
Choose a Job You Love: Predicting Choices of
GitHub developers

Radoslaw Nielek∗, Oskar Jarczyk∗, Kamil Pawlak∗, Leszek Bukowski∗, Roman Bartusiak† and Adam Wierzbicki†
∗Polish-Japanese Academy of Information Technology

86 Koszykowa Street, Warsaw, Poland

E-mail: {nielek, oskar.jarczyk, s3181, bqpro}@pja.edu.pl
†Wroclaw University of Technology

Wyb. Wyspianskiego 27, Wroclaw, Poland

E-mail: roman.bartusiak@pwr.edu.pl

Abstract—GitHub is one of the most commonly used web-based
code repository hosting service. Majority of projects hosted on
GitHub are really small but, on the other hand, developers spend
most of their time working in medium to large repositories.
Developers can freely join and leave projects following their
current needs and interests. Based on real data collected from
GitHub we have tried to predict which developer will join which
project. A mix of carefully selected list of features and machine
learning techniques let us achieve a precision of 0.886, in the best
case scenario, where there is quite a long history of a user and
a repository in the system. Even when proposed classifier faces
a cold start problem, it delivers precision equal to 0.729 which
is still acceptable for automatic recommendation of noteworthy
projects for developers.

Index Terms—Machine learning, link prediction, open-source
software (OSS)

I. INTRODUCTION

Complex projects can only be realized by teams. Single

developer has neither enough time nor required skills to build

big systems. It is even more obvious for open source projects,

as majority of contributors work only part-time, and many of

them do it in spare time, next to their professional duties. The

motivations to join a particular project vary among developers.

Some contributors want to fix a bug, others need a particular

feature, yet another group use open source projects as a way

to learn marketable skills or just to promote themselves. More

details about motivations of open source developers can be

find in Hertel et al. [1] and Roberts, Hahn et al. [2], [3].

Being able to predict who will join which project for

such big communities like the GitHub opens completely new

opportunities for project management. We could for example

invite people even before they find project by themselves or

predict which project will attract enough high quality devel-

opers and will eventually turn into a mature product. From

the perspective of network science predicting of joining and

leaving projects is an equivalent of link prediction problem.

The main goal of this paper is to study whether it is possible to

predict new links between the GitHub projects and developers

with sufficient precision to make it usable in practice.

The requirement of practical applicability of proposed pre-

diction algorithm enforces a very careful selection of features

of projects/repositories and developers that have been used

for making prediction. They have to be publicly available

and easy to calculate. Moreover, as we plan to use it for

recommending projects for developers (recommending means

actually promoting) they have to be difficult (or expensive

to manipulate) to make our recommendation system tamper-

proof.

The remaining part of the paper is organized as follows.

In chapter II a brief overview of previous works is presented.

The chapter III discusses the GitHub dataset. In the following

chapter some basic statistics related to the GitHub are shown.

The fifth chapter contains a presentation of results. The last

chapter concludes our paper and propose some directions for

future works.

II. RELATED WORK

One of the challenges in the field of Social Networks Anal-

ysis (SNA) is link prediction. Social networks are dynamic

objects, which may grow or shrink over time. Some nodes

may arrive while others depart. However, the same might be

observed at the level of links, which connects nodes in a

given network. The process of link formation might be even

more dynamic, since new edges might connect nodes that

are already present in the network and there is no need for

new node arrival. As it was defined in [4] we study a basic

computational problem underlying social-network evolution,

the link-prediction problem: Given a snapshot of a social

network at time t, we seek to accurately predict the edges

that will be added to the network during the interval from

time t to a given future time t′.
Generally speaking, there are two main divisions of meth-

ods used for link predictions: unsupervised and supervised.

