Pol ish-Japanese Institute
of Information Technology

Mariusz Trzaska

Usability of Visual Information Retrieval Metaphors for
Object-Oriented Databases

Ph.D. Thesis

Submitted to the Senate of the Polish-Japanese Institute of Information
Technology

Advisor:
Prof. Kazimierz Subieta

Warsaw, October 2005

v tomy Family v

Abstract

The methods for information retrieval must be adequate to akind of datathat are to
be queried, aswell asto akind of target users. This observation is especially important in
case of naive users (computer non-professionals), who are not able (or just do not want)
to learn sophisticated methods requiring significant learning effort and high computer
education. In contrast to retrieval engines addressing raw text data such as Google (that
are indeed very easy for naive users), a lot of novel technologies address structured data
(e.g. XML/RDF repositories or object-oriented databases). Thus there is a need for user
interfaces allowing querying and browsing such structured data However naive users
cannot deal with sophisticated retrieval methods and metaphors, especially using
keyboard-oriented languages such as SQL, OQL or XQuery, and script languages for
formatting retrieval output. Usualy, such users prefer working with some kind of a user-
friendly visual interface. The problem is amplified by the fact that the amount of data to
work with and nowadays users expectations regarding application’s functionalities and
easiness of use, are much bigger than in the past.

In this dissertation we propose a set of graphical metaphors, which are the result of
our investigations into easy in use and yet powerful visual querying and browsing
capabilities. The research has been done on the basis of a working prototype called
Mavigator. The basic research thesis that we want to promote is that such an interface

must solve five basic issues;

How to present to the user the data that are to be queried or browsed, and how
to limit the user view only to those data that are pertinent to his’her current
interests?

Which graphical metaphors are relevant for querying and browsing the data and

how the result of the user actions isto be recorded?
How the result of the querying and browsing isto be presented to the user?

How the user interface could support user awareness, i.e. how to reduce the
danger that the user will be lost after some actions that he/she had performed?

How to extend existing application’s functionality?

All the presented issues are critical in the sense of usability, i.e. ability of the
interface to be accepted by a wide community of end users. It is likely that neglecting

any of the above issues will undermine the sense of building such an interface.

Our implemented solution allows us to make general conclusions concerning this
kind of user interfaces with respect of all of the above issues. Because database (XML,
RDF) schemas tend to be very complex, the first general thesis is that the user should
have the possibility to reduce and customize his/her view on data that are to be queried.
We propose the Virtual Schemas module that allows the user to customize database
schema, in particular, to change data names, to add new associations, to remove some
attributes or classes, etc. The solution is based on views defined in the query language
SBQL. As information retrieval and browsing visual metaphors we have assumed
intensional navigation (in a schema graph), extensional navigation (in an object graph)
and storing intermediate and final querying/browsing results in persistent annotated
baskets. The Mavigator’s Active Extensions module solves the third of the above issues.
It alows the programmer to extend ad hoc existing core functionalities (in particular, to
display the retrieval result in any graphical form) through a fully-fledged programming
language (in Mavigator - C#). Concerning user awareness we have proposed several
methods such as undo functions, recording the history of user work, etc.

The proposed solutions are compared with the state of the art where we have
shown that the problem of easy-to-use graphical interfaces is extensively investigated

and that we offer new solutions.

CONTENTS

A 1 01 (oo (Ui { o] o 1R, 1
2 Related Research and SOIULIONS..........uuueeureieieiiiiiiiiiiiiiiiiasaesearasseasaeaaaaasaaaaee 5
2.1 VISUAL INFORMATION RETRIEVAL CAPABILITIES ..cceiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeesessesssssssssssssssesseeees 5
2.2 METHODS OF MODIFYING APPLICATION'S FUNCTIONALITIES ...cevvvvveierererereeeeeeeeeeeeeesereresseeeenes 14
2.3 CUSTOMIZATIONS OF THE DATABASE VIEWS. ... s 21
3 MaVigator MELBPNOIS.eiiiieiee et 24
3.1 INTENSIONAL NAVIGATIONcoiiiiiiiiieeeeeeeeeeeeeeeee e 25
0 A 1 (11 o OO P TP UP PO PRUPROPR 26
I I o U B 1= S <= T o OO RRRURR 27
T R T |V F= 1o 0= S < <ot o ISP 28
0 S = Y, o = (o o BTSSP TP P P OPROTROPR 28
315 BASKEL ACLIVITIES. .oecoi ittt ettt e e et et e e e e e s s eab b e e e e e e e s s sabb b e e e e e e e s s enrbraeess 29
3.1.6 Marking Objects Using ACtIVE EXIENSIONS.coiiiiiiiiiiieiee s 30
317 ClOSING REMAIKSciitiiitiiitieitie ittt ettt bt sbe b b e b e nanas 30
3.2 EXTENSIONAL NAVIGATION ...uuuttttttttesssssesssrsrrereese 30
33 2N =1 ST PP PP PPPPPPPPPPPPPRt 34
331 Creating @ NEWBASKELcoiiiiiiiiiiee e 36
3.32 Changing Basket PropeartiEs.c.uoieiiieiieiieiee ettt 36
333 Removing SHIECIEd [TEIMSooiiiiiie s 36
3.34 Performing Operations on TWO BasKELS...........coiuiiiiiiiiiiiieiie e 36
3.35 Using in Extensional NaVigation...........coieerieiierieenieenieesieesiee ettt 37
336 UsinginIntensional NaVIgationcccoeeieeiieiieiieiee et 37
34 ACTIVE EXTENSIONS ...cceiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseasassssssssssessssssssssssssssssssssssssssssssssrrnnnns 38
341 SMPIE ACHIVE EXIENSIONS......coitiiitiiitieitie ittt sbe b naeas 40
342 ACHVE PrOJECLIONScueiitiiiteiiieeiee ettt sttt san e 41
4.3 OB ECIS EXPOITENS. ...ttt ettt ettt ettt ss et be et e e s b nab e nn e e ne e 43
35 VIRTUAL SCHEMAS ...coeiiiiiieiieeieeeeeeeeeeeeeeeeeeeeeessees s e s e s s s essasassnsnnnnns 43
351 Determining or Changing Names of Associations ROIES..........cccocvvveiiiiniineiiieneeneee, 45
3.5.2 Creating New Connections DEtWeen ClaSSES.........coiviieiieireiiiesee e 46
3.5.3 More Accurate Specifying Objects fromthe Target ClasS........coooovvieviieeniiee e 46
354 HidiNg SOME ClASSEScuiiiteeitieitie ittt sttt sttt sb et be bbb sbe e sbe e sbe e b e sneesaeenanas 47
355 Hiding INtermediate ClASSES.........coieiiiiiierieeriee sttt bbb b b naeas a7
4 User Interface for MaVIgatorcoouieiiiiieeiieesiee e 49
4.1 BACKGROUNDuutttittttssttsssnnes 49
N = 0 T B U < U PPRRRTPI 50
N = o] = 1 0°=: 01 £ SRR 51
4.2 GENERAL INFORMATION ...uuuiiieieaiaaeiaeeeeeee e e e e e e e e e e e e e s e e e e s s s e s nnnnnnnnnnnnnnnnnnnnnnnnnnn 52
4.3 INTENSIONAL NAVIGATIONcoiiiiiiiiieeeeeeeeeeeeeeeee e 54
e R 11 = 41 0 O TP U PP U P UPTPPT 56
B - Y o i o TP U TP U P UP TR 59
4.33 History of Marking ODJECEScoiiiiiiiiiieiiie et 60
434 SNOWING ODJECES.....cuiiiiiiitiiiie e 61
4.4 EXTENSIONAL NAVIGATION ...uttttttttttesssesersssrsree. 63
441 Discovering NeighbOrNOO.........couiiiiiiiiiii e 63
442 Layouting the Graphooeiiiiiie b 66
443 HidiNG ODJECES......eiitiiieiiiteeieie ettt ettt b e bbb en e 68
444 WOrking With ODJECL.........oiuiiiiiiiiteee et sr e sb e sre e 69
45 2N =1 ST PSP PP PPPPPPPPPPPPPRt 70

