
On the Effectiveness of Emergent Task Allocation of
Virtual Programmer Teams

Oskar Jarczyk∗, Błażej Gruszka†, Leszek Bukowski‡ and Adam Wierzbicki§
Polish-Japanese Institute of Information Technology

Department of Social Informatics, Warsaw 02-008, Poland
∗e-mail: oskar.jarczyk@pjwstk.edu.pl
†e-mail: blazej.gruszka@pjwstk.edu.pl

‡e-mail: bqpro@pjwstk.edu.pl
§e-mail: adamw@pjwstk.edu.pl

Abstract—Virtual teams of programmers are a popular form
of collaboration both in Open Source, and commercial software
projects. In OSS (Open Source Software) projects, programmers
make their own decision which project to join, and, therefore, the
process of task allocation among the project members is emergent.
In this paper, we attempt to simulate such a process based on
available data from GitHub. The simulation is used to test a
hypothesis regarding the efficiency of emergent task allocation.
In general, we find performance of coordinated methods to be
better than emergent algorithms, which leads us to conclusion
that controlling team membership through invitations and work
assignment is a promising direction.

I. INTRODUCTION

In recent years we have been witnessing a rise of the
OSSD (Open-Source Software Development) model, in
which developers cooperate without any formal authority
or institution governing their work. An example of a portal
enabling use of an open OSSD model is the GitHub website
—an online social network for developers. Users of GitHub
might create their own repositories and collaborate with other
programmers on a variety of projects. Even such big companies
as Twitter or Facebook have their own repositories on GitHub.

GitHub has no mechanism for supporting task allocation
to users. Each user individually decides on what project to
work on and how to allocate her contributions. Despite such
a decentralized structure of developers’ community there
have been plenty of GitHub projects which have resulted in
very good quality software. Nevertheless, it might be still
possible to improve open collaboration on such platforms as
GitHub. However if we wish to do that, we need to have
a better insight into the process of task allocation among a
decentralized community of developers working in OSSD
model. In our paper we describe a simulation that is meant to
improve our understanding of dependencies between strategies
used by developers and effectiveness of their work.

Such investigations are important, since the number of
OSS projects is growing and many companies are using
solutions that have been developed in such models. In the
future we might enhance the process of team formation or
task allocation by intelligent task/developer recommendations.
If we want to create such recommendation engines, we must
know, for example, which strategies are most efficient in case

of task allocation among developers —i.e. which of them are
the quickest way of task solving.

We focus on the question of the effectiveness of task
allocation. Are the autonomous behavioral strategies enough
for efficient work on software projects? We define strategy
efficiency as performing or functioning in the best possible
manner with the least waste of time. Effectiveness is
understood as a proper choice of the task allocation strategy
and it may vary inside a group of agents (persons). We
hypothesize the following:

Hypothesis 1 Centralized task allocation strategies are more
efficient than emergent task strategies.

II. RELATED WORK

A. Scientific research regarding collaborative networks

In literature there are examples of how communities
that are successful structure their work. O’Mahony, Ferraro
(2007) conducted a multimethod study of one open source
software community. They found that members developed a
shared basis of formal authority but limited it with democratic
mechanisms.[1] Other researchers (Anagnostopoulos, 2012)
considered a setting modelled by a social network in which
people have different skills and relationship among them.[2]
Authors focused on proposing first online algorithms which
assemble teams for the purpose of dealing with tasks.
Balanced task assignment problem was introduced with
online competitive algorithms. Scholars analysed previous
work connected with team formation, i.e.: scheduling with
load balancing[3] (scheduling of jobs on a set of machines
with the goal of minimizing the maximum load on a
machine), matching people to tasks (a matching problem
for which several systems have recently been proposed, for
instance easychair.org, linklings.com and softconf.com).[2]
The problem of providing efficient solutions in the bidding
model has been addressed by others Mehlhorn et.al. (2009).[4]

Team formation with coordination costs introduce the
problem of team formation in social networks (Lappas et al.,
2009).[5] The objective is to minimize the coordination cost,
for example, in terms of diameter or weight of the minimum
spanning tree for the team. This problem has been extended to
cases in which potentially more than one member possessing

2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)

978-1-4799-4143-8/14 $31.00 © 2014 IEEE

DOI 10.1109/WI-IAT.2014.58

369

2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)