Unsupervised methods are mainly based on topology of the

graphs [5] and especially on similarity metrics, which are

in most of its merit variations about Common Neighbours

of pair of nodes in the network. Most extensive overview

of these unsupervised methods is in work [4]. Authors

conduced experiments with several node similarity metrics

(Graph Distance, Common Neighbours, Jaccard’s Coefficient,

Adamic/Adar Score, Preferential Attachment, Katz, Hitting

2016 IEEE/WIC/ACM International Conference on Web Intelligence

978-1-5090-4470-2/16 $31.00 © 2016 IEEE

DOI 10.1109/WI.2016.36

200



Time, Page Rank and Sim Rank). Their results suggest that

Adamic Score [6] and Katz method (or its variants) are

relatively close in their performance and provide good results.

Indeed empirical data collected from Facebook in [7] shows

that if a user creates an edge, then the probability that he

links to a node with whom he has less than 4 friends is about

0.1%. Similar findings about link formation in the network of

co-authorship and citation in scientific publishing are in [8]

In case of supervised methods [9], [10] one common

approach consists of extracting network features from two

nodes and combining them with node attributes, and using

them in a supervised classifier. Backstrom and Leskovec [7]

used Facebook data and proposed supervised random walks

methodology. Their Predictions were made based on the scores

of a random walk, but the edge weights for this walk were

learned from node and edge attributes in a supervised way.

The supervised random walk algorithm outperformed many

other approaches, both supervised and unsupervised, on all

datasets.

Link prediction on bipartite networks is a much less ex-

plored topic than general link prediction. However, in [11]

authors proposes an algorithm to cope with the link prediction

problem on bipartite networks. They describe a temporal

bipartite projection method that yields a projected item graph,

called the temporal projection graph (TPG). Based on the

TPG, they propose a scoring function called STEP (Score for

TEmporal Prediction) for each user-item pair. STEP leverages

the historical behaviours of individual users and the social

aggregated behaviours learned from the TPG for the link

prediction problem. Several experiments are performed on

DBLP author-conference dataset, the Flickr dataset and the

Delicious dataset. In [12] authors copes with the problem

of link prediction in large-scale two-mode social networks.

They convert one side of the bipartite network into a single

network with homogeneous nodes and then they apply sim-

ilarity measures. These similarity score is turned into node

feature and used in a supervised link prediction classifier.

Experimental validation of the proposed approach is carried

out on two real data sets: a co-authoring network extracted

from the DBLP bibliographical database and bipartite graph

history of transactions on an on-line music e-commerce site.

Link prediction on bipartite networks is also strongly con-

nected with recommendation engines [13], [14]and especially

with collaborative filtering methods. For example in [15]

transactions are mapped to a bipartite user–item interaction

graph and recommendation problem is converted into a link

prediction problem. Authors propose a kernel-based approach

to link prediction and recommendation. They design a graph

kernel to exploit features in the context of focal user–item

pair. The kernel works with a one-class SVM algorithm to

predict user–item interactions. They prove the validity and

computational efficiency of the graph kernel.

Benefits coming from the application of recommendation

systems to software engineering have been obvious for re-

searchers for many years. Early recommendation systems were

focused on increasing productivity of developers working

with big online repositories of code. Happel and Maalej [16]

published a overview of early application of recommendation

systems to increase productivity of software engineers. Fur-

ther studies on similar topic can be found in [17]. Rapid

development of online repositories of open source projects

containing millions of projects and billions lines of code forces

researchers to look for innovative ways to explore it. McMillan

et al. [18] proposed a variety of methods to measure software

similarities.

Selection of team members is the most important factor

influencing success of open source projects and, at the same

time, the most frequently studied. Social capital and structural

holes in collaboration networks have been researched by [19],

Singh et al. [20] focused on small-world network properties.

Extensive review of factors influencing probability of success

for open source projects can be found in [21] and [22].

Zhang et al. [23] published interesting exploratory study

about possibility of recommending relevant projects on GitHub

based on similarities in behaviours between users. Although

they discovered interesting patterns they do not propose and

evaluate a recommendation system. Casalnuovo et al. [24]

have studied importance of prior social links in decision to join

a GitHub repository. It seams that developers prefer projects

where they have some pre-existing relationships to people who

are already members. On the other hand, all conclusions about

developers behaviours drawn only from GitHub data may be

skewed as Wu et al. shows that substantial part of interaction

between developers active on GitHub take place outside this

web site [25] and, thus, cannot be easily traced.