451 Creating BasKELS.oiiiiiiiiiiiie e 71

452 Adding ObjectSt0 the BASKELccoiiiieiieiieieeeeeee e 71
e T 1 (=10 S U (] 172 Lo o I SRR 72
454 Baskel’ SItEMS PrOPErTiES.......cocuiiiiiiiiiieie ettt 74
455 BaSKEl SOPEIALIONS.eiiiiiiiitieie ettt ettt b e b re e 75
4.6 ACTIVE EXTENSIONStetieittet e ettt e ettt e e ettt e e e sttt e e e aab et e e s st e e e e s bbe e e s anbee e e e asbeeeesnbeeesanneeeeeanreas 76
4.6.1 ACtVE EXIENSIONS EQITONeiiiiiiii ittt a e e e e e saeee s 76
4.6.2 USING ACHIVE EXIENSIONSc.ueiieiiiiiiiiiitee sttt n e b 78
4.6.21 SIMPIE ACHIVE EXEENSIONS......ouiiiiieeiieteee e n e 79
4.6.22 ACHVE PrOJECHIONS ...ttt r e e ne e 79
46.2.3 OBJECLS EXPOMEN ...vucveeveeeseceeceeseeseeseesstessessesse s s st essessessessssssessensassessssessensansansesassnsessensnen 82
4.7 SUPPORTING TECHNIQUESuuuuiiieieieeeeeeee e e e e e e e e e e e s e nnnnnnnnnn 83
4.8 CASE STUDIES...ceiiitttte ettt e ettt e e sttt e e s et et e e s ea b e e e sttt e e e e abee e e s abbe e e e aabbe e e s anbeeeeabbeeaeanbbeeesanreeaeaans 84
I R 1 < SRR 84
N O 1 < SRR 85
G T O 1 < SRR 86
R O 1 SRR 87
T O 1 < SRR 88
N S O 1 < G SRR 89
N A O < SRR 89
R B O 1 < SRR 20
4.89 REMAINING CASES....cuetiueiiutiiiiiett ettt ettt ettt b e bbbt bttt e beeabeenbeebeenbeenne 91
Software Architecture and ImplemMEeNntation.............ccooeeiiieier e 92
51 MAVIGATOR’ SARCHITECTUREtttieiutitaeatteeeaauteeaesasteeassbeeaasasbeeaesanteeesanbeeassanseeassnneeessnsens 92
5.2 WRAPPER TO THE DATA SOURCE ...ciiittiiieitiie ettt ettt ettt ettt abe e e s snee e e aneas 94
521 Unique ObJECLS THENMTITIEIS. ...cueiiiiiieieee e 96
522 WWrAPPEr ODJECT....ceiiiiitiei e 97
523 Working With Wrapper Metadatal.............coieiieiiiiiiiiiiiecsie s 98
524 Working with Database’ S ODJECES.eeivieiieiieie et 100
B5.25 VIrtual SChEMBScooiiiiie ettt et et e e sae e e saee s 101
5251 OPENING B DB SOUMCEceeereere sttt sttt r e sr e reesn e nne e r e 104
5.25.2 USING CACKE. ...ttt ettt et e st e st e e teeeteesneeesneeeteeeseeenseanns 105
5253 L0ading Virtual SCREMAL.......c..eiiiiieiieii et 106
5254 ACCESSING 8N OBJECE ...t e 108
5255 Downloading object’s Neighborhoodccociieeiieiiieec e 109
5256 Navigation Via ASSOCIGLION' S ROIE.........ccoieeiiieiiiesee e 111
5257 FIltEring ODJECES. ... eeiieeiieeeieee ettt r e n e e st nnesnees 112
5258 WOrKing With LADEIS. ..o 113
5259 Dealing With CONFIQUIELIONccuiiieiieeieiee e 114
5.3 INTENSIONAL NAVIGATION ...eiiiitieieaitetaeatteeeesteeeesauteeasssseaasasbeeassasbeaassbeeeesasseeesaaseeeesansens 116
531 Sarting & NEW SESSIONeotiiiietieiteesie ettt ettt ettt be bbbt e b e n e ne e 116
532 Filtering ODJECES......ooiuieiieie et 119
GRS B = Y o = 1] 0o B T TP TSP PP RPN 121
534 SNOWING ODJECES......uiitietieitieitiest ettt ettt bbb e e r e b e 124
535 Handling Drag&Dropccceeiiariieiiesie ettt ettt ettt e 126
536 Dealing With BaCk/FOIrWaIdccceeiieiieriieiienie ettt ettt 127
54 EXTENSIONAL NAVIGATION ...tttiiittiteeiutteeesatteeaeatteeessabeeaesaabeeasssseessanseeessasseeassasseeesansenessnns 128
541 Sarting NaVIGationcoieeiiieiieiiesie ettt ne e 129
54.2 Downloading NeighBOUrNOOU.cooiiiiiiiiiee e 129
543 Layouting the Graphccoeo i 130
544 WOrking With OBJECL.coiuiiiiiei e et 131
55 B A K ET S, ettt ettt ettt e et b e a bt e e e e b bt e e e aabee e e aaabe e e e e breeeeanraeaeaan 132
551 Creating BAsKL........cc.oiiiieiiiie ittt 133
552 BasKel' SOPEIAlIONS......ciieitieitieitee ittt sttt ettt ettt ettt sb e sb e b e b bbb re e 134
553 BasKEIS PerSISIENCY.....coiiiiiiiieiie e 135
5.6 ACTIVE EXTENSIONSteiiiiuteee ettt e ettt e ettt e e s sttt e e s eabe e e e s bbe e e e sabee e e s abbee e s aabee e e e anbeeeesnbeeeeanreas 135
Mavigator' S EVAIUBLIONcooueiiiiie et 141

-1V =

6.1 [(0107 =] U] = TR 142

6.2 (=1 U I T 144
LN R 0 o= od PO TTOPRR 144
6.2.2 QUENY QUESHIONS......eoeiieiieeeieeeitee ettt rte et e et e e steeesteeessteesnteesnbeeeseeesaeeesnseesnseeeseaenneens 145
B0.2.3 OVETAIl RESUITS......coeeeeeeeeee ettt e e e e e e et e e et e e e e e e e e e e e eaabba s 146
6.24 USErS REMAIKS. ... 148

6.24.1 L1 0= 0 0SS T £SO 148
6.2.4.2 SHOWING ODJECES ...t nr e nn e 148
6.2.4.3 SNOWING BASKEL....... ettt ettt ettt et e mte e s ae e e steeeteesmneesneeenneean 148
6.24.4 Working With SINGIE PrediCate...........coiiiiiieeiieee e 148
6.2.4.5 HEID SYStEIM.....etoee ettt este e et es st enae s st en st en s en st en et ens et enseaensesensesensesenensans 149
6.2.4.6 Marking objectS With filtEriNg........cceiiiiireere s 149

6.3 SN N 23 2 TR 149
ConClUuSION AN FULUIE WOTKoeeeeeeee ettt e e eetreee e e e e e eeeeenes 150

7.1 (O U= 3 = = (0] = @ .Y TR 151

7.2 FUTURE WORK ..ottt ettt sttt s e e e e s et et s e e s s s e e bbb s e e e s s eea bbb e e e s seenabaaanses 152
BiblIOGraphy ... 153
APPENAICES ...ttt 159

Y AN =121 S N 0] N E TN 160

= T I 1Sy e o = e == 161

G LIST OF EXAMPLES ..ttt iiiiiettte s e e e e s ettt s s e ee s e ea b e e ees s e e et b b seesssea s b b s eeesseas bbb eeesseesbbaasaeaanes 164

D. USER STUDY MATERIALS....ciiiittttiiiieiiiietiiis s e e e s e eetaas s e e ssseesab e easseeabba s essseestbba s eesssessbaaanses 165

E. EXTENDED ABSTRACT (INPOLISH) ..eeitiiitieitieitie sttt sttt ettt sttt sb ettt sb e sreesneenneennee 168

1 Introduction

Databases, among other features, should provide easy access to information.
However, the “easiness’ is relative to a user kind and his’her experience in computer
technologies. Nowadays more and more non-professionals use computers, especially
various applications based on Web browser-oriented interfaces. Their requirements with
respect to user-friendliness of the entire computer systems are much stronger than
requirements of computer professionals. Non-professionals usually do not accept
formalized syntax, strict sophisticated rules of user action, long and specialized training
or following professional manuals. As a consequence, computer tools, including
interfaces for information retrieval, must evolve into non-sophisticated and easy-to-use

applications.

On the other hand, the interface should be simple, but not simpler than the
inherent complexity of the task that the user has to solve. For some tasks the typical
full-text retrieval (as e.g. in Google) is not sufficiently precise because of lack of
facilities to specify semantic meaning of data items stored on Web. The XML
technologies (including RDF, OWL, Semantic Web and other proposals) aim at putting
data into nested labeled structures with well-defined semantic meaning. There are also
guery languages such as XQuery to express the user needs much more precisely than it

is possible in full-text retrieval engines.

In the database domain there are many query languages proposed, in particular,
SQL as a mgjor language for accessing relational databases. SQL, like all textual query
languages, is very powerful, but its audience, due to its complexity, is rather limited to
computer professionals. The same concerns more recent textual languages for object-
oriented databases, such as OQL [ODMOO0] or SBQL [Sub95].

Attempts to define more user-friendly interfaces have been noticed for many
years. One of the most successful was QBE [Zlo77] based on a tabular view of
relational tables and specific retrieval conditions inserted by the user into the tables.
QBE was perhaps the first graphical query interface based on visualization of a database
schema and specific visual manipulations of the user on the graphical interface. Due to
better hardware and popularity of easy application programming interfaces for graphical
manipulations we observe recently extensive development of visual metaphors for

information retrieval. Some of them are counterparts to their textual predecessors.
Other, like Value Bars [Chi92] and the interface presented in [Kum97] are based on
specific graphical ideas.

As noted in [Cat00], the key issue behind such proposals is usability in real
applications prepared for users who are not computer professionals. Unfortunately,
usability cannot be predicted in advance during design and implementation of an
interface, because it depends on many factors such as the readiness of the user to get
some training, inherent complexity of the task that he/she has to accomplish and
adequacy of the interface to this task, supporting various forms of user awareness
during long sessions, and others. Therefore the only way to check the usability is to
implement a particular metaphor and then, to measure some user-oriented factors (such
as the number of errors, the entire time to reach the goal, etc.) in real applications. The
result of our surveys has been described in Chapter 6.

In our opinion, an ideal graphical user interface for naive users should be
characteristic of:

0 Graphical (visual) metaphor which will be easy to understand, use and
assures the power enough to perform the required work. It could be some
kind of a query mechanism, a browsing tool or a solution based on both
approaches,

0 Possibility to modify some aspect of the tool by adding plug-ins.
Depending on assumptions made, those modifications could concern
various aspect of the application. However, we do believe that, our target
user — computer non-professional, is not able to do it personally, especially
if we do not want to sacrifice the power of the solution. Hence, we propose
an approach, where a naive user collaborates with a programmer.

As an incarnation of our postulates we introduce the visual querying interface
Mavigator, which has been developed to allow computer non-professionals to work
with object-oriented database systems. Its key concepts include: intensional navigation,
extensional navigation, persistent baskets for recording temporary and final results of
querying, virtual schemas and active extensions. The first kind of navigation
(intensional) is based on navigation in a database schema graph. The user moves from

vertex to vertex via edges, where vertices denote classes (more precisely, collections of
objects) and edges denote associations among classes (in the UML terms). Additional
functionalities allow the user to build quite complex queries. The second kind of
navigation (extensional) is similar but the user navigates in a graph of objects rather
than in a graph of classes. This mode enables the user to move (in mind) from an object
to an object (vertices of the graph) via a specific link (an edge of the graph).

Both kinds of navigations heavily deal with database schema graph. Therefore we
introduce virtual schemas, which are some kind of database views on the application
side rather than database itself. They allow to virtually redefine (in terms of hiding
classes, creating attributes, associations and changing schema's names) database
schema graph. All users’ activities related to the database schema graph proceed
transparently on virtual schemas.

After the user has retrieved some result he/she may require to present it visually in
some friendly way, e.g. as atabular report, as a chart, as a distribution map, etc. Thisis
acritical issue for visual querying interfaces, as the trade-off between simplicity of the
end user interface and complexity of a possible visualization form perhaps does not
exist. The number of options and the general complexity of the interface that may be
required to visualize a querying result seem to be unacceptable for naive users.
Therefore for achieving the required goal we assume some contribution of computer
professionals. The last feature, called active extensions, allows a computer professional
to add functionalities required by a particular naive user. We assume that the
functionalities will be coded in a programming language (currently C#) thus the range
of the functionalities is unlimited.