978-1-4799-4143-8/14 $31.00 © 2014 IEEE

DOI 10.1109/WI-IAT.2014.58

369

each skill is required, and where density-based measures are
used as objectives.[6][7]

Scholars Jin, Girvan et.al. (2001) in their paper “The
structure of growing social networks” proposed two models
of growth of social networks which have properties of fixed
number of vertices, limited degree, clustering and decay
of friendship. Simulation of those models shown emerging
societies and existing clustering. Researchers reached a
conclusion that complex and reasonable patterns of social
networks, and their evolution, can emerge from simple rules.
Furthermore, general form of those patterns is not influenced
by micro details of the rules.[8] Models regarding social
networks are considered by us for near-future research.

B. Works regarding strategies such as homophily, heterophily
and preferential attachment

Most of the literature focuses on Internet social networks.
Crandall et.al. (2010) convinces that people want to resemble
their current friends due to social influence and also they tend
to form new links to others who are already like them. McPher-
son et.al. (2001) stated that similarity breeds connection and
the result is that people’s personal networks are homogeneous
with regard to many important social characteristics.[9] It was
proven that prior collaborative ties have a profound effect on
developers’ project joining decisions.[10] Bisgin et.al. (2012)
studied homophily in social media. Rogers et.al. (1995) defined
homophily as the degree to which the innovator and the poten-
tial adopter are similar in certain attributes such as objectives,
beliefs, norms, experience, and culture. Heterophily is the dual
of homophily, and, according to Rogers et.al., “one of the
most distinctive problems in the diffusion of innovations is
that the participants are usually quite heterophilous.” Next key
understanding to many current collaboration models proposed
to describe an evolution of complex networks, is the hypothesis
that highly connected nodes increase their connectivity faster
than their less connected peers - a phenomenon called prefer-
ential attachment.[11] When Wikipedia articles are treated as
nodes, similarly to websites in the Internet, Wikipedia growth
is proven to follow the behaviour of preferential attachment
laws.[12]

III. GITHUB DATASET

Firstly, we identified the languages known to GitHub. There
are 224 languages which GitHub can recognize through the
Linguist library. Next, we analyzed repositories pull requests
from the year 2013. Repos are sorted decreasing by an average
of the number of forks, watchers, and stars. From the pushes
—which are part of the pull requests —we use the ’language’
value which is a number of files, inside a commit, identified
by GitHub to be written in a particular programming language.
Therefore, for a single repository, we have a set of languages
and a number value which is the language use frequency. Later,
we identify the work left value as a difference between the
frequency and a maximum of the frequency for a particular lan-
guage in the dataset. The next step is to analyze languages used
by most active GitHub users, defined by Paul Miller (2013) to
be users with biggest number of contributions and at least 252
followers. We take the 1000 top active users and download
pushes made by them to analyze the frequency of languages

used in the commits, analogically like in the previous point
described above. Basing on those 1000 developers we create
a pool of 1000 agents in the simulation.

IV. SIMULATION MODEL

Our simulation is meant to give us a better understanding of
the following problem: say we do have a set of programming
tasks (projects) to solve and there is a set of agents who are
developers. In our simulation time is discrete —at each step
of time each of the agents uses some strategy to choose on
which task to work on at this point of time.

Each agent has some programming skills that is a set
of languages at which he or she has some expertise. Each
of task in the pool of our simulation also consists of set of
skills that are needed to solve this task. Additionally, for
any task there is some amount of work that has to be done
before we may say that the task is solved. There are several
considerations for our simulation model, we assess below:

A. Skills

Skill is a technical competency - a programming or script-
ing language, eventually a markup or data format. It is
identified by its unique name. So we have a set of skills
ω = {S1, S2, S3, ..., Sn}. In case of our simulation n = 88.

B. Tasks

We define some task Ti as a triplet: Ti = 〈ωTi
, GTi

,WTi
〉

– where ωTi
is a set of skills in Ti, GTi

is function that
assigns to each element of ωTi a number of work units which
have been completed in this skill and WTi is a function that
assigns number of work units that has already been done
in each element of ωTi . For example if we have Tabc =
〈{java, python}, {8, 4}, {0, 2}〉– it means that in the task
named “abc” there are two skills, namely Java and Python,
and GTabc

(java) = 8 and GTabc
(python) = 4, no work has

already been done in java, but 2 work units has been done in
python, that is WTabc

(python) = 2.