Next to variables related to projects and developers that

can be measured directly researchers proposed also more

sophisticated methods for extracting knowledge from GitHub

repositories. Jarczyk et al. [26] suggested methods for estimat-

ing projects quality based on project popularity and support

offered by team members to users. Restricted Boltzmann

Machine was used by Bartusiak et al. [27] for predicting

cooperation between developers. Some inspiring approaches

can also be found in papers studying cooperation in other

crowdsourcing systems – e.g. Jankowski et al. [28] constructed

a knowledge network for Wikipedia editors based on their

history of edits. Collaboration on the Wikipedia has been

extensively studied [29], [30], [31].

Feasibility of even the most advanced recommendation

algorithm may be limited by required computation that has

to be done. Deja et al. [32] show that even for huge number

of objects an viable approximate solution may be proposed.

III. DATASET

Our dataset is based on GHTorrent - a scalable and queriable

offline mirror of data offered through the GitHub REST API.

For each GitHub public event, GHTorrent retrieves its contents

and dependencies. It then stores the raw JSON responses to a

MongoDB database, while also extracting their structure to a

MySQL database. Since 2012 for every two months GHTorrent

has released data which was collected during that period of

time. The relational data schema and basic description of the

201



data base might be found here: http://ghtorrent.org/relational.

htm

For the purposes of our research, we have used GHTorrent

data from August 2014. We have chosen projects that were at

least two years old (as of 09.2014), with at least 100 commits

and at least 5 individual (non organization) team members. The

resulting dataset consists of 9447 GitHub projects and 62607
users. The data is then split into separate quarters, starting

with Q1 2011 and ending with Q2 2014.

Following that, we analyse developers’ programming activ-

ity within repositories, as measured by number of commits

within project. We only take into account users that are

formal project members at the time of a particular commit.

In particular, we look for a situation where developer has

commits during N quarter, but no commits during previous

N−1 quarter. This shows that a new connection has appeared

during that time.

After that we created randomized developer-project pairs

which had no commits during either of those quarters. De-

velopers were chosen from all users that had already created

GitHub account during that quarter. The number of negative

examples (such developer - repository pairs that link between

them did not appear) is equal to the number of positive

examples (developer - repository pairs where new link were

created) in that particular quarter.

Over 50 distinct features have been constructed and calcu-

lated for developers and repositories. The selection of the most

important features for developers and repositories is presented

in tab. I and tab. II respectively. All variables have been

calculated for N − 1 quarter.

List of languages used by developers (D languages) and list

of languages that are related to the repository (R languages)

have been used to calculate skills similarity (similarity) be-

tween developer and repository. Similarity is expressed as car-

dinality of intersection of R language and D language divided

by cardinality of a sum of R language and D language.

IV. BASIC STATISTICS

This chapter presents some summaries of the dataset, with

emphasis the dynamics of how often new software developers

joined repositories, as well as some plots showing distribution

of team members. Figure no. 1 shows average number of new

developers which joined a repository in a particular month

(counted from month 0, which is the first month repository

was created).

Plot shows two noticeable peaks in value, which are mo-

ments of high income of new team members. First one, is the

beginning of the project, which is quite obvious, because it

may correspond to the very first moment of a) formalization of

the software team, which existed outside GitHub; or b) when

team members are appointed by a repository administrator to

users known to him/her. Next, the average number of team

joins shows a positive trend towards the second peak (around

the 70th month), which may represent the power of mature and

well-know repositories to attract new software developers.

Name Description
D degree number of projects joined by a developer
D languages list of programming languages in which a

developer made code commits
D gender developer’s gender (calculated basing on a

name, male by default)
D followers how many followers a developer has?
D following how many users are followed by a devel-

oper?
D exp in days how many days developer’s GitHub

account exists?
D repo starred did a developer award this repository a

star?
D repo discussion how many comments a developer made on

project commits and issues?
D coowork repo how many developers, that co-work in

other projects (together with this devel-
oper), already joined this repository?