The objectives of this dissertation are the following:

Introduce visual metaphors which will be easy to use yet powerful for naive
users (computer non-professionals),

research on the querying and browsing environment which will allow:
0 Adding anew functionality (especially for processing query results),

o Virtua modifications of an existing database schema graph (without
physical modification of the database structure), the user works with,
expressed in the database query language SBQL,

0 Implementing a prototype that will make it possible to conduct research
on the usability of such a solution.

2 Related Research and Solutions

The goal of this chapter is to provide an overview of ideas and prototypes related
to the visual information retrieval systems. At the beginning there is a short introduction
to the problem, than the detailed description of particular groups of systems is given.
However, to our best knowledge, there is no system, which brings together all

properties offered by us:
Easy yet powerful visual metaphors,
Flexible methods for adding functionalities,

Working with a virtual schema rather than with a physical database schema
itself.

We will describe particular systems by giving their properties and showing
similarities and differences to our approach.

2.1 Visual Information Retrieval Capabilities

Roughly speaking, visual metaphors for information retrieval can be subdivided
into two groups: based on graphical query languages and based on graphical browsing
interfaces. This subdivision is not fully precise because some systems have features
from both groups. An example is Pesto [Car96] (see Figure 1) having possibilities to
browse through objects from a database. Otherwise to Mavigator, the browsing is
performed from one object to a next one object. For instance, the user can display a
Student class object, but to see another student, he/she needs to click next (or previous)
button and replace the current visualization. Besides browsing, Pesto supports quite
powerful query capabilities. It utilizes a query-in-place feature, which enables the user
to access nested objects, e.g. courses of particular students, but still in the one-by-one
mode. Another advantage concerns complex queries with the use of existential and
universal quantification. Such complex features may however compromise usability for
some kinds of users and kinds of retrieval tasks.

In our opinion an essential issue behind such interfaces is how the user uses and
accumulates information during querying. For instance, the user may see all the

attributes even those, which are not required for the current task. Otherwise, the user

can hide non-interesting attributes, but this requires from him/her some extra action.
Therefore, from the user point of view, there is some tradeoff between actions that have
to prepare the information necessary for querying and actions of further querying. To
accomplish complex queries without putting them explicitly the system should support

any sequences of both types of actions.

Actiens Help

& .

£ StudentsD.taking. instructor =
[EStudents0 e Actions Wiew
Actions Uiew ey = | o2 e
. : Lo EXIT = —
|ﬂ GJ i " Nl = | 2= Studentsi.taking,.insin
R : _
= Query | . — |
s % o S kX
et & @ _ﬂ%>= G5 700" amd < "CS %00° 1 [#]
first nama & i & phd_year ¥
gpa X|-35 dageription f‘ phato fl;a}_\
e EIM' instruetor g Professor —» I dept g Department ->
iy EIM takers] { Student } | corse &) Course -
taking { Course }
= i NOT | OPTIONAL | _| ALL advisees | { Stadont }
A NOT | ~ OR | % | % yp-— -
I NOT | OPTIONAL
=y

]
|Exenutes the specified query

Figure 1. PESTO and its query-in-place

A typical visual querying system is VOODOO [Fer99] (which means Visual
Object-Oriented Database language for ODMG OQL [ODMOQ]). A query is build as a
tree containing classes in nodes called templates. Particular nodes are expanded only if
some information should be displayed. A query is defined by mapping templates into
values using a graphical user interface containing buttons, menus, etc. Than the query is
translated to itstextual counterpart and then processed by an already implemented query
engine. A strong type checking system guarantees that only valid queries are
formulated. For instance if we would like to know the name of the department whose
head is Smith, we could write OQL query shown in Example 1. An equivalent visual
query formulated in VOODOO is shown on Figure 2.

where d. head. nane

sel ect nane: d. nane

fromd in departnents

= “Snith’

Example 1. OQL query sdecting the name of the department whose head is Smith.

head | E ﬂLl ~ string
Persistent Root ' - head

p| Person

cond |

ﬂﬂ T P address I cond |Sui th
P| Instructors o — P salary
B oepartments ﬂﬂ Foed P| rank
P Courses ﬂ,ﬂ e — P degrees
P| G| courses_offered | ﬂ—]dept
[

Figure 2. VOODOO query selecting the name of the department whose head is Smith.

VOODOO capabilities are not restricted to such a simple queries. It is also
possible to use more complex ones, for instance, find names and addresses of all
instructors in the CSE department who earn more than 100 000. An appropriate OQL
code is presented in Example 2 and its visual counterpart is shown in Figure 3.

sel ect name: e.nanme, address: e.address
fromd in departnents,

e in d.instructors
where d. nane = “CSFE

and e.salary > 100000

Example 2. OQL query finding names and addresses of all instructors in CSE department who
earn more than 100 000.

Persons |
Instructors |

Courses

Departments - -

salary |
rank
degrees I

dept |
‘teaches |

Figure 3. VOODOO query finding names and addresses of all instructors in CSE department
who earn more than 100 000.

Another visual query system is Kaleidoscape [Mur98] (Figure 4), based on its
visual language Kaleidoquery [Mur0Q]. Similarly to VOODOO it is declared to be
visual counterpart of ODMG OQL.

Addiross .
,%‘ Apartment
_7‘———-__75

Figure 4. Representation of a database schema in Kale doscape

The system uses an interesting approach to deal with AND/OR connectors
(another proposal can be found in [Jon99]). It is based on the flow model described
previously by Schneiderman [Shn91]. We find it very useful and intuitive thus we have
adopted it to our tool. A manner of work with Kaleidoscape is a little bit different than
in VOODOO. The user freely “draws’ a query rather than expands a graph of templates.
Kaleidoquery is data flow-based which means that data “flows’ from one place to
another one. For instance — finding attribute values for names and ages of people means
a “flow” from the People extent to the new results extent, but only selected attributes
are able to pass the filter. Figure 5 shows an appropriate visual Kaleidoquery construct
and Example 3 shows its OQL counterpart.

@ name, age

A

People g

Figure 5. Kaleidoquery construct selecting name and age of the people.

sel ect tupl e(nane: p. name, age: p. age)

fromp in people

Example 3. OQL query selecting name and age of the people.

Another simple query selects all people whose age is less than 20 (see Figure 6

and Example 4).

age <20
People <7

Figure 6. Kaleidoquery construct finding people with the age less than 20.

select p
fromp in people

Where p.age < 20

Example 4. OQL statement finding people whose age is less than 20.

The above examples are quite intuitive, but when we try to formulate something
more complicated, constructs become much less legible. For instance let’'s formulate a
query finding al people working in companies located in England. Figure 7 and

Example 5 contain appropriate queries.

'
Ve e M

location = "England"

Figure 7. Kaleidoquery construct finding all people working in companies located in England.

People f?

select p

fromp in people

where p. enpl oyer in
(select c
fromc in Conpanies

where c.location = ,England”)

Example 5. OQL query finding all people working in companies located in England.

—-10-—

The last example present — intersection of two sets: all people who work for IBM
and people whose an employer’s location is London (see Figure 8 and Example 6). In

Chapter 4.8 we will show how our metaphor deals with such queries.

(9]

6
¥/
INTERSECTION
) Wi
) B8
name = "IBM" location = "London"
O ployer % Oy cmpl %
\) —— \) —
V V
4 f A) (f A)
e S 7
{Ptop]e V | \People \/ J

Figure 8. Kaleidoquery construct intersecting two sets: al people who work for IBM company
and people whose employer’slocation is London

(select p

fromp in people

where p. enpl oyer.nanme = ‘|1 BM)
i ntersect

(select ¢

fromq in people

where . enpl oyer. |l ocation = ‘London’)

Example 6. OQL query intersecting two sets: all people who work for IBM company and people
whose employer’s location is London

Polaris [Sto02] (Figure 9), designed for relational databases, has some querying
capabilities, but it seems that the major emphasis has been put on data visualization.
Information retrieval is based on relational predicate filters working with particular

fields, functions like min, max, etc.

-11-

(%f;chgma @Impnn <:IBal:k E> war QC[&M

= CoffeeChain

=) [uarter| sumiprofit . 1
|ProductType suM(Sales Partition...
Group in panes by: L # (5alep) Qi1 Bin By... Qirs

Decat State
= £ 4000 Use for Brushing/Tooltips
H

v Aggregate Data Coffee a + *
I 2000 ey ol o 8
3 N Al
Sorti by: -]
ort in panes by a0k % a o E o -
+
4000 + & +
Mark: y £ 3000 - o o o
Glyph - spresso A o
L i s O, a8 o Al ik
Color: 1000 cté% » cﬁ@ :!%J'
Size: 66 &
Shape: Market 4000
e +
3 3000 a2l & +
+ West Herbal Tea “ + g+ a o o ° o £
+
O Central jac §F+ oﬁ Dﬁ o?
Default Size:
a 4000
= ¥ o
3 3000 3 + o = 9 R 2
Tea - a o
I 200 40 & e Cs}.{J?.i
ep” 'l il 5
Il pefautt Color LR o R B R L R s AR e
1000 1000 1000 1000
= SUM_Profit SUM_Profit SUM_Profit SUM_Profit

Figure 9. The Polaris user interface.

All visual query systems have some limitations. For instance, VOODOO allows
the group-by construct to have having conditions for non grouped-by values and regular
conditions for grouped-by values only. However, having in mind our target user
(computer non-professional), we consider that the most important disadvantage of such
systems is a manner of work. We believe that visual diagrams (for instance see Figure 3,
Figure 7, Figure 8) containing queries are too complicated for naive users. Perhaps they
would be useful, but only for computer literate users.

In contrast to visual querying that forces the user to draw a query and then to
execute it, browsing systems allow querying a database in many steps. A typical
example of a browsing system is GOOVI [Cas01] (Figure 10) developed by Cassel and
Risch. Unfortunately, selecting of objects is done via a textual query editor. A strong

point of the system is the ability to work with heterogeneous data sources (see chapter
2.3).

12—

23 Go0vI Typebrowser:FLYGRESOR_AB Iy o =]

File Edit View

Help

(F OBJECT

B (F TYPE

B (F FUNCTION

G (9 LITERAL

& (J COLLECTION

| (9 OPAQUE_PROXY
5 (§ USEROBJECT
L fve

[(F DATASOURCE

selectx from flya x;

Query#0| < > ‘ Help || Clear H Execute ‘

@ #[0ID 500]
@ #0499
@ #OID 4398]

Next

q

I [*]

Figure 10. The GOOQVI type browser.

@[O0 i e A (1) [t = 8 s

Bl §-lmll

A

B

_HIE |

Ia]

A\ f \
/ ¢
» / 3
o J
\ - ¥

Figure 11. The Watson user interface.

—13-—

Another interesting browser is Watson [Smi02] (Figure 11), which is dedicated to
Criminal Intelligence Analysis. It is based on an object graph and provides facilities to
make various analyses. Some of them are: retrieving al objects connected
directly/indirectly to specified objects (i.e. all people, who are connected to a suspected
man), finding similar objects, etc. Querying capabilities include filtering based on
attributes and filter patterns. The latter allow filtering links in a valid path by their
name, associated type, direction or a combination of these methods. The manner of
work is similar to the metaphor that we have called extensional navigation (see chapter
3.2).