C. Agents

In our simulation each agent is a triplet Ai =
〈ωAi

, EAi
, ξAi

〉 – where ωAi
is a set of skills that agent Ai

posses, EAi
is a function that assigns agent’s experience (num-

ber of work units done) to each element of ωAi
and ξ is a strat-

egy that agent Ai uses for task selection. If, for example, we do
have an agent Ax = 〈{java, python}, {2, 3}, homophily〉it
means that agent Ax has two skills – Java and Python – Ax

experience in Java is 2 and in Python is 3 and the strategy that
agent Ax is using is homophily.

D. Agent’s task and skill selection strategies

In our simulation we consider following the strategies:
random, preferential, heterophily, homophily and central as-
signment. Each of these strategies, except central assignment,
might be in one of the following methods: most advanced,
proportional time division, greatest experience or random.
Generally, agents use strategies to choose on which task to
work and then the method is used to allocate agents’ work units
among skills in a chosen task. Now we describe all strategies
in detail:

370370

1) Homophily and heterophily: Homophily is an algorithm
for assigning tasks which are best adjusted to an agent, while
choice of most different task from the agent’s skills is called
heterophily. In other words, both of them use an algorithm for
assigning tasks which are most (mis)matched to an agent. We
sort the tasks according to the following scheme:

1) If homophily - take only those tasks in which the
number of common agent’s and task’s skills is greater
than 0. If a group of agent’s and task’s ’common
tasks’ is equal to 0, then choose a random task.
If heterophily - consider all tasks.

2) For a group of tasks from step 1, for every task
calculate: the number of agent’s skills / number of
common agent’s skills and task’s skills.

a) If homophily - Select tasks with the lowest
value. (Note that in case when all of the
agent’s skills are in the chosen task, then
number of agent’s skills / number of common
agent’s skills and task’s skills are equal 1. If
only some of agents skills are in the task then
this is above 1.)

b) If heterophily - If an agent has no common
skills with the task, the number of common
agent’s skills and task’s skills is divided by
0.1. Select tasks with the highest value.

3) For a group of tasks from step 2: If the number of
selected tasks is equal to 1, then choose this task.
If there is more than one task, in case of homophily
select tasks with the fewest number of skills. For the
heterophily, choose the task with the greatest number
of skills.

4) For a group of tasks from step 3: If the number of
selected tasks is equal to 1, then choose this task. If
there is more than one task, select the task in which
the average of the common agent’s and task’s skills
is the highest (in heterophily - lowest). If number of
selected tasks is 1, then choose this task. Otherwise,
choose a random task from the last group.

2) Preferential: Strategy searches for the most advanced
task in the simulation. It is calculated by average of work
done within all skills inside a task. Such values is used to sort
all tasks by their general advancement decreasing. General
advancement for a task is calculated by an average, where
a single value is an advancement in a skill in percentage.
Preferential strategy works by letting agent choose a most
advanced task that has at least one skill, which is also the
agent’s skill. Agent’s experience in this skill plays here no
role.

The heuristics follows the steps explained below:

1) Iterate through all of the agent skills:

a) For this single skill, get a list of tasks which
have the considered skill,

b) In the list of tasks from step above, choose
the most advanced task in general,

c) If chosen task is more advanced than any
previous choice, it becomes the result choice.

2) If the result choice is not null, work on the result
task.

Algorithm 1 Homophily algorithm

Require: Agents, Tasks {Expected result - Chosen task}
for Agent agent : allAgents do

tasksSet = getCommonTasksBySkills(
agent, tasks)
if count(tasksSet) = 0 then

return random(tasksSet)
end if
tasksSet = getMaxClosestTasks(
agent, tasks)
tasksSet = getTasksByMinNumberOfSkills(
agent, tasksSet)
if count(tasksSet) = 1 then

return firstTask(tasksSet)
end if
tasksSet = getTasksByMaxCommonSkillsExp(
agent, tasksSet)
if count(tasksSet) = 1 then

return firstTask(tasksSet)
end if
return random(tasksSet)