D owned repos number of projects owned by a developer
D owned stars number of stars in developer’s owned

projects
D owned forks number of forks in developer’s owned

projects
D owned issues number of issues in developer’s owned

projects
D reported issues number of issues reported by a developer
D assigned issues number of issues assigned to a developer

TABLE I: Variables related to a developer

Name Description
R degree number of developers that joined this

repository
R languages programming languages used in this

project
R stars numbers of stars given to this repository
R is fork is this project a fork of another repository?
R commits number of commits made to the project in

this quarter
R members number of project members
R forks number of forks of the project
R committers number of active committers in the project

TABLE II: Variables related to the repository

Kalliamvakou et al. in [33] describes two models of a team

membership, one is through a code commit (a ‘pull request’

or a direct ‘push’ of one or more commits), while second

is a project membership through a direct indication by the

repository owner or administrator (a feature in GitHub called

‘teams’).

Let’s first see an overall statistics of team size on the

whole GitHub Torrent database. Figures no. 2 and no. 3

show a distribution of the repository size, where project size

is understood as the number of committers to the particular

repository. Second figure shows the same value but after

logarithmic transformation, to better show the distribution,

which is very skewed and decline exponentially.

Both plots confirm some of the findings by [33], which

states that most of the projects consists of small teams (more

than 7.5m projects are of size between 0 and 10 committers)

or are ‘private repositories’. Some of the repositories do not

have any commits at all and are empty, this situation is possible

on the GitHub portal, which offers the possibility of disabling

creation of ‘README.md’ file.

202



Fig. 1: New joins (in average) since repository was created

Fig. 2: GitHub, repository size by committers

Fig. 3: Repository size after log transform

Table no. III concern the same global view, but shows a

distribution of the repository size, in the model where team

members are developers assigned by the repository owner

and/or administrator.

The distribution is even more uneven, which means that the

‘team’ functionality is much less popular than a traditional

‘pull request’ workflow. Moreover, a repository owner can be

treated as a team member (asterisked note in table no.III),

Members range Count Density
[0, 10)* 25607437 0.0999
* includes repository with no members but owner
(0, 10) 4264188 0.0994
[10, 20) 16994 0.0004
[20, 30) 5126 0.0001
[30, 40) 3607 0.00005
40+ 5151 0.001

TABLE III: GitHub, repository size by team members

despite the fact that the GH Torrent originally does not include

them, due to data provided by the GitHub API itself.

Let’s now focus on the sample of selected repositories

described in the ‘Dataset’ paragraph no. III. Figure no. 4 show

a distribution of the repository number of project members

(defined by both, ‘committers’ and implicit ‘team members’).

Fig. 4: Dataset sample, number of members

Plot shows a significant increase in the bucket of team

size between 10 and 20 members, which is a promising

characteristic for our dataset and means that both small and

medium sized teams prevail within selected repositories.

Further analysis show that around 1/3 of repositories in the

dataset have more than 500 commits, as seen on table no. IV.

Commit count No of repositories Density
[450, 460) 64 0.00101
[460, 470) 57 0.00090
[470, 480) 57 0.00090
[480, 490) 41 0.00065
[490, 500) 29 0.00046
500+ 3145 0.000005

TABLE IV: Dataset, number of commits in a repository

V. RESULTS

A. Prediction

Based on calculated features of developers and repositories

for the quarter N, that are described in section III, we wanted

to predict which developer will join which repository in the

next quarter. We have mixed different quarters in our dataset to

avoid overfitting to one particular point in time. Moreover, we

203



Fig. 5: Dataset sample, histogram of number of commits

wanted to prove that discovered regularities can be generalized

beyond single point in time. Classifiers appear to perform well

for all quarters despite the evolution of the whole service (and

community).