Browsing systems relay on manual navigation from one object to a next one.
During browsing the user can read the content of selected objects. Browsing is the only
option in situations when the user cannot define formally and precisely the criterion
concerning the search goal.

2.2 Methods of Modifying Application’s Functionalities

The most hard and universal method of modifying application’s functionalities is
generating a completely new system based on some existing framework. Depending on
the designing/developing method, this approach is dedicated for particular groups of
users (usually however not naive ones). DRIVE [Mit96ad], [Mit96b] (Figure 12) is an
example of a user interface to a database development environment. The system
dynamically interprets a conceptual object-oriented data language with active
constructs. The specification of the interface is made in a textual language called
NOODL. The model framework includes four main class categorizations, which are
mapped to the language. Below we give a short description of each of them:

The database component is responsible for communication with a database and
contains a few classes. In the simplest case, a data class is reflection of the
class from a database schema. Example 7 shows a simple definition of an
artefact class for avirtual museum. Aside of two properties definitions (name,
catalog_id), contains reference to the Artefact_Interface class, which
represents a GUI related task.

— 14—

class Artefact

properties
interface : Artefact Interface ref referent
name @ Text

catal og_id : Nunber

Example 7. Definition of a class representing a museum artefact in a NOODL database.

The user component, which manages users actions. Example 8 represents
definition of some user class. The definition contains properties that specify
kinds of task, which could be performed by the user. Component also has
abstract classes with predefined user’s rights models.

cl ass Wser
properties
accessors : #l nterface ref users ;
sophi stication : Sophistication ref user ;
authority : Authority ref user
operations
taskl is self.taskla, self.tasklb ;
taskla is self.interface.intentionl
tasklb is self.interface.intenti on2
cl ass Sophistication
property
user : User ref sophistication
class Authority
property
user : User ref authority

Example 8. Sample user class definitionin NOODL.

—15—

The interface component mainly defines appearance and actions related to the
data. Example 9 presents a definition of the interface referenced in the
Example 7. The intention of the interaction is described by oper at i on and
i nt enti on options. The interaction medium corresponds to a sequence of
events in the definition. The effect of interaction is described by an interface
class' trigger action. Notice that the visualization metaphor is defined by
another class Shape. Separation of the interface, data and visualization gives

away to provide an alternative visualization mechanism.

class Artefact _Interface (* Interface Class*)
properties

referent : Artefact ref interface

nmet aphor : Shape ref interface

museum : Miseum Interface ref artefacts (* conposite *)
operation

browse is self. netaphor. sel ect
const rai nt

sel f. met aphor. posi tion.is_insi de(sel f. museum met aphor . ext ent)
trigger

browse => self.nuseumdetail.referent(referent)

Example 9. Sample definition of aninterfacein NOODL.

Thanks to separation of data and interface, each data item could have associated
multiple interface components. Each user could have own set of user-specific views and
access privileges. Visual programming facilities help in creating queries, constraints,
and other retrieval options. Although DRIVE has been designed as an easy-to-use
graphical development system, it is disputable if every kind of user (including casual

ones) will accept it.

Teallach [Co000], [Bar03], [Gri01] (Figure 13) employs the idea of a Model-
Based User Interface Development Environment (MB-UIDE). It particularly supports

specification of three models:
domain,

task,

—16—

presentation.

- Virtual Museum =l B3] - - virtual Museum

. - Virtual Museum

Artefact Detail From _ (3]]

name: |Mona Lisa

description: [\ o/1d famous painting by
Leonarde Davinc

catalog_id: |1 1381701

Figure 12. Virtual museum constructed in DRIVE.

Teallach domain model is based on the ODMG object database standard. Thanks
to that solution, Teallach is able to automatically build internal domain model by
extracting information from a database scheme. The model covers both application
(transient) and database (persistent) objects using the same constructs. Its main role isto
represent core application functionalities related to the database tasks such as queries,
transactions, etc. Additionally the model is used to represent auxiliary data types used in
runtime operation of the interface (i.e. class libraries used to manipulate data input to

the system).

The Teallach task model is used to define the behaviour of the application — what
a user can do with an interface. Also it plays an important role in cooperation between
other models. The model is build as a goal-oriented task hierarchy, with leafs

—17-

representing action (automatic - i.e. updating of the form’s date, manual — submitting of
a form when completed) or interaction (i.e. obtaining a password’s value from a user).
Subtasks could be run on seven different ways, including sequential, optional and
concurrent. Conditional or repestable task are described in the UML’s object constraint
language (OCL). Each Teallach task is also capable to catch an exception and to be

cancelled.

f;i: Teallach Model based Uzer Interface Development Ersaronment

Preject Edt Debugger Models Teols Wizards Windows Help

NwH B 28§ 9° »OE=]

[T T2sk todel Editor
Tree Actions

libraryDB
i

Connectio Library

@ o=@ HB e

Figure 13. Teallach tool, showing a link between the task and domain models

The last model supported by Teallach, called presentation model, is used to define
visual part of the user interface. The model contains two levels of abstraction:

Abstract layer,

Concrete layer.

-18—

The first one defines the interface in terms of high-level categories, without
imposing particular interaction objects from the concrete layer. The layer contains
definition of different fundamental kinds of component like: containers, inputters,
displays, editors, choosers and action items. Each category is characterized by different

set of operations.

The second layer simply contains user-interface widgets like: buttons, sliders, list
boxes, combo boxes, panels, options, message boxes, etc. The described Teallach
version uses the Java Swing set. However it is possible to implement custom

components (in the JavaBeans technology).

E;gh:allanh Model-based User Interface Development Environment

Project = Edt Debugger ~ Models Tools Wizards Windows Help =~
LD & H “ o B F a9 O[]

[FITeallach Presentation Editor =
File Eciit

@Wldge! Palette

Concrete/Swing

JButton |JMenultem |JMenu |JToggleButton |JCheckBox |JRadioButton |JLabel |JList

JMenuBar I.l'-‘anel |JSepu’dur |JTextFidd |Jl'extn.rea IJTouIBa' IJTonl'I"m I.l)ialon

Figure 14. Teallach presentation model tool.

The whole process of creating the application is supported by specialized
graphical editors (see Figure 14). The user builds an interface by linking together
appropriate items from presentation and task models. To our knowledge, Teallach does
not introduce any kind of built-in information retrieval capabilities. All methods should
be designed by the user. From one point of view it is an advantage because the user has
full freedom in employing various retrieval metaphors. On the other hand, it could be a
serious disadvantage, because there is no common and coherent basis of information
retrieval methods.

—-19—

It is common disadvantage for all the frameworks that developer has to start from
a scratch (in terms of absence of some kind of existing application). These systems are
really useful only if someone plans to create a completely new tool.

Visage [Rot97], [Der97] (Figure 15) is an example of another approach. The user
interface itself contains some navigation methods for retrieval, which include:

Navigating from an object to related objects,

Aggregating a database object into a new one having selected properties from
its elements.

Moreover, each data visualization component, called frame, could be modified by
attaching a special script. Similarly to Mavigator, scripts are written by programmers.
However, in contrast to our approach, Visage utilizes a scripting language similar to
Basic. Unfortunately the interpretation overhead limits the dataset size that can be
manipulated with no speed constraint. That is one of the reasons for using in Mavigator
afully-fledged programming language.

Query Environment
L DataType | DynamicAggregate
Foose
(howee [foos fioo [HOUSE s 1
LATITUDE - 1 [- |,
LONGITUDE =| ADDRESS
LOT SIZE =| LATITUDE
NUM RODMS 3
ADDRESS E
NEIGHBORHOOD 3 11450 148
=| LOMGITUDE

S0LD_IN

-2.8e8 -2.8e8
=] LOT_SIZE
DataType DataType =| NEIGHBORHOOD
Be Femov
AGENCY ESTIMATE SELLER_AGENT SELLER_AGENT_IN_SALE 550 stey [
ASKING PRICE BUYER. AGENT BUYER AGENT IN BALE BIRTHDATE SQUIRREL_HILL
DATE ON MARKET = = - SALARY ='E NUM_ROOMS
DATE S50LD NAME
P 14
BUYER BUYER_IN_SALE

Figure 15. Database schema graph in the Visage

Visage uses the SageBrush tool [Rot94] to create map visualization. Figure 16
presents a screen from the editor during designing (left side) of the visualization (right
side). Map shows location of the houses based on its addresses. Additionally different
colors represent different neighbourhoods. Another interesting Visage's solution is

—-20-—

sliders' utilization (originally proposed by Ahlberg et al. in [Ahl92]), which is used to
filter information. User can interactively drag dliders, to change minimum and

maximum values of particular attribute. Only objects with attributes values being

inside the scope are selected.
Sagebrush
Ol ===
2 Axes Mark || Text || H-Bar|| v-Bar || Lin Gauge .
Map
Network
[LATITUDE <= (001 [NEIGHBORHOOD
| L
[LonGITUDE n
+ I -
[NEIGHBORHOO |LOT SIZE | <None = = =
I = SQUIRREL HILL SHADYSIDE POINT BREEZE
‘ CARRIAGE 7516 ‘PDINT_BREEZE 1805 = ietic il
+ 0 |

Figure 16. Constructing map visualization in the Visage.

2.3 Customizations of the Database Views

Database views are the subject of research and development for a very long time
in the database community. However up to now, there are few proposals for object-
oriented or XML-oriented environments, which are implemented, powerful and easy to
use (for instance see [K0z03]). This is mainly caused by hard problems, including
updates of virtual objects delivered by views. Our research concerns information
retrieval capabilities, thus views' updating is beyond the scope of our investigations.

Non-updatable database views have a lot of applications including:
hiding some parts of a schema, e.g., for security reasons,

creating additional associations, which connect classes that are not physically

connected,

—-21 -

defining virtual associations among objects, by using a kind of a WHERE

statement,

hiding some intermediate classes — it is especially useful when one works with
arelational data source where some many-to-many relationship is represented
by two one-to-many tables and an intermediate table,

changing some names, e.g. for some business reasons, for customization, or

just for translating them into another language.

To our best knowledge Mavigator is a first system, which fully implements
database views on the visual browser side, rather than in a database management system
server. Usually graphical tools for information retrieval have a rich set of retrieval
capabilities and just work with a particular data source; no user-side tuning of a tool
through views is provided. On the other hand, systems dealing with views are just
database servers and have no or very modest facilities for visual information retrieval.