end for

Algorithm 2 Heterophily algorithm

Require: Agents, Tasks {Expected result - Chosen task}
for Agent agent : allAgents do

tasksSet = getMinClosestTasks(
agent, tasks)
tasksSet = getTasksByMaxNumberOfSkills(
agent, tasksSet)
if count(tasksSet) = 1 then

return firstTask(tasksSet)
end if
tasksSet = getTasksByMinCommonSkillsExp(
agent, tasksSet)
if count(tasksSet) = 1 then

return firstTask(tasksSet)
end if
return random(tasksSet)

end for

Algorithm 3 Preferential algorithm

Require: Agents, Tasks sorted by advancement {Expected
result - Chosen task}
for Agentagent : allAgents do

for SkillsingleSkill : agent.getSkills() do
Taskresult = PersistAdvancement
.getMostAdvanced(singleSkill);

end for
end for

3) Random: Agents are choosing completely randomly a
task from the pool of unfinished tasks in simulation.

4) Strategy of central assignment: We also call it a ’strategy
of central assignment’, or a ’central planner’ or ’central task
allocation’ strategy. Algorithm performs a multiple sorting
operation. Simplifying the idea, it works by choosing a task
with the least advanced skill inside and assign it to an agent

371371

which have highest experience in it. Before launching an
iteration of the simulation, every agent has a task assigned
to him or her (unless the number of tasks is smaller than the
number of agents, then we can simply say that every task have
an agent assigned to it).

Behaviour of the central planner in a natural language
follows steps explained below:

1) For i number of times, which is the count of agents,
or if there are fewer tasks left than agents - count of
the tasks, do the following:

a) chose a task which has a skill with the
biggest amount of work left,

b) for the task from above, choose an agent
which has the highest experience in the skill
considered above,

c) mark the task as taken, and the agent as busy.

E. Agent workflow

Steps of the simulation per one step at a time (for every
Aj do following) are described in points below:

1) Agent Aj uses Aj{ξ} strategy to choose a task Ti to
work on in the current simulation tick

2) If Aj{ξ} strategy returns no task, Agent Aj chooses
a random task Ti

3) Agent Aj works on Ti

4) Use the strategy Aj{ξ} method to chose a set of skills
ωx to work on.

a) If strategy Aj{ξ} have a proportional time
division method - for every skill {S} in ωx,
increment work done by 1

n , where n is the
cardinality of ωx, and gain an experience

b) If strategy Aj{ξ} have one of: most ad-
vanced, greatest experience, or random
methods - in a single skill {S} increment
work done by 1 and gain an experience

5) Tasks done leave the environment

F. Learning Process and Work Efficiency

Human nature is to learn new things through experi-
ence. Psychologists proved that a learning process can be
described by a mathematical Sigmoid function (appendix fig-
ure no. 5Sigmoid functionfigure.caption.6). In simulation we
propose a simplified Sigmoid learning function which makes
for approximating the process of learning in humans. Different
internal task work distribution methods (described in section
no. IV-G) can significantly influence process efficiency of
gaining experience by agents. Gaining experience and using
it is indispensable for a person to resolve tasks faster and
possibly move on to a new programming language.

That is the reason for the δ(S) function to be a sigmoid
function (shaped S-curve) reflecting human learning progress
calculated by an equation, and, finally, the function which
accepts E (experience understood as amount of work done in
the particular technology) as an argument is shown in figure
no. 1.

Def. 1: Experience function equation

δ(Sj
i) =

1

1 + e−Ej
i

.

1) Experience decay: lets consider the importance of ex-
perience decay due to inactivity. We are adding an aging effect
of the user skills, which is decreasing the experience in a
particular skill Sj by the value of β, in every iteration in which
user does not work on the mentioned skill. Decrease value
β < 1 is set to 5 · 10−4, which means every single decrease
moves experience 0.05% backwards on a sigmoid curve. If
experience in a particular skill of an agent reaches stupidity
level of 3%, experience won’t be decreased anymore during
the current tick.

2) Fully taught agents leave: as in previous chapters, an
agent is motivated by becoming an expert in his / her fields
of knowledge, by gaining experience through practical work.
We speculate that agents, who are fluent in all of their skills,
will avoid working anymore - by letting the tasks to be taken
by somebody else and leaving the collaborative environment.