We divided our dataset to two parts: training dataset that

contains 8738 repository-developer pairs (randomly selected

10% of all pairs) and testing dataset that contains remaining

78436 objects. As a classifier we used a random forest

algorithm from the “randomForest” package in version 4.6-12

installed in R version 3.2.3. We decided for 50 trees (we tested

different parameters but without much changes in results). As

there is the same number of positive and negative cases the

benchmark based on random assignment to one of classes is

equal to 0.5 for precision and recall.

Following subsections present results for different subsets

of features. As we could expect removing some features from

the dataset make the task of predicting link harder but also

reveals the real importance of particular features. Results for

all available features, that are at the same time the best results

we achieved, are presented in section V-B.

B. All available features

Results for classifier learned on all available features are

presented in table V. The precision peaks at 0.888 which is

surprisingly high results for such complex task. Performance

of a classifier is quite stable for all quarters with only a minor

variation that can be explained by stochastic nature of the

learning process.

The most important features were: D degree, R degree and

R commits. It seems that popular projects are more frequently

selected by developers. Random forest classifier only returns

information about variables importance and not about the

nature of this relationship. We decided to take closer look

on variable R degree to verify this hypotheses.

We selected a particular point in time (Q3 20131) and split

all projects into two groups: first group contains all projects

that will not have new members in the next quarter and second

group contains only projects that attract users in the next

1The results for other quarters are similar.

0 1
0 35958 5334 87,08%
1 3452 33858 90,75%

91,24% 86,39%

TABLE V: Classification results for all available features.

Precision=0.888, recall=0.864

quarter. The average number of project members for projects

belonging to the first group is lower than for projects from the

second group – 1.65 and 5.63 respectively.

The difference between two groups mentioned in the pre-

vious paragraph is quite big. Part of explanation is that many

projects on the GitHub have been created only for personal

use and are not intended to be shared with anyone. Therefore,

we decided to take a closer look at projects that survived at

least two years, and have at least 100 commits, and at least 5
individual team members. There are 9447 such projects which

are subscribed by 62607 users. For such restricted case we

can still observe a difference between averages, albeit much

lower. The average number of members is 8.417 and 9.092
respectively. The sign of preferential attachment strategy can

be also observed on fig. 6. The log-log histogram of number of

repository members depicted there a resembling a power-law

like distribution.

5e−01 5e+00 5e+01 5e+021e
−

05
1e

−
03

1e
−

01

Fig. 6: Log-log histogram of number of repository members

C. Without information about repository degree and developer
degree

Two variables: D degree and R degree are by far the

most important in predicting which developers join which

repository. On one hand, it is convenient because we can limit

the number of features we calculate; on the other hand, it

makes any attempts to manipulate recommendation algorithm

quite easy by adding fake users to repository. Therefore

we remove these variables and try to learn classifier by on

remaining features. As could be expected, the performance

of the classifier are worse but still acceptable – precision

reached 0.827. Detailed results are presented in table VI.

The most important variables are: R commits followed by

D exp in days and R stars.

204



0 1
0 32023 6235 83.70%
1 7296 32843 81.82%

81.44% 84,04%

TABLE VI: Classification results for all features but R degree
and D degree. Precision=0.827, recall=0.840

0 1
0 25972 18774 58,04%
1 13381 20309 60,28%

66,00% 51,96%

TABLE VII: Results of classification based only on simi-
larity between developers and repositories. Precision=0.590,

recall=0.520

D. Prediction based on similarity between developers and
repositories

Features used in previous sections to predict link between

repository and developer will be prone for cold start problem.

For freshly created repositories or newly registered users

majority of variables presented in table II and I will be zero.

The problem is not only with the lack of data but also in

that there is no way to speed up the process of generating

data for new repositories and users. People must grow up in

community to collect real followers, report or close issues and

take part in discussions. Actually, one of very few questions

we can ask developers (and those who create repository) and

expect meaningful answers is: which programming languages

do you use/which programming languages are required for this

project.