One of the most advanced examples of views in visual tool is AMOS [Jos02] and
its graphical browser GOOV1 [Cas01] (Figure 10) developed by Cassel and Risch. This
system uses mediators, which are counterparts to views. In contrast to Mavigator, the
GOQVI browser is an independent tool, which only collaborates with AMOS. In other
words, the browser has no views capabilities, but only works with the system, which

supports them.

The AMOS system is a federation of independent mediator servers over a
computer network. Each mediator is a separate database server with the ability to
process object-oriented queries. Queries are formulated in the AmosQL language,
which is similar to the object oriented part of SQL-99. A data source with querying
capabilities uses AmosQL statements translated to its own query language. If a data
source is not able to process queries, data are transparently imported into AMOS.

A frequent problem with different data sources is a common data model. The
AMOS developers have decided to build an object-oriented extension of DAPLEX
[Shi81]. AMOS covers various aspects of views: joining heterogeneous data source,
retrieving/updating data and ability to work with functions/methods. The first property

has been achieved by implementing special wrappers in programming languages such as

—22_

C, Java, and Lisp. The GOOVI browser is quite simple i.e. selecting objects is done via

textual query editor.

The visual tool Watson and its information retrieval capabilities have been
described in Chapter 2.1. Here we would like to mention that Watson's designers use
the term views, however, not in the same context as we are. Comparing to our terms,
their view is some state of the extensional navigation, i.e. some number of objects,
which are connected by various links. Hence a Watson's view has nothing in common

with a database schema.

—23—

3 Mavigator Metaphors

This chapter contains a detailed description of the ideas behind Mavigator's
retrieval metaphors (see also [Trz04c]). At the beginning there is a general introduction.
Then there are separate sub-chapters, with appropriate references, dedicated to each of
them.

Mavigator is made up of five metaphors:
Intensional navigation,
Extensional navigation,
Persistent baskets,
Active extensions,
Virtual schemas.

The subdivision of graphical querying to “intensional” and “extensional” can be
found in [Bat91] and [Der97]. We have adopted these terms for the paradigm based on
navigation in a graph. The user can combine these metaphors in an arbitrary way to
accomplish a specific task. Additionally, the user can use manual browsing via selected
objects and manual selecting of objects through typed conditions similarly to an SQL

where clause.

Intensional (Chapter 3.1) and extensional navigation (Chapter 3.2) are based on
navigation in a graph according to semantic associations among objects. Because a
schema graph (usually dozens of nodes) is much smaller than a corresponding object
graph (possibly millions of nodes), we anticipate that intensional navigation will be
used as a basic retrieval method, while extensional navigation will be auxiliary and used
primarily to refine the results. During both kind of navigation, objects being their results
could be stored in a basket (Chapter 3.3). Because baskets are persistent, the objects
could be used even in a next user’s sessions. When the results of navigation (marked
objects) are found (query results), user could perform some kind of actions defined
using Active Extensions (Chapter 3.4), including projecting of the found objects
(Chapter 3.4.2) or exporting them to another system (Chapter 3.4.3). All actions related

— 24—

to the database schema graph, including both kind of navigation, take place in virtual
schemas (Chapter 3.5), rather than in a physical database graph.

3.1 Intensional Navigation

Intensional navigation utilizes a database schema graph. Figure 17 shows a part of
such a graph for the Northwind database, which is shipped with MS SQL Server. The
graph consists of the following primitives:

Vertices, which represent classes or collections of objects from the class.
With each of them we associate two numbers. the number of objects that
are marked by the user (see further) and the number of all objects in the

class,

Edges, which represent semantic associations among objects (in UML

terms),

Labels with names of association roles. They define direction of the
navigation for the particular association. This approach is similar to the
one proposed in the ODMG standard, C++ binding.

The user can navigate through vertices via edges. Navigating means moving (in
mind) from one vertex to another one. Navigation’s process is connected with marking
objects, which is our counterpart of getting query results. At the beginning of our
research, we have been considering two approaches:

The user can start navigating from any vertex and continue only through

connected vertices,

The user can navigate through connected vertices or simply can “jump” to
completely unrelated vertices. After a “jump” there is a need to create a new
starting set of marked objects (see further).

A potential disadvantage of the second approach is the chance that such a freedom
in “jumping” will obscure the entire idea. However we believe that prohibiting such
actions will definitely decrease the usefulness of the approach without clear
improvements in easy-to-use. So we finally decide to employ the second approach,

which gives more freedom to the user.

—25_

[2155 | =
e=m— Y o

Order_Details Products Categories

BelongsTo SuppliedBy

49 53
Q —>

| EmployeeTerritories Territories
=10
o 0 EmployeelD BelongsTo

Belongs

8 [830 | N H
m—m—é —El a :’
Shippers Orders Employees Region
OrderedBy
£

Customers

Figure 17. Intensional navigation graph

As we have mentioned previously, objects, which are relevant for the user
(candidates to be within the search result) can be marked, i.e. added to the group of
marked objects. There are a number of actions, which cause objects to be marked. Each
of them is described below.

3.1.1 Filtering

Filtering is done through a predicate based on objects attributes. The action
causes marking those objects for which the corresponding predicate is true. There are
two options: objects to mark are taken from a set of already marked objects or from the
entire extension of the class. Filtering objects through a predicate is analogous to an
SQL where clause. However, keeping in mind that our research concerns naive users,
we have to mention that some studies (for instance [Jon99]) show that naive users have
problems with distinguishing AND and OR operators. This difficulty could have serious

—26—

impact on formulating right conditions. To deal with that problem, we have decided to
employ graphical filter-flow approach proposed by Schneidermann [Shn9l]. The
metaphor uses the analogy to flowing liquid. Both operators perform the role of pipes,
which the liquid flows through. Figure 18 explains the idea. Single predicates (A, ..., E)
are connected by lines-pipes, which define particular (AND, OR) dependencies. Bottom
part of the figure contains textual definition of the predicate.

A B
- C D B
E
(A and B) or ((C and D) or E)

Figure 18. Illustration of thefilter-flow approach to defining predicates.

Every single predicate contains statements like Nane = “Sm t h” or Sal ary
< 5000 entered using user-friendly GUI (chapter 4.3.1).

3.1.2 Full Text Search

This activity marks all objects that contain all of the given keywords or phrases
within any of their attributes. Similarly to filtering through a predicate, objects to be
marked are taken from a set of already marked objects or from the entire extension of a
class. There are also some possibilities to modify the algorithm. One of them isto use a
Google-like algorithm, which gets objects not only with all entered keywords or
phrases, but also takes into consideration the importance (or relevance) of particular
words. Because research on such algorithms is beyond of the scope of this thesis, we

plan to use some existing solution.

27—

3.1.3 Manual Selection

Every object in our metaphor has some special attribute (called label), identifying
it by comprehensive phrases. Thanks to that solution it is possible to show a list
containing particular objects. Than user is able to mark or unmark particular objects
manually. It is especially useful when the number of objects is not too large (i.e. when
user already performed some filtering or navigating) and there are no common
properties among them.

4
A E1l
F1 <-

E2 4
A — E3
F2
A E4
F3 4
E5
4
E4 A
E6
E7 ~_ommw

E8

Figure 19. Marking objects via intensional navigation

3.1.4 Navigation

Navigation requires some starting point defined as a set of marking objects. The
process means navigating from marked objects of one class, through a selected
association role, to objects of another class. An object from a target class becomes
marked if there is an association link to the object from a marked object in the source
class. Figure 19 explains the idea. Let’s assume that the Firm set of marked objects (i.e.
previously filtered) has four marked objects: F1,...,F4. Than, navigating from Firm via
employs cause marking eight objects: E1,...,E8. It isworth noting that:

Object F4 from the firm class is not connected with any objects from
Employee class (firm does not employee people), which means that the result

of navigation from this object is empty,

—28—

Object E5 from Employee class, is referenced two times: one from the object
F2 and one from the object F3 (one person works in two firms). However the
object will occur in the marked objects’ set only once.

The concept of navigation is similar to path expressions in textual query

languages.
A new set of marked objects, which is the result of navigation could:

Replace the existing one (the one, which has existed in the target class before
navigation has been performed; for the above examples there will be a set of
marked objects associated with the Employee class),

Be subtracted from the existing one,
Be added (union) to the existing one,
Be intersected with the existing one.

According to the above examples, two later options allow one to perform a query
like: get all employees working for the “IBM” company or/and earning more than 5000
(if the existing set of marked objects contains employees earning more than 5000).

We believe that the options are easy to understand (even for naive users) and

greatly enhance retrieval capabilities.

3.1.5 Basket Activities.

As we have mentioned previously, baskets are used to store search results and are
seamlessly integrated with the marked objects concept. Its utilization in marking objects
is supported by using the drag and drop metaphor. During intensional navigation,
dragging and dropping the content of a basket on a class icon causes some operation on
the marked objects of the class. New set of marked objects taken from the basket can:

Replace the existing set of marked objects,
Be summed with it,
Be intersected with i,

Be subtracted from it.

—29_

There is also a possibility to perform a reverse action. Dragging and dropping
class's icon on the basket means creating a new sub-basket containing all the marked

objects of the class. More information will be given in the chapter 3.3.

3.1.6 Marking Objects Using Active Extensions.

In principle, this capability is introduced to process marked objects rather than to
mark objects. However, because all the information on marked objects is accessible
from a C# program the capability can also be used to mark objects.

3.1.7 Closing Remarks

Intensional navigation and its features allow the user to receive (in many steps but
in a simple way) the same effects as through complex, nested queries. Integrating these
methods with extensional navigation, browsing, manual selection and other options
supports the user even with the power not available in typical query languages.

An open issue concerns functionalities that are available in typical query
languages, such as queries involving joins and aggregate functions. We think that
adding them to the main metaphors could result in excessive complication of the
approach. Instead of including them into intensional navigation, we propose to
implement them as Active Extensions. Our naive user could ask a programmer to
implement necessary additions in a way that he/she wants. Furthermore some of the
aggregation functions, like sum or maximum, aready have been implemented in our
prototype. That approach has a big advantage — does not complicate metaphors and

simultaneously allows using new solutions, if necessary.

3.2 Extensional Navigation

Extensional navigation takes place inside extensions of classes. Figure 20 shows a

corresponding graph, which consists of:

vertices, which represent particular objects, using same icon for group of

objects belonging to the same class,

edges indicating links,

—-30-—

static labels with names of the associations' roles (not shown on Figure 20).