The behaviour can be described by two steps. Firstly, after
every tick of the simulation, iterate through all agents and
check if there are skills possessed by agents, which are on the
top of the learning curve (have a value 1.0). If the agent does
not have any skills with experience lesser than 1.0 (in other
words, all his skills are fully taught), than remove this agent
from the simulation.

Algorithm 4 ’Fully taught agents leave’ behaviour

Require: Agent {execute per step, last priority}
for Agent agentInPool do

for Skill singleSkill in allAgentSkills do
if singleSkill.experience 〈 1.0 then

dontRemove = true;
end if

end for
if !dontRemove; then

simulation.removeAgentFromPool(agentInPool);
end if

end for

3) Mixing different behaviour in the simulation: behaviour
of: experience decay, fully taught agents leave, and gran-
ularity can occur simultaneously in the simulation. Except
the central planning (centrally-controlled strategy), where the
central planner does not allow for granularity occurring in the
simulation and this parameter must be turned off.

G. Internal Task Work Distribution Methods

Each of the agent strategies described in the section
no. IV-C might be in one of the following methods:

1) Most advanced,
2) Proportional time division,
3) Greatest experience,
4) Random.

372372

Those methods (also called modules) coexist with task
choice strategies and they are used to choose a skill inside
the chosen task. We can additionally characterize the pair of
task strategy and module as by their ability to add a new skill
to agent’s set of skills and opposite.

1) Most advanced method: this module selects a single
most done skill inside a task. If there is no such skill (i.e. all
skills have ’work done’ at zero point), then it select randomly
a single skill.

2) Proportional time division method: proportional module
allows to work equally on multiple skills by diving time
into particles, which makes for incrementing work done and
experience by fractions of 1.

3) Greatest experience method: method selects only one
skill in which an agent is most experienced. If the agent is
equally well-experienced in more than one skill, then selects
randomly one skill from this set.

4) Random method: this module selects one single random
skill to work on. Firstly, the strategy evaluates the intersection
of agents skills and tasks required skills. If this intersection is
empty, the strategy continues to choose between any random
skill left.

In case of most advanced, proportional or greatest experi-
ence method the following rule holds: check for intersection
between task skills and agent skills, and use it to point skills
on which the agent can work on. If the intersection is empty,
it means agent does not have common skills with task, and
will choose one or more task skills to create experience from
scratch. In most advanced method, if the intersection is empty,
the agent will choose a single random skill.

H. Granularity of agent behaviour within work choice

In real life, programmers tend to stick with one task for
longer than one bit of time, therefore we propose a behaviour
of granulating task choice for longer than 1 step of simulation.

• The quit event—the quit event happens when the agent
decides to move on to an other task.

• Granularity of task only—the agent condenses his
or her work within one particular task, but has a
choice to work on different skills. In other words,
while the agent sticks within T i task, for every step
of simulation skill choice strategy apply. Granularity
rules apply until the quit event happens.

• Granularity of task and skill—the agent condenses his
/ her work within one particular task and skill inside
this task. The agent won’t change the task and skill
he / she works on until the quit event happens.

• The quit momentum—a decision made by the agent
to quit working on a particular task and/or skill
and reconsider choosing new work from the pool of
available tasks. The quit momentum happens with a
probability of P (A) = 20%.

V. MIXING STRATEGIES FOR FINDING THE OPTIMUM

We implemented a way of finding an optimum, starting
from an initial naive mix of strategies. We tried to identify
an approximate strategy distribution which we can use in
a hypothetical optimal model. It should be “close” (in the
divergence-sense) to good strategies and “far away” from bad
strategies.[13]

Before enabling evolution, strategies were assigned to
agents static, but now we allow agents to change strategy.
We introduce agent utility function (def no. 2) which will
determine the evolution process. Table no. I shows our
evolution plans (scenarios) and they differ only by beginning
strategy allocation.

TABLE I: Initial mix of task-choice strategies

Plan Homphily Heterophily Preferential
S1 80% 20% 0%
S2 80% 0% 20%
S3 20% 80% 0%
S4 0% 80% 20%
S5 20% 0% 80%
S6 0% 20% 80%
S7 33,(3)% 33,(3)% 33,(3)%

After every 10 ticks of simulation every agent get a new
task-choice strategy according to the implemented well-known
genetic algorithm called Stochastic Universal Sampling (SUS)
method. SUS is a fitness proportionate selection method which
uses a single random value to sample all solutions by choosing
them at evenly spaced intervals. This gives weaker members
of the population (according to the fitness function) a chance
to be chosen.

