh’s extension prin-
ciple [26,27]. It leads to some drawbacks that concern properties of fuzzy algebraic
operations, as well as to unexpected and uncontrollable results of repeatedly applied
operations [23,24].

Classical fuzzy numbers (sets) are convenient as far as a simple interpretation in
the set-theoretical language is concerned. However, we could ask: How can we imagine
fuzzy information, say X , in such a way that by adding it to the fuzzy number A the
fuzzy number C will be obtained? In our previous papers (see [14] for references) we
tried to answer that question in terms of so-called improper parts of fuzzy numbers. In
this paper we consider the algebra of ordered fuzzy numbers that leads to an efficient
tool in dealing with unprecise, fuzzy quantitative terms.

2 Motivations

One of the goals of our paper is to construct a revised concept of a fuzzy number, and
at the same time to have the algebra of crisp (non-fuzzy) numbers inside the concept.
The other goal is to preserve as much of the properties of the classical so-called crisp
reals R as possible, in order to facilitate real world applications as e.g. in fuzzy control
systems. The new concept allows for utilising the fuzzy arithmetic and constructing an
algebra of fuzzy numbers. By doing this, the new model of fuzzy numbers has obtained
an extra feature which was not present in the previous ones: neither in the classical
Zadeh’s model, nor in the more recent model of so-called convex fuzzy numbers. This
feature, called in [12,14] the orientation, requires a new interpretation as well as a
special care in dealing with ordered fuzzy numbers. To avoid confusion at this stage of
development, let us stress that any fuzzy number, either classical (crisp or convex fuzzy)
or ordered (new type), has its opposite number which is obtained from the given number
by multiplication with minus one. For the new type of fuzzy numbers, multiplication
by a negative real not only affects the support, but also the orientation swaps. It is
important that to a given ordered fuzzy number two kinds of opposite elements are
defined: the classical, one can say an algebraic opposite number (element) obtained
by its multiplication with a negative crisp one, and the complementary number which
differs from the opposite one by the orientation. Relating to an ordered fuzzy number,
its opposite and complementary elements make the calculation more complex, however
with new features. On the one hand a sum of an ordered fuzzy number and its algebraic
opposite gives a crisp zero, like in the standard algebra of real number. On the other
hand the complementary number can play the role of the opposite number in the sense
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of the Zadeh’s model, since the sum of the both – the (ordered fuzzy) number and its
complementary one – gives a fuzzy zero, non-crisp, in general.

We have to admit that the application of the new type of fuzzy numbers is restricted
to such real-life situations where also the modelled circumstances provide information
about orientation. In particular, in majority of existing approaches, for a fuzzy number
A the difference A−A gives a fuzzy zero. However, this leads to unbounded growth of
the support of fuzziness if a sequence of arithmetic operations is performed between two
(classical) fuzzy numbers. To overcome this unpleasant circumstance the concept of the
orientation of a fuzzy number has been introduced as well as simple operations between
those new objects, called here ordered fuzzy numbers, which are represented by pairs of
continuous functions defined on the unit interval [0,1]. Those pairs are the counterparts
of the inverses of the increasing and decreasing parts of convex fuzzy numbers. In a
particular case, for the pairs (f, g) where f, g ∈ C0([0, 1]) which satisfy: 1)f ≤ g
and 2)f and g are invertible, with f increasing and g decreasing, one can recover the
class of fuzzy numbers called convex ones [3,20]. Then as long as multiplication by
negative numbers is not performed, classical fuzzy calculus is equivalent to the present
operations defined for ordered fuzzy numbers (with negative orientation).

Doing the present development, we would like to refer to one of the very first repre-
sentations of a fuzzy set defined on a universe X (the real axis R, say) of discourse. In
that representation (cf. [6,26]) a fuzzy set (read here: a fuzzy number) A is defined as a
set of ordered pairs {(x, µx); x ∈ X}, where µx ∈ [0, 1] has been called the grade (or
level) of membership of x in A. At that stage, no other assumptions concerning µx have
been made. Later on, one assumed that µx is (or must be) a function of x. However,
originally, A was just a relation in a product space X × [0, 1].