They are hidden for the most time, because problems with legibility of the

graph.
lllg'm :avisg::o:‘ V048';22'020.22370 - [Extensional navigation] H_[El&;ﬁ
alalal_|

O Region
V]ES) shi
216D sooee
UU] Suppliers
1@ rerioies
) @
: /Fmdhv
a
everling ~
1
Callahan
Georéetnw “) ')
Bt Westboro <9
Racine
" 4
Philadelphia
L4
Hide isolated abjec Beachwood v
<

Navigating... done. Number of reached objects: 109
Figure 20. Extensional navigation graph

Extensional navigation, on contrary to the intensional one, is much more dynamic
(graph “grows’ during navigation). The user starts with one object and its
neighbourhood. The last term defines objects and links connected with an “active”
object. At the beginning, the “active” object is simply a starting object. During
navigation, the active is changing to the currently selected one. When the user double
clicks on a particular object, the object becomes active and an appropriate
neighbourhood (objects and links) is downloaded from the database, which means

“growing” of the graph. Thanks to the approach, the user can literally see the particular
state of the data source.

There is a several ways of acquiring starting objects:

31—

Using baskets:

0 By dragging and dropping a basket or a particular object onto the

extensional navigation surface,
0 By simply selecting an appropriate command from the object’s menu,

Choosing the option from the particular object’s menu, when the list of objects

is shown (see sub-chapter 3.1.3),

During existing extensional navigation session, there is a way to sart a new

one with a particular object.

Extensional navigation is very useful when there are no common rules (or they
are hard to define) among required objects. In such a situation the user can start
navigation from any related object, and then follow the links. During the navigation
session, there is a possibility to use a basket for storing temporary objects or to use them

as starting points for the further navigation.

Figure 21. Screenshot generated by the Walrus - Graph Visualization Toal.

—32-

A serious issue related to the extensional navigation, is the legibility of a graph.
There are a lot of approaches to visualize graphs, including advanced 3D techniques (an
interesting example is[Wal], Figure 21). However, we had to find a solution, which will
work in the iterative way. The reason of our decision is an intention to animate the
entire process of layouting the graph. After some trials, we have decided to use a well-
known algorithm based on the idea of balanced springs. The idea is that vertices, during
performing layout, try to find the balanced localization; when they are too close to each
other, they push away, when they are too far, they attract each other. Depending on
some constants, there are possibilities to change the speed and distances. Additionally,

there are some parts, which are responsible for avoiding dousing.

Another problem, which affects legibility of the graph, is the meaningful number
of objectsto visualize. There are two basic difficulties:

Performance problems connected with processing and visualizing such a
number of objects, which are especially important because the whole process

isanimated in real-time.

Even if we use a good layouting algorithm, there might be problems with the
placement of objects, caused by the fact that each object has its own graphical
icon (which occupies some part of the surface) to show. That means that
sometimes simply there will be no room on the surface to place an icon’s

object.

The solution to the first issue is related to implementation of the prototype
therefore will be carefully described in Chapter 5.

The answer to the second problem is more complicated, because the solution is
multiplane and concerns mainly a user interface, thus will be described in Chapter 4.
However, the basic assumptions are the following:

A user is able to filter objects to show, which means hiding/showing objects

from particular classes,

There will be an automatic way to hide isolated objects, i.e. those ones, which

are not connected to other objects,

—-33—

A user can manually reconstruct the graph, by dragging particular nodes,
which causes smooth re-layouting,

It will be possible to pin some objects to the surface excluding them from the

automatic repositioning.

It is worth noting that the entire extensional navigation, similarly like the
intensional one, takes place inside a virtual schema, rather than inside a physical one.
This means that the user sees not real links from the database, but virtual ones defined
by the creator of a particular virtual schema. This feature could be useful in the context
of legibility of a graph too. It is possible to define such a virtual schema, which will not
contain unnecessary classes or links; therefore they will not be obscuring the

visualization.

3.3 Baskets

A search for information requires a place to store the search results. It is
especially true if searching is operated in an ad hoc manner, when the user switches or
even jumps from an object to an object. This kind of searching principally corresponds
to extensional navigation, but even during intensional navigation, there is a way to
“jump” from one class to another. To satisfy the user’s needs for storing objects (or
groups of objects) we have introduced the basket metaphor.

Baskets are persistent storages of search results. They store two kinds of entities:

“Objects’; as a matter of fact baskets store unique object identifiers (OIDs)
rather then physical objects. This approach has significant consequence: if an
object is unreachable in the database (i.e. because of security reasons), it also
unreachable from the basket. However such an object will not be removed
automatically from the basket. It is possible to remove it manually. Instead,
special information to the user will be shown. This is mainly caused by the
fact that unreachable objects could be reachable again after some time.

Sub-baskets. Every sub-basket can contain other sub-baskets or objects. The

number of nesting levelsis unlimited.

Figure 22 shows a sample visualization of the basket containing three sub-baskets
and five objects. As it can be seen, the hierarchy of baskets is especially useful for
information categorization and keeping order. Each basket has its name that is typed in
by the user during its creation. The user is also not aware OIDs, because a special string
represents the objects visually. The strings are taken automatically by a dedicated
method having OID as a parameter and returning the string from the database.
Additionally every object could have attached a special note, which can store any kind
of information (i.e. the reason for adding it to the basket).

The main basket (holding all the OIDs and sub-baskets) is assigned to a particular
user. At the end of a user session all baskets are stored in the database. There is no

[imitation concerning the number of baskets or the number of objects stored in a basket.

55 Mariusz's b... |= |0/

=1\ kain bazket

- N by Products

@ Anizeed Syrup
- N by employess

ER Fuller

Eg Buchanan
. by orders

Create

Figure 22. Visualization of the basket containing three sub-baskets and five objects

The metaphor is defined in an intuitive way and allows coherent cooperation
between different methods of information retrieval. Below we give detailed description
of all basket activities.

35—

3.3.1 Creating a New Basket

The user is able to create a new basket at any time during the session. The system
records a couple of properties for each basket including time of the creation, owner of
the basket and description.

3.3.2 Changing Basket Properties

Each basket has own set of properties. Some of them like name and description
can be changed. However, there are some properties i.e. time of basket's creation,
which cannot be changed by the user.

3.3.3 Removing Selected Items

The basket’s metaphor alows one to remove both kinds of basket's items.
Depending on the kind of item, the semantic of the process is a bit different. In

particular:

Removing an object means eliminating it from the basket, without deleting
from the data source,

Removing a sub-basket means removing all items in the sub-basket: its
sub-baskets and its objects.

3.3.4 Performing Operations on Two Baskets

Before an operation, each of two baskets being operation’s argument is virtually
processed. All objects from particular basket argument and its sub-baskets are put on
the list, which means that the structure of sub-baskets is ignored during operations.
There is also a possibility to alow or disallow for repetitions for OIDs. Default setting
prohibits repetitions of the OIDs. Below we have enumerated operations, which could
be performed on two baskets:

Sum of baskets,
I ntersection of baskets,
Set-theoretic difference of baskets.

The metaphor alows storing the user action result in a newly created basket or
replacing the content of one of the baskets participating in the operation.

—36—

3.3.5 Using in Extensional Navigation

Basket metaphor is also heavily utilized during the extensional navigation. There

are two kinds of actions:

Drag an object from the basket and drop it onto an extensional navigation
surface. As the result, the neighbourhood (other objects and links) of a

dropped object will be downloaded from the repository.

Drag particular object from the extensional navigation surface and drop it onto
particular sub-basket. The action cause storing the object in the chosen sub-
basket. There is also a possibility to annotate dropped object by attaching any
kind of text. Annotations are not shared among different users.

3.3.6 Using in Intensional Navigation

Similarly to extensional navigation, the intensional navigation also utilizes the
basket metaphor. Extensively, there are two possibilities:

Dragging a basket and dropping it onto class's visualization in the
intensional navigation surface. The operation acts as follows:

0 Objects from all sub-baskets, belonging to the particular class, are
put on the list (which means that only objects belonging to the
particular class are processed, the rest isignored). During adding to
the list, multiple instances of the same objects are prohibited.

0 There are four possible operations, between objects from the list
and existing set of marked objects: replacing, adding, intersecting,
subtracting.

Dragging a class's icon and dropping it on the basket area. A new basket
containing all marked objects from the dragged class will be created.

Baskets allow storing selected OIDs in a very intuitive and structured way.
Navigation can be stopped at any time and temporary results (currently selected/marked
objects) can be named and stored for future use.

—37—

3.4 Active Extensions

In our opinion, naive users do not want exaggerated number of functions. Such a
typical user wants an application with functions, which will be used in everyday work,
without functionalities, which will be used very rarely. The problem iswith defining the
scope of the functionality, because for the same kind of applications (information
retrieval tools) different users will need different functions. We believe that the solution

could be based on two assumptions:
Supply the users with some basic retrieval metaphors and functions,

Provide a way to extend existing functionalities, based on particular user’s
needs.

All previously described Mavigator's metaphors (see chapters 3.1 - 3.3) are
solutions to the first assumption and Active Extensions are our answer to user’s needs
concerning modification of the application functionality.

At the beginning, when we started to think about methods of extending existing
functionalities, two different approaches come to our minds:

Utilizing some kind of a graphical metaphor like in [Mit96a], [Mit96b]
and [Coo00Q], [Bar03]. They are tradeoffs between the power and easy-to-
use. They were designed to be easy enough for the target user. However,
we think that our target user could not be able to use such complex
metaphors. Moreover, the metaphors seriously restrict the field of user

retrieval activities.

Using a programming language. Depending on a language kind,
limitations can be reduced partly or at all. We have assumed, however,
that a Mavigator’s user is not a programmer and will not be able to use

such extensions. Hence some professional programmer must come into

play.
As we mentioned earlier, Mavigator aready employees some information
retrieval metaphors (see chapter 3.1 - 3.3), which are powerful and yet easy-to-use, 0

we have decided to provide a way to add new functionalities operating only on a query
result. The approach does not complicate the entire application’s architecture (which is

—-38—

important for an Active Extensions programmer — see chapter 5), but guarantees
sufficient flexibility. Our solution requires collaboration of an end user with a
programmer who will write the code accomplishing the required functionalities. Despite
the assumption that Active Extensions have been designed for modifying a query result,
it is possible to program any kind of tools. This is caused by the fact that each active
extension’s program has access to entire data source and a list of processed objects.

When we have decided that our approach should employ a programming
language, one more thing should be defined. Thinking about a programming language
there are two general possibilities:

use a special, probably scripted one, created especially for the purposes of the
system,

use already existing one.
The first approach has advantages like:

possibility of creating such constructs, which help in creating particular

solutions,

opportunity of bringing a language to much a higher abstraction’s level than

existing one.