Def. 2: Agent utility function

utility = min{δij}+ ε
∑

j

δij

δij − agent experience in specific skill

ε =
1

20

Utility function considers lowest experience in a single
skill plus 1

20 part of an average experience in all the skills.
In next chapter we won’t present detailed results for evolution
(including convergence) because boundaries are dynamic and
it is impossible to find an equilibrium for this evolutionary
game - mostly because of a limited set of tasks in simulation.
We want to continue research on this problem by enabling
unlimited flow of tasks, exactly as they appeared on GitHub.

VI. ANALYSIS OF RESULTS

We constructed a pivot table to group the result set,
depending on the parameters of the simulation, which we use
as filters (sets of scenarios, behavioral features - experience
decay, etc). For purpose of this chapter, we call ‘behavioral
features’ parameters: experience decay, granularity, and fully

373373

taught agents leave. Their impact on results we analyse in next
subchapters. Despite the fact, that the data can be aggregated
into one general performance benchmark, (as seen on figure
no. 3), it won’t allow to answer research questions directly
without ungrouping them into a couple of particular scenarios
- the main reason of this are extensive thresholds and various
sensitivity of the strategies to different workloads. The lowest
value of tick count is somewhere at 2038, while its peak
reaches the value of 80837.

Fig. 3: Aggregated benchmarks for task allocation strategies

from left: proportional, random, most advanced, greatest ex-
perience

On the figure no. 3, we show results for the calculated
4 scenarios, granularity, experience decay and fully taught
agents leave options are disabled. The exact numbers, with an
average for all workloads, are given below in the table no. II.

TABLE II: Result set for different scenarios, all behavioral
features turned off

strategy method a = 10 a = 25 a = 50 a = 120 average avg(c)

central - 72 190 23 270 3 151 5 197 25 952 1.87%
heterophily proportional 77 193 29 787 2 575 4 336 28 473 2.88%
heterophily random 77 322 30 073 2 557 4 256 28 552 14.83%
heterophily most-adv 77 143 30 001 2 111 4 217 28 368 4.44%
heterophily greatest-exp 77 224 29 397 2 038 4 141 28 200 8.41%
homophily proportional 80 862 32 690 5 282 8 251 31 771 1.25%
homophily random 80 837 32 701 4 958 8 061 31 639 1.68%
homophily most-adv 76 401 29 980 3 796 6 624 29 200 2.49%
homophily greatest-exp 79 056 31 569 4 534 7 756 30 729 4.11%
preferential proportional 78 387 30 585 3 681 5 369 29 505 0.89%
preferential random 78 248 30 818 3 524 5 306 29 474 3.41%
preferential most-adv 77 506 29 762 2 924 4 965 28 789 1.19%
preferential greatest-exp 77 502 29 901 2 909 4 986 28 824 1.52%
random proportional 77 762 30 475 3 471 4 906 29 091 0.94%
random random 77 719 30 544 3 149 5 127 30 121 9.22%
random most-adv 72 673 27 458 2 523 4 544 23 958 4.23%
random greatest-exp 77 161 29 881 2 916 5 864 33 892 4.33%

a = {N} means subset of N-agents, c = confidence level

A. Effectiveness of Emergent Task Allocation Strategies

In the scenario with a low number of agents (10 agents
- 120 tasks), the heterophily strategy (with average 77221)

is more efficient than the homophyly (average 79289) (except
for homophyly with internal most advanced method). Random
strategy with most advanced method seems to be the better
of the two options considered above. Best strategy here is the
central assignment - 72190 (results presented below on figure
no. 4).

Lets take a look at the opposite scenario - with a big
number of agents (120) and a smaller number of tasks (50),
which is presented by figure no. 5. Heterophily strategy (4238)
is better than the central strategy (5197), and homophily
strategy (7673) is the worst. Preferential and random are
somewhere the same and having similar efficiency level as
the central planner.