In the first experiment described in this section we wanted

to check whether such information is sufficient to accurately

recommend repository to developer. We calculated similarity
between languages mastered by developer and those which are

required for a given project. The exact method is described

in section III. After that we trained classifier based only this

single feature. Results are summed up in table VII. Precision

and recall are higher than for random assignment benchmark

but still very low – 0.59 and 0.52 respectively. So, the hardest

scenario where both the programmer and the repository do not

have any history in GitHub cannot be successfully addressed

within our framework.

The scenario presented in previous paragraph is not only

the most difficult but also relatively uncommon and, thus it

has limited practical importance. More commonly we will

have influx of new users that we have to match with the

most interesting repositories that already exists in GitHub

for some time. To model such situation we have tried to

recommend links based only on similarity and R degree.

Obtained results are much better than for previous scenario and

reached 0.729 for precision and 0.648 for recall. Confusion

matrix is presented in table VIII.

Yet another option is that we have mature developers

that already worked in different projects and newly created

repository. We can measure similarity between repository and

developer but not much more. At least at the beginning we

0 1
0 31877 13777 69,82%
1 7437 25332 77,30%

81,08% 64,77%

TABLE VIII: Results of classification based similarity and

R degree. Precision=0.729, recall=0.648

0 1
0 25735 13259 66,00%
1 13565 25894 65,62%

65,48% 66,14%

TABLE IX: Results of classification based similarity and

R coowork repo. Precision=0.658, recall=0.661

cannot expect that there will be a substantial number of

developers that joined the repository (low R degree), virtually

no commits (R commits) and definitely no stars (R stars).

Our hypothesis was that the very first developers that join

repository right after it has been created can attract their

acquaintances from other projects. If such effect appears, then

even a quite small number of developers that joined a project

may allow a precise recommendation. Table IX shows the

results of prediction for classifier learned on only two features:

similarity and R coowork repo. Although it preforms better

than recommendation based only on similarity the results are

pretty low.

VI. DISCUSSION

Precise recommendation is not an easy task and it is even

harder when the decisions taken by users are expensive in

terms of time, money, or more general resources. Buying a

book, watching a video clip or even making new friendships

on the social network site is much less demanding than

joining a open source project and contribute to it. Moreover,

developers can use almost all functions of GitHub without

joining a project. Nevertheless, obtained results indicate that

it is completely viable to build a recommendation system for

GitHub that performs on acceptable level.

Our study has partially confirmed the findings published

by Casalnuovo et al. [24] that having friends working in

repository is one of factors influencing developers’ decision

to join a particular project. This single feature is strong (albeit

not the strongest) prediction of developers’ behaviour but alone

is not enough. Almost all features proposed in table I and

table II play some role in prediction and, at the same time,

helps to limit the influence of data inconsistency or purposeful

manipulation.

Precision at 0.886 for the best case scenario and 0.729 for

new users is impressive for such complex task and makes

direct use of proposed classifier in real system entirely fea-

sible. Small improvements in precision and recall are still

possible by tweaking the parameters of used random forest

algorithm. In the next step we want to implement proposed

recommendation algorithm as a browser plug-in and make it

publicly available.

205



Incorporating external to GitHub data sources of developers

behaviours and repositories popularity is the most promising

direction for future study. Popularity of projects and technolo-

gies in social media and developers’ social networks acquired

from on-line forums (e.g. Stack Overflow2) might help us to

make better recommendation. Another possibility would be

the creation of a reputation system [34], [35], [36] for GitHub

developers.

Further study is also required to evaluate the influence

of project recommendation system on the whole community.

There is a plenty of open source projects that address all

problems we can imagine, partly because of a huge frag-

mentation and long tail effect. Recommendation system might

cause that ”rich get richer” and thus less projects would

have a chance to sustain for a longer period of time. Yet

another problem for recommendation system is to differentiate

developers according to their motivations. Some developers

join project because they want to learn something, others want

to solve well-defined problems, yet another group looks for

recognition and fame. Therefore, one size fits all approach will

never work and a motivation recognition mechanism should be

embedded into recommendation system.