The first advantage, which is very important (because facilitate the work), could
be realized in the second approach too (we will show it in chapter 5.6). The second
benefit would be very important if the target user of the application would create
extensions. Though, we believe, our target user will not be interested in (or simply will
not be able to do) creating such extensions. And for the regular programmer, who will
make extensions, the abstraction level of the regular programming languages is high
enough. Another important factor could be performance — typical, script languages are
quite slow. Important premise is also significant extra effort needed to design and
implement a new programming (even scripted) language. Thus, based on the above

arguments, we have decided to use, aregular existing programming language.

The current prototype, which has been developed for purposes of this thesis, uses
Microsoft C# as a language for active extensions. A programmer is aware of the
Mavigator meta-data environment (for implementation details see chapter 5), which

—39—

allows him/her to write a source code of the required functionality in C#. Writing of the
Active Extension source code is done in the Mavigator's special editor. Once
programmer compiles the code, a particular Active Extension is ready to use (without
stopping Mavigator). Then the end user is supported with one click button causing
execution of the written code. The code processes the query result (see chapter 3.1, 3.2)
or objects recorded in a user basket (see chapter 3.3). The functionality of such

programs is unlimited and its potential utilizations include:
statistical analyses,
data-mining,
cooperation (exporting data) with other systems,
implementing completely another approaches to information retrieval,

extending existing mechanism to information retrieval by using concepts like

data aggregation,
generating reports.
Next three sub-chapters present its particular applications, which has been

implemented and evaluated in our prototype.

3.4.1 Simple Active Extensions

One of the simplest types of Active Extensions could be those ones, which count
something. In the current Mavigator’s prototype we have implemented most popular

aggregate functions:
minimal attribute’s value,
maximal attribute’s value,
average attribute' s value.

All of them are very easy in use. All that the users have to do, after selecting a
particular type of calculation, isto select (in the query result) a particular attribute. After

that the result is shown to the user.

— 40—

3.4.2 Active Projections

More sophisticated example of the Active Extensions are Active projections
(Figure 23), which allow visualizing a set of objects where the position (in terms of x, y
coordinates) of each of them is based on value of particular objects attributes. Current
implementation uses two axes (2D), which allow visualizing dependencies of two
attributes. Figure 23 shows objects of class product and theirs dependencies between
sample attributes:

‘s .
unit’s price,
units in stock.
s Active Projection =oEd
=
% Grandma's Baysenberry Spread
Q ; 1o Dbog
Queso Manchego La Pastora
UnitPrice: 28
UnitsInStock: 86
Chef Anton's Cajun Seascning
gﬁ Carmarvor Tigers
Genen Sho ' =
& = OB ®
" lkurz — > §

e aviova ~ 15 1)
_“*ﬁ Favl Wishi Kobe Nikk
Konbu :Cab |

v o rales
.c,’j" Chang - T
e Uncle Beb's Organic Dried Pears
Aniseed|Syrup
BN
Chef{ Anton's Gumbg Mix A“CEF;D“
initPrice

Figure 23. Active projections.

—41—

Active Projections make it possible to identify some groups of objects. For
instance it is easy to see (Figure 23) that we have a little amount of cheap products and
(generally) more cheap products than expensive ones.

We take into consideration increasing number of attributes without adding another
dimension. In particular [Sto02], [Ber83], [Now98] propose to use the features of visual

icons such as:
shape,
size,
orientation,
color,
texture

and correlate them with values of additional attributes. For instance, the size of a

product icon could be proportional to its price.

Besides the visual analysis of objects dependencies it is also possible to utilize
projections in more active fashion. There are two options:

Object taken from a basket can be dropped on projection’s surface, which
cause right (based on attributes values) placement.

It is also possible to perform reverse action: drag an object from the surface
onto the basket (which cause recording object in a basket).

We also consider a third type of active behaviour. It would be some kind of
extensional navigation (see chapter 3.2) on projection’s surface: clicking on object’s
visualization causes visualizing its neighbourhood. However we are not sure if such an
approach would not lead to misunderstanding. The reason is that some objects (the
projected ones), will have right placement (based on attributes values), but not all
objects from the neighbourhood could be appropriately placed. This is caused by the
fact that some of them (or even most of them) will come from a class, which attributes
are not projected on the surface. A partial solution could be some kind of visual
differentiation, for instance by painting a special icon or border.

42—

3.4.3 Objects Exporters

Introducing new application requires creating a way to exchange data with other,
existing systems. Of course one approach to the problem could be based on
implementing filters to some popular tools. However there is always a possibility that a
user would like to cooperate with an application, which is not available through the
filters. Thus we have another utilization of Active Extensions. Objects exporters allow
cooperation with other software systems. Having a query result (or basket’s content), it
is possible to send it to other programs, such as Excel, Crystal Reports, etc. That
approach makes it possible a subsequent processing of Mavigator’s results of querying
or browsing. The current prototype exports to XML files, which could be post-
processed by a number of modern applications.

3.5 Virtual Schemas

All Mavigator’s metaphors heavily depend on a database schema graph. Hence, it
would be useful, if there will be away to customize a particular schema for a particular
user. Normally, such requirements are satisfied by database views. However, there are
barriers in using them. Some of the database management systems do not provide views
functionality or block their usage for particular user. In our approach, we have been
created some kind of database views on the application side. The corresponding module
iscalled Virtual Schemas.

Each Mavigator’'s data source has at least one virtual schema, which is a direct
reflection of the database data. As will be shown in Chapter 5.2.5, a single virtual
schema has very low resource demand, which means that Mavigator is capable to work
with a big number of virtual schemas. Every operation on virtual schemas is executed
exactly the same way, as it would be on real data. Thus, the virtuality of objects,
according to the database views principles is perfectly transparent for the user.

Generally, Virtual Schemas allow creating customized database views, which
consist of the following elements:

Virtual associations, which reflect any dependency among classes. The

definition of an association is made up of a few items:

0 two role names (direct and reverse),

— 43—

0 two class names,

o0 two query language statements, which define atarget set of objects.
In the simplest (default) case queries return all objects from the
reverse classes. However, such queries can contain any valid query

language constructs.
Virtual attributes, which describe objects’ properties. Each attribute has:

0 A name, which is shown to the user. Such a name is completely
independent from the physical name of the class s attribute.

0 A query language statement, which defines this attribute. In the
simplest case it is just the name of a physical attribute. More
advanced utilization could use procedures, constants, etc. Thanks
to that solution, it is even possible to creste completely new
attributes, which do not have counterparts in the physical database

schema.

Classes, which are counterparts of the physical collections from the
database. We have decided to use only classes, which already exist in the
database. Such an approach does not require materializing objects by the
view and ensures that stored (in a basket) object will be correctly recreated
even in a different virtual schema (if its class will be accessible). Each

classis defined by:

o0 Name shown to the user (independent from the class physical

name),

0 Name used to access the class in the database (one of the physical

names from the database).

Description of the virtual schema is stored in an XML file. Most of the above
items are defined using Stack-Based Query Language (SBQL). For more information

implementation details see chapter 5.2.5.

Figure 24 shows an example of the virtual schema. All of the examples are based
on the well-known Northwind relational database, which is shipped with MS SQL

Server. Comparing to the originally relational schema, only names of the association
roles has been changed. Thanks to that diagram is much more readable.

Following sub-chapters show particular applications of Virtual schemas.

ey v

Categories

EelongsTo
| EmployeeTerritories Territories
)9
o) J EmployeelD BelongsTo
Suppliers
Contains Belongs Contains
I] Bl 1
¥ Er B~ Serves S S
Shippers Orders Employees R s Region
OrderedBy
!h

Figure 24. Example of a database virtual schema

3.5.1 Determining or Changing Names of Associations’ Roles

Sometimes there might be a need to change names of association roles. That
situation occurs in case of Northwind database. Because the original Northwind schema
is based on a relational data source, it utilizes relationships rather than associations.
Relationships are identified by primary/foreign keys, and have no names. Such
dependencies can be mapped as associations having proper names on their ends. For
instance, having Cust oner | D, we can define the association named OrderedBy

between Orders and Customers.

—45—

Another reason to changing names of the association could be caused by the need
of translating the system into another language. By using a dedicated virtual schema, it
could be achieved easily and efficiently.

3.5.2 Creating New Connections between Classes

Creating new connections between classes does not introduce any new
information to the system. However it could be very useful for simplifying user’s work.
For instance, referring to the Northwind database, we would like to know which
companies supply products for a particular order. Instead of navigating through two
classes (OrderDetails, Products) we create a new association between Orders and
Suppliers. It is quite easy to achieve using path expression of the query language, which
defines an essential part of the virtual association. Example 10 shows appropriate code
(for navigation in two directions) in SBQL.

Orders. Concerns. Order _Detail s. Product | D. Products. Suppl i erl D. Suppli ers;
Suppl i ers. Supplies. Products. Cccurs. Order_Details.Orderl D Oders;

Example 10. Partial definition of the association between two classes.

3.5.3 More Accurate Specifying Objects from the Target Class

Default behaviour of the typical association is returning all objects accessible
from another object. Sometimes it might be useful to refine in details which objects are
interesting for the user. Let's assume that we would like to analyze only recent
information stored in the database. Then we create an appropriate virtual schema.
Among other information we want to know only recent orders served by particular
employee. In that case, we extend the definition of the Serves role (between classes
Employees and Orders) with particular WHERE clause, which will check date of the
order and returns only objects (actually ids of the objects) with the current date.
Example 11 shows an appropriate code — part (a) contains general definition and part
(b) presents association, which returns only up-to-date objects of the orders class.

— 46—

(a) Enmpl oyees. ServedBy. Or ders;

(b) Enpl oyees. ServedBy. Orders WHERE OrderDate = NOW);

Example 11. Definitions of the two associations: (a) returns all objects, (b) returns only up-to-
date objects.

3.5.4 Hiding some Classes

It could be useful because of some security reason or just to simplify user's
schema. All we have to do is removing particular classes definitions from the virtual
schema. Of course, names of the removed classes cannot be used in other definition (i.e.

in virtual associations).

3.5.5 Hiding Intermediate Classes

& o= P Ly
EmployeeTerritories Territories Territories
I
EmployeelD EelongsTo BelongsTo
’ Direc:s
~ ~
e O] L e] p
Employees Region Employees egion
(a) (b)

Figure 25. Illustration of hiding intermediary classes.