3 Attempts

A number of attempts to introduce non-standard operations on fuzzy numbers have
been made [1,3,7,22,23]. It was noticed that in order to construct operations more suit-
able for their algorithmisation a kind of invertibility of their membership functions is
required. In [10,16,17,20] the idea of modelling fuzzy numbers by means of convex
or quasi-convex functions (cf. [19]) is discussed. We continue this work by defining
quasi-convex functions related to fuzzy numbers in a more general fashion (called a
fuzzy observation, compare its definition in [14]) enabling modelling both dynamics of
changes of fuzzy membership levels and the domain of fuzzy real itself. It is worth-
while to mention here that even starting from the most popular trapezoidal membership
functions, algebraic operations can lead outside this family, towards such generalised
quasi-convex functions.

That more general definition enables to cope with several drawbacks. Moreover, it
seems to provide a solution for other problems, like, e.g., the problem of defining an
ordering over fuzzy numbers (cf.[12]). Here we should mention that Klir was the first
who in [7] has revised fuzzy arithmetic to take relevant requisite constraint (the equality
constraint, exactly) into account and obtained A − A = 0, with crisp 0, as well as the
existence of inverse fuzzy numbers for the arithmetic operations. Some partial results
of similar importance were obtained by Sanchez in [22] by introducing an extended
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operation of a very complex structure. Our approach, however, is much simpler from
mathematical point of view, since it does not use the extension principle but refers to
the functional representation of fuzzy numbers in a more direct way.

In the classical approach the extension principle gives a formal apparatus to carry
over operations (e.g. arithmetic or algebraic) from sets to fuzzy sets. Then in the case of
the so-called convex fuzzy numbers (cf. [3]) the arithmetic operations are algorithmised
with the help of the so-called α-sections of membership functions. It leads to the opera-
tions on intervals. The local invertibility of quasi-concave membership functions, on the
other hand, enables to define operations in terms of the inverses of the corresponding
monotonic parts, as was pointed out in our previous papers [11,13]. In our last paper
[14] we went further and have defined a more general class of fuzzy number, called
ordered fuzzy number, just as a pair of continuous functions defined on the interval
[0, 1]. Those pairs are counterparts of the mentioned inverses.

4 Ordered Fuzzy Numbers

Here the concept of membership functions [1] is weakened by requiring a mere mem-
bership relation and a fuzzy number is identified with an ordered pair of continuous
real functions defined on the interval [0, 1].

Definition 1. By an ordered fuzzy number A we mean an ordered pair A = (f, g) of
continuous functions f, g : [0, 1] → R.

We call the corresponding elements: f – the up-part and g – the down-part of the fuzzy
number A. The continuity of both parts implies their images are bounded intervals, say

Fig. 1. a) Ordered fuzzy number, b) Ordered fuzzy number presented as fuzzy number in classical
meaning, c) Simplified mark denotes the order of inverted functions
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UP and DOWN , respectively (Fig. 1a). Let us use symbols to mark boundaries for
UP = (lA, 1+

A) and for DOWN = (1−A, pA).
In general, functions f, g need not be invertible, only continuity is required; they

give the real variable x ∈ R in terms of y ∈ [0, 1], if one refers to the classical mem-
bership function denotation. If we add a function of x on the interval [1+

A, 1−A] with
constant value equal to 1, we may define a kind of membership function (relation) of a
fuzzy set. When f ≤ g are both invertible, f is increasing, and g is decreasing, we get a
mathematical object which presents a convex fuzzy number in the classical sense [7,23].

We can appoint an extra feature, named an orientation (marked by an arrow in
Fig. 1c), to underline that we are dealing with an ordered pair of functions.

Definition 2. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) be mathematical
objects called ordered fuzzy numbers. The sum C = A + B, subtraction C = A − B,
product C = A · B, and division C = A/B are defined by formula

fC(y) = fA(y) � fB(y) ∧ gC(y) = gA(y) � gB(y) (1)

where "�" works for "+", "−", "·", and "/", respectively, and where A/B is defined, iff
zero does not belong to intervals UP and DOWN of B.

Subtraction of B is the same as addition of the opposite of B, i.e. the number (−1) ·B.
If for A = (f, g) we define its complement Ā = (−g,−f) (please note that Ā �=
(−1) · A), then the sum A + Ā gives a fuzzy zero 0 = (f − g,−(f − g)) in the sense
of the classical fuzzy number calculus.