ACKNOWLEDGMENTS

This research is partially supported by the Polish National

Science Centre grant 2012/05/B/ST6/03364 and the European

Unions Seventh Framework Programme for research, techno-

logical development and demonstration under grant agreement

no 316097[ENGINE].

REFERENCES

[1] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in open source projects: an internet-based survey of contributors
to the linux kernel,” Research policy, vol. 32, no. 7, pp. 1159–1177,
2003.

[2] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, “Why do devel-
opers contribute to open source projects? first evidence of economic
incentives,” in 2nd Workshop on Open Source Software Engineering,
Orlando, FL, 2002.

[3] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the
motivations, participation, and performance of open source software
developers: A longitudinal study of the apache projects,” Management
science, vol. 52, no. 7, pp. 984–999, 2006.

[4] D. Liben-Nowell and J. Kleinberg, “The link prediction problem
for social networks,” in Proceedings of the Twelfth International
Conference on Information and Knowledge Management, ser. CIKM
’03. New York, NY, USA: ACM, 2003, pp. 556–559. [Online].
Available: http://doi.acm.org/10.1145/956863.956972

[5] Z. Huang, “Link prediction based on graph topology: The predictive
value of generalized clustering coefficient,” Available at SSRN 1634014,
2010.

[6] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
networks, vol. 25, no. 3, pp. 211–230, 2003.

[7] L. Backstrom and J. Leskovec, “Supervised random walks: Predicting
and recommending links in social networks,” in Proceedings of the
Fourth ACM International Conference on Web Search and Data Mining,
ser. WSDM ’11. New York, NY, USA: ACM, 2011, pp. 635–644.
[Online]. Available: http://doi.acm.org/10.1145/1935826.1935914

[8] T. Martin, B. Ball, B. Karrer, and M. E. J. Newman, “Coauthorship
and citation in scientific publishing,” CoRR, vol. abs/1304.0473, 2013.
[Online]. Available: http://arxiv.org/abs/1304.0473

2http://stackoverflow.com

[9] N. Benchettara, R. Kanawati, and C. Rouveirol, “A supervised machine
learning link prediction approach for academic collaboration recommen-
dation,” in Proceedings of the fourth ACM conference on Recommender
systems. ACM, 2010, pp. 253–256.

[10] M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” in SDM06: Workshop on Link Analysis, Counter-
terrorism and Security, 2006.

[11] T. Wu, S.-H. Yu, W. Liao, and C.-S. Chang, “Temporal bipartite
projection and link prediction for online social networks,” in Big Data
(Big Data), 2014 IEEE International Conference on, Oct 2014, pp. 52–
59.

[12] N. Benchettara, R. Kanawati, and C. Rouveirol, “Supervised machine
learning applied to link prediction in bipartite social networks,” in
Advances in Social Networks Analysis and Mining (ASONAM), 2010
International Conference on, Aug 2010, pp. 326–330.

[13] A. Giel, S. Jain, and K. Wang, “Group 14 predicting yelp reviews using
internal links - link prediction in bipartite networks,” 2013.

[14] O. Allali, C. Magnien, and M. Latapy, “Link prediction in bipartite
graphs using internal links and weighted projection,” in Computer Com-
munications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference
on, April 2011, pp. 936–941.

[15] X. Li and H. Chen, “Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach,” Decision
Support Systems, vol. 54, no. 2, pp. 880 – 890, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167923612002540

[16] H.-J. Happel and W. Maalej, “Potentials and challenges of recom-
mendation systems for software development,” in Proceedings of the
2008 international workshop on Recommendation systems for software
engineering. ACM, 2008, pp. 11–15.

[17] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” Software, IEEE, vol. 27, no. 4, pp.
80–86, 2010.

[18] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 364–374.

[19] Y. Tan, V. Mookerjee, and P. Singh, “Social capital, structural holes and
team composition: Collaborative networks of the open source software
community,” ICIS 2007 Proceedings, p. 155, 2007.