Inarelational schema we are not able to present dependencies (relations) between
classes (tables) with many-to-many relationships. In such a case we have to introduce
an intermediate class (table). In an object-oriented model those classes could be
connected directly, without introducing any extra classes. Hence, working with a
relational data source or even dataimported from the relational database, could be easier
if those classes would be hidden. This situation happens in the case of Northwind
database. Figure 25 shows two parts of graph from the Figure 24. Class
EmployeeTerritories is a typical intermediate class (with no attributes), which is

necessary only to illustrate many-to-many relationship between Employees and

— 47—

Terrotories. Part (a) of the Figure 25 shows the originally graph; part (b) shows the
appropriate part without the mentioned class, which improves legibility. This kind of

modification requires only a few changesto the virtual schema definition:

hiding class EmployeeTerritories (removing from the definition of the virtual

schema),
(a) Enpl oyees. Bel ongs. Enpl oyeeTerritories;

Enpl oyeeTerritories. Enpl oyeel D. Enpl oyees;
(b) Enpl oyeeTerritories. Territoryl D. Territories;

Territories. Bel ongs. Enpl oyeeTerritories;

Example 12. Partial definitions of two associations, utilizing intermediate class.

modifying two path expressions describing an association. Example 12 (a, b)
shows parts of two definitions for two associations connecting “business’
classes and intermediary class. Example 13 shows partial definition for new
association (the one, which connects “business’ classes without intermediate

one).

Enpl oyees. Bel ongs. Enpl oyeeTerritories. Territoryl D Territories;

Territories. Bel ongs. Enpl oyeeTerritories. Enpl oyeel D. Enpl oyees;

Example 13. Partial definition of the association, which “hides” intermediate class.

— 48—

4 User Interface for Mavigator

This chapter is devoted to a user interface of the Mavigator prototype. The first
sub-chapter gives background information defining a target user and requirements. The
second one places Mavigator as a Windows application and tells how to start the work.
Next sub-chapters discuss particular solutions dedicated to the metaphors. Chapter 4.7
describes supporting techniques common for all items of the GUI. The last chapter
shows real-life case studies based on the Northwind database.

4.1 Background

The Mavigator prototype implements all Mavigator's metaphors described in
Chapter 3. Hence, it enables the user to perform a search for information in a connected
data source. Then, information, which has been found, could be processed by any of the
Active Extensions, including Active Projections or exporting to another computer
system.

“Zoomout = ¥ D&D'sUpport
 History | :
{ of marked objects| . | T @

Filtering on class: EMPLOYEE (LASTHAME LIKE
Navigating from EMPLOYEE to EMPLOYEETERH
Navigating from EMPLOYEETERRITORY to TERH :
Filtering on class: CATEGORY (CATEGORYNAM|
Navigating from CATEGORY to PRODUCT via Cf :
Navigating from PRODUCT to SUPPLIER via suf -

EMPLOYEETERRITORY TERRITORY

ORDERDETAILS

@

SUPFLIER

SHIPFER

Figure 26. Structural Knowledge Graph Navigator (SKGN) during intensional navigation

— 49—

Except Mavigator, there is another implemented prototype, which follows the
Mavigator metaphor. It is Mavigator’s predecessor called Structural Knowledge Graph
Navigator (SKGN), developed during the European project ICONS. Figure 26 shows
SKGN during working with Structural Fund Project Knowledge Portal database.
However SKGN, as afirst prototype, implements only three of five metaphors:

intensional navigation,
extensional navigation,
baskets.

Because of the limitations, SKGN is not described in this dissertation. The
information could be found in [Trz04a], [Trz04b].

4.1.1 Target User

It is pretty obvious that a user interface must comply with the user kind. For
instance, advanced system administrators usually prefer textual interfaces (console-
based) rather then graphical ones. On the other hand, inexperienced users choose
interfaces based on graphical widgets. As we have mentioned in Chapter 1, our user has
been specified as a computer non-professional. To be more precise, we would like to
define him/her as a person, who meets the following assumptions:

trained in using some popular programs such as MS Word or Excel,

educated but not necessary in the computer science or even science. For
instance it could be a data (Satistical) analyst, broker, lawyer or dealer,

highly motivated. This property is always required in order to learn some new

metaphors and techniques.

We believe that a person meeting above requirements will be able to understand

and efficiently utilize our metaphors.

Besides a target user, who deals with information retrieval, there is also another
user (or users), who will be responsible for:

designing and implementing Active Extensions. This activity requires a
regular programmer — in case of the current prototype it should be a person,

who is able to write programs in Microsoft C#.

—50-—

creating Virtual Schemas. This activity requires a bit different knowledge that
the above one. A person responsible for the task of creating (or at least
changing) virtual schemas must be able to write queries in database query
language. Hence it could be a database administrator or (sometimes)

appropriately trained programmer.

4.1.2 Requirements

Taking into considerations all the assumptions defined in the previous sub-
chapter, the only sensible interface for our target user will be the graphical one. Such an
interface should be distinguished by following three general properties:

ability to search for information, which must be accomplished in an easy and

intuitive way,

capability to store information, which has been found. Those capabilities must
apply not only at the end of the entire process, but also to any intermediate
results.

possibility of subsequent processing of information, which has been found.

Those possibilities include, but are not limited to:
0 running additional functions,
o0 performing various analysis,
0 exporting datato other computer systems.
modifying of the system allowing:
0 adding new functionalities,

0 changing the data source schema graph, which is an essential part of all
the information retrieval metaphors.

Besides requirements, which arise from the application kind, there are some
general user interface properties, common for all proper interfaces. The prime rule is
that a user must have feeling that he/she is in charge and run the system and not just the
opposite. It is especially important if the system is dedicated to the inexperienced user.
Such a user often will not be able to distinguish if he/she “did something wrong” or the

—51—

system works improperly. To achieve that, the entire system design must be conformed
to some general principles including:

All actions taken by the user must have some response from the system, for
instance: if auser chose some option from the menu, which starts some action,
at the end there must be some information to the user. Depending on the action
kind (or action importance), the response could be shown in the modal dialog
box or just in the status bar.

Avoiding “freezing” the system as aresult long-term action. Starting an action,
which could run for a long time (i.e. processing query result or connecting to
the server), must be connected with showing special widget. The widget
should at least show “working” of the system or, where it is possible, progress
of the processing. It is also possible to warn a user that chosen action may take

along time.

During the whole time of working with the system, the application should
support user awareness. The term means that the user is aware of higher
actions. It could be achieved by using special techniques like status bar or tool
tips. Also there are some metaphors, which are especially useful to support
user’s awareness. For instance, baskets allow storing objects during the whole
process of information retrieval, which means that a user is able to go back to

his’her data even after changing the way of working with the application.

It is worth noting that fulfilment of the above principles means some extra effort
for the analysts, designers and programmers of the system. Some of them cause serious
changes to the system’ s architecture. For instance, in most cases implementing progress
bar requires introducing threads to the application, which is always complicated.
However, in real application, we should not sacrifice proper user interface to the easy of
development.

4.2 General information

Mavigator has been implemented as the MDI (Multi Document Interface)
application in Microsoft C#, which is a part of the Microsoft .NET platform. MDI

application has a big advantage over SDI (Single Document Interface): it is possible to

52—

have many windows to be opened. It is especially useful in case of Mavigator, which
coherently groups a couple of metaphors. We can deal with a couple of interacting
metaphors (i.e. intensional navigation and baskets) at the same time or we can switch

from one metaphor to another one (i.e. from intensional to extensional).

B=x)

File Edit Miew Help
Intentional Mavigation
Basket

Extensional navigation
#Active Extensions Editar

Figure 27. Mavigator prototype just after starting.

Figure 27 shows the application just after starting. Mavigator conforms to the

standard Window’s application rules:
at the top of the window there is a menu,
at the bottom there is a status bar, where are displayed messages,
at the right-top corner there are sandard buttons.

All main actions are started from the menu — menu for the View is shown on the
mentioned figure. After choosing particular option, appropriate window is shown to the
user. Each window has its own set of buttons placed on the toolbar at the top of the
window. Such assumptions facilitate learning process especially for the users, who

know applications like MS Word or MS Excel.

The first thing, which should be done after running the application for the first
time, is creating a new user. Depending on a data source kind, the process could have a

different course, for instance some data source does not require password. Figure 28

—53-—

shows window for an implemented wrapper to the ODRA prototype database. In this
case the user has to write a database address, a database name, a user name, a password
(two times) and a particular virtual schema. The check box also must be selected.
Opening ordinary connection (after creating a new user) is almost the same: the only
differences are that a password is written once and check box is not selected.

Open database

Adres&] localhost

0] atabase] Muorthwsind

UserJMariusz

xxxxxxxxxx

F'asswordJ

Confirrmed PasswordJ

Vitual Scheme| D efault scheme -]

I chkMewllzer

Open | Cahcel |

Figure 28. Open database window.

If everything will go fine, the application is connected to the data source and user
can start working with the data.

4.3 Intensional Navigation

Intensional navigation has been designed as a primary way for information
retrieval. Detailed description of the metaphor has been given in Chapter 3.1. In this
chapter we will recall only the general assumptions, which will facilitate understanding
this chapter. Figure 29 shows a Mavigator’'s window during an intensional navigation

session.
The basic assumptions are as follows:

Objects, which are important for the user (the result of the query) are marked,
which means added to the set of marked objects.

Each class has its own set of marked objects.

There is a couple of marking techniques:

o filtering (see Chapter 4.3.1),
0 navigating (see Chapter 4.3.2),
0 manual operations (see Chapter 4.3.4),

0 basket activities (see Chapter 4.5.3).

= IntentionalNavigationForm Q@
R q @
<< Back Foraic Zoomln Zoom Reset Zoom Out
History

Filtering on class Products

Manual editing of marked o YIS _ _
Mavigating: Products - Su = ProductD Ocours S Contains S ﬁ
Wavigating: Products --> Ca Crder-Detalls Products Categories

Mavigating: Products --= Orq
Filtering on class Order_De
Navigating: Orcer_Details

OrderlD

Temlw\D
EmployeeTermitories Terntories
el O EmployeelD RegionlD
Suppliers
Belongs Eelongs
! By
¥ By S STEDE a de
Shippers Orders Employees RepinssTi Region
Manages
Customer|D
OrderedBy

Clear =

Customers

Figure 29. Mavigator’s window during Intensional navigation session.

During the whole process, there is a possibility to use baskets as a store for
marked objects.

Each set of marked objects could be processed by any of the Active

Extensions.

All user’s actions are performed transparently on a chosen Virtual Schema
rather than on a physical data itself.

—55—

4.3.1 Filtering

In order to filter objects from a particular class, the user has to click with right
mouse button on the desired class and choose appropriate option from the menu. Figure
30 shows suitable menu for the Products class.

m-@ _p2

slono=To 220
Marked objects Al Clear

ey g

Categories