Definition 3. Let A = (fA, gA), B = (fB, gB) and C = (fC , gC) be mathematical
objects called ordered fuzzy numbers. The maximum C = max(A, B) = A ∨ B and
the minimum C = min(A, B) = A ∧ B are defined by formula

fC(y) = func {fA(y), fB(y)} ∧ gC(y) = func {gA(y), gB(y)} (2)

where "func" works for "max" and "min", respectively.

Many operations can be defined in this way, suitable for the pairs of functions. The
Fuzzy Calculator has been already created as a calculation tool by our co-worker
Mr. Roman Koleśnik [9]. It lets an easy future use of all mathematical objects described
as ordered fuzzy numbers.

5 Further Extensions

Banach Algebra. The pointwise multiplication by a scalar (crisp) number, together
with the operation addition lead to a linear structure R the set of all OFN’s, which is
isomorphic to the linear space of real 2D vector-valued functions defined on the unit
interval I = [0, 1]. Further, one can introduce the norm over R as follows:

||x|| = max(sup
s∈I

|xup(s)|, sup
s∈I

|xdown(s)|) (3)



26 W. Kosiński, P. Prokopowicz, and D. Ślęzak

Hence R can be identified with C([0, 1]) × C([0, 1]). Finally, R is a Banach algebra
with the unity (1†, 1†)– a pair of constant functions 1†(y) = 1, for y ∈ [0, 1]. Previ-
ously, a Banach structure of an extension of convex fuzzy numbers was introduced by
Goetschel and Voxman [5]. However, they were only interested in the linear structure
of this extension.

Order Relation and Ideals. On the space R we can introduce a pre–order [15] by
defining a function W with the help of the relation

W (A) = (xup + xdown), (4)

its value W (A) is a variation of the number A = (xup, xdown). Then we say that the
ordered fuzzy number A is not smaller than the number B, and write A � B, if

W (A) ≥ W (B) ⇔ W (A − B) ≥ 0 (5)

i.e. when the function W (A − B) is non–negative. We say that the number C is non-
negative if its variation is not smaller than zero, i.e. when W (C) ≥ 0. Notice that there
are ordered fuzzy numbers that are not comparable with zero. We say that a number D
is around zero if its variation is the constant function equal to zero, i.e. W (D) = 0†.
Thanks to this relation in the Banach algebra R we may define two ideals: the left and
the right ones, which are non-trivial and possess proper divisors of zero [15].

Defuzzyfication. This is the main operation in fuzzy inference systems and fuzzy con-
trollers [1,17,25]. The problem arises what can be done for the generalisation of clas-
sical fuzzy numbers onto ordered fuzzy numbers? In the case of the product space R,
according to the Banach-Kakutami-Riesz representation theorem, each bounded linear
functional φ is given by a sum of two bounded, linear functionals defined on the factor
space C([0, 1]), i.e.

φ(xup, xdown) =
∫ 1

0

xup(s)µ1(ds) +
∫ 1

0

xdown(s)µ2(ds) (6)

where the pair of continuous functions (xup, xdown) ∈ R represents an ordered fuzzy
number, and µ1, µ2 are two Radon measures on [0, 1].

From this formula an infinite number of defuzzyfication methods can be defined. In
particular, the standard procedure given in terms of the area under membership function
can be generalised. It is realised by the pair of linear combinations of the Lebesgue
measure of [0, 1]. Moreover, a number of non-linear defuzzyfication operators can be
defined as compositions of multivariant nonlinear functions defined on the Cartesian
products of R and linear continuous functionals on the Banach space R [15].

It is worthwhile to mention that some further generalisations of ordered fuzzy num-
bers to ordered fuzzy sets (defined on a different universe than reals R) can be intro-
duced (cf. [15]). Moreover, one can think about weakening of the continuity assumption
made in our fundamental definition of ordered fuzzy numbers and to consider pairs of
real valued functions of the interval [0, 1] that are of bounded variation. Then all al-
gebraic properties of new objects will be preserved with a small change of the norm.
However, it will the subject of the next publication.
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