[20] P. V. Singh, “The small-world effect: The influence of macro-level
properties of developer collaboration networks on open-source project
success,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 2, p. 6, 2010.

[21] J. Wang, M. Y. Hu, and M. Shanker, “Human agency, social networks,
and foss project success,” Journal of Business Research, vol. 65, no. 7,
pp. 977–984, 2012.

[22] V. Midha and P. Palvia, “Factors affecting the success of open source
software,” Journal of Systems and Software, vol. 85, no. 4, pp. 895–905,
2012.

[23] L. Zhang, Y. Zou, B. Xie, and Z. Zhu, “Recommending relevant
projects via user behaviour: An exploratory study on github,” in
Proceedings of the 1st International Workshop on Crowd-based
Software Development Methods and Technologies, ser. CrowdSoft 2014.
New York, NY, USA: ACM, 2014, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/2666539.2666570

[24] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov, “Developer
onboarding in github: The role of prior social links and language
experience,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: ACM, 2015, pp. 817–828. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786854

[25] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll, “Exploring the
ecosystem of software developers on github and other platforms,” in
Proceedings of the Companion Publication of the 17th ACM Conference
on Computer Supported Cooperative Work &#38; Social Computing, ser.
CSCW Companion ’14. New York, NY, USA: ACM, 2014, pp. 265–
268. [Online]. Available: http://doi.acm.org/10.1145/2556420.2556483

[26] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and A. Wierzbicki,
“Github projects. quality analysis of open-source software,” in Social
Informatics. Springer International Publishing, 2014, pp. 80–94.

[27] R. Bartusiak, T. Kajdanowicz, A. Wierzbicki, L. Bukowski, O. Jarczyk,
and K. Pawlak, “Cooperation prediction in github developers network
with restricted boltzmann machine,” in Intelligent Information and
Database Systems. Springer Berlin Heidelberg, 2016, pp. 96–107.

206



[28] M. Jankowski-Lorek, S. Jaroszewicz, L. Ostrowski, and A. Wierzbicki,
“Verifying social network models of wikipedia knowledge community,”
Information Sciences, vol. 339, pp. 158 – 174, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025515009044

[29] A. Wierzbicki, P. Turek, and R. Nielek, “Learning about team collabora-
tion from wikipedia edit history,” in Proceedings of the 6th International
Symposium on Wikis and Open Collaboration. ACM, 2010, p. 27.

[30] P. Turek, A. Wierzbicki, R. Nielek, A. Hupa, and A. Datta, “Learning
about the quality of teamwork from wikiteams,” in Social Computing
(SocialCom), 2010 IEEE Second International Conference on. IEEE,
2010, pp. 17–24.

[31] P. Turek, A. Wierzbicki, R. Nielek, and A. Datta, “Wikiteams: How do
they achieve success?” IEEE Potentials, vol. 30, no. 5, pp. 15–20, 2011.

[32] D. Deja, R. Nielek, X. Lin, and A. Wierzbicki, “Hybrid algorithm for
precise recommendation from almost infinite set of websites,” in 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, August
11-14, 2014 - Volume II, 2014, pp. 318–322. [Online]. Available:
http://dx.doi.org/10.1109/WI-IAT.2014.50

[33] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[34] T. Kaszuba, A. Hupa, and A. Wierzbicki, “Advanced feedback manage-
ment for internet auction reputation systems,” IEEE Internet Computing,
vol. 14, no. 5, pp. 31–37, 2010.

[35] R. Nielek, A. Wawer, and A. Wierzbicki, “Spiral of hatred: social effects
in internet auctions. between informativity and emotion,” Electronic
Commerce Research, vol. 10, no. 3-4, pp. 313–330, 2010.

[36] A. Wierzbicki, “The case for fairness of trust management,” Electronic
Notes in Theoretical Computer Science, vol. 197, no. 2, pp. 73–89, 2008.

207