Fig. 4: Benchmarks for sets (10, 120), (25, 100) of agents and
tasks

from left: proportional, random, most advanced, greatest ex-
perience

When it comes to the (25, 100) and (50, 15) scenarios, in
the first case results are highly similar to each other, in the
second case - benchmarks are comparable to the (120, 50) set.
It means for both (50, 15) and (120, 50) workload, so where
there is a big number of agents and fewer tasks, heterophyly
wins over central planner and preferential, and the homophyly
strategy is the worst.

Fig. 5: Benchmarks for sets (50, 15), (120, 50) of agents and
tasks

from left: proportional, random, most advanced, greatest ex-
perience

374374

B. Effectiveness of Centralized Task Allocation Strategy

In most cases, central task allocation strategy is best in
the task resolution. Central task allocation strategy can not
implement granularity behaviour (as in section IV-F3), neither
use an internal task work distribution method. Table no. III
shows results through all the scenarios. Central planner has
very good benchmarks for small workloads (10 and 25 agents),
while in the bigger scenarios it is often outrun by heterophily.

TABLE III: Result set for central strategy through all param-
eters

ed ftl a = 10 c a = 25 c average
false false 72 517 0.23% 23 971 1.78% 26 138
most efficient? yes - central yes - central yes

false true 132 110 0.15% 44 156 2.08% 46 619
most efficient? preferential preferential no

true false 87 691 1.46% 25 057 2.32% 30 333
most efficient? yes - central yes - central yes

true true 163 510 2.18% 52 125 2.08% 57 019
most efficient? homophily heterophily no

ed ftl a = 50 c a = 120 c average
false false 3 057 2.47% 5 007 5.79% 26 138
most efficient? heterophily heterophily yes

false true 3 263 2.03% 6 947 0.94% 46 619
most efficient? yes preferential no

true false 3 245 1.50% 5 525 10.32% 30 333
most efficient? heterophily yes yes

true true 3 378 4.04% 9 064 4.10% 57 019
most efficient? yes preferential no

ed = experience decay, ftl = fully taught agents leave,
c = confidence level

Fig. 6: Benchmarks for central assignment strategy

from the top (expDec,ftl): (Y, Y), (N,Y), (Y,N), (N,N)

C. Impact of Internal Task Work Distribution Methods

In all mentioned task strategies, proportional time division
strategy is faster than greedy strategy. Random skill choice
strategy is close to the middle between proportional time
division and greedy strategies.

D. Influence of ’task granularity’

We find granular behavior to have a small impact on the
simulation results. Results shown on table IV explain the gain
in time when granularity is enabled, for the scenario (120, 50),
and in most cases - when granularity enabled - the strategies
resolve tasks quicker.

TABLE IV: Impact of turning on task granularity

strategy granularity granularity delta(δ)
- disabled enabled -

central 5 197 4 865 333

heterophily
proportional 4 336 4 177 160
random 4 256 4 007 250
most advanced 4 217 4 020 197
greatest experience 4 141 4 192 -52

homophily
proportional 8 251 7 012 1 238
random 8 061 7 170 891
most advanced 6 624 5 348 1 277
greatest experience 7 756 6 695 1 062

preferential
proportional 5 369 5 373 -4
random 5 306 5 349 -43
most advanced 4 965 4 960 5
greatest experience 4 986 4 979 8

random
proportional 4 906 4 618 288
random 5 127 4 933 195
most advanced 4 544 4 120 424
greatest experience 5 864 5 599 265

δ is a gain in efficiency after enabling granularity

E. Influence of ’experience decay’

Intuition suggests that the forgetting process will impact
agents who use the heterophily strategy. Results proved that
for the scenario with the small number of agents, enabling
forgetting makes for homophily strategy to be 3 times more
efficient than the heterophily strategy.

Fig. 7: Benchmarks for exp-decay on, 10 agents and 120 tasks

from left: proportional, random, most advanced, greatest ex-
perience

F. Influence of ’fully taught agents leave’

Enabling behavior where fully taught agents leave simula-
tion always worsens results of all of the strategies. Obviously,

375375

smaller number of agents in the simulation makes for weaker
collective work force. It also decreases performance of central
planner and in the same time benefits preferential strategy.

G. Results of the evolution

TABLE V: Domination of particular task-choice strategies, all
behavioral features turned off

Plan Dominator
S1 Heterophily
S2 Preferential
S3 Heterophily
S4 Preferential
S5 Preferential
S6 Preferential
S7 Preferential

According to the results shown in the table V, the most
dominant strategy is preferential, which won over other strate-
gies in all of the plans where it was used. Interesting regularity
occurred in the plan S7 (as seen in appendix graph 13An
example of the strategy domination (plan S7)figure.caption.16)
where homophily dominates more than heterophily, and in
direct confrontation in plan S3 (appendix 12An example of
the strategy domination (plan S3)figure.caption.15) homophily
lost.

VII. CONCLUSIONS AND FUTURE WORK

This paper answered questions regarding best strategies
for an efficient task resolution, basing on real-life data
parsed from the active repositories and users of the GitHub
portal. We got results which support the view of other
researchers [1] that successful communities are governed
by non-autonomous decisions. Grouped results shown that
centralized task assignment strategies are are more efficient
than emergent task strategies. Despite the fact there were
scenarios which shown hypothesis no.1 to be questionable
(VI-B), they don’t necessarily reflect a typical workload in
OSSD model. For grouped results the hypothesis regarding
superiority of centralized strategies over emergent strategies is
proven to be true. Agents were working on a discrete countable
set of tasks - their adaptation to the collaborative environment
through the personal evolution was limited to the countable
number of tasks left in the simulation universe. In the near
future we want to simulate an environment of tasks incoming
to the simulator through a stream - in a similar way repositories
on GitHub had an activity through their timeline. We will
also introduce more sophisticated behavioral model of a user
- implementing i.e. experience cut-point (a question - can a
person reach the maximum of experience in his field).

ACKNOWLEDGMENT

This work is supported by Polish National Science Centre
grant 2012/05/B/ST6/03364

REFERENCES

[1] Siobhn O’Mahony and Fabrizio Ferraro. The emergence of governance
in an open source community. Academy of Management Journal,
50(5):1079–1106, 2007.

[2] Aris Anagnostopoulos, Luca Becchetti et.al. Online team formation in
social networks. In Proceedings of the 21st International Conference
on World Wide Web, WWW ’12, New York, NY, USA, 2012. ACM,
pages 839–848.

[3] R. L. Graham. Bounds on multiprocessing anomalies and related
packing algorithms. In Proceedings of the May 16-18, 1972, Spring
Joint Computer Conference, AFIPS ’72 (Spring), New York, NY, USA,
1972. ACM, pages 205–217.

[4] Kurt Mehlhorn. Assigning papers to referees. In Proceedings of the 36th
International Colloquium on Automata, Languages and Programming:
Part I, ICALP ’09, Berlin, Heidelberg, 2009. Springer-Verlag, pages
1–2.

[5] Theodoros Lappas, Kun Liu et.al. Finding a team of experts in social
networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, New
York, NY, USA, 2009. ACM, pages 467–476.

[6] Amita Gajewar and Atish Das Sarma. Multi-skill collaborative teams
based on densest subgraphs. In SDM. SIAM / Omnipress, 2012, pages
165–176

[7] Cheng-Te Li and Man-Kwan Shan. Team formation for generalized
tasks in expertise social networks. In Social Computing (SocialCom),
2010 IEEE Second International Conference on. IEEE, 2010, pages
9–16.

[8] Emily M Jin, Michelle Girvan et.al. Structure of growing social
networks. Physical review E, 64(4):046132, 2001.

[9] Miller McPherson, Lynn Smith-Lovin et.al. Birds of a feather: Ho-
mophily in social networks. Annual review of sociology, 2001, pages
415–444.

[10] Jungpil Hahn, Jae Yun Moon et.al. Emergence of new project teams
from open source software developer networks: Impact of prior collab-
oration ties, 2006.

[11] H. Jeong, Z. Nda, and A. L. Barabsi. Measuring preferential attachment
in evolving networks. EPL (Europhysics Letters), 61(4):567, 2003.

[12] A. Capocci, V. D. P. Servedio et.al. Preferential attachment in the growth
of social networks: The internet encyclopedia wikipedia. Phys. Rev. E,
74:036116, Sep 2006.

[13] Christopher Mattern. Mixing strategies in data compression. In
James A. Storer and Michael W. Marcellin, editors, DCC. IEEE
Computer Society, 2012, pages 337–346.

376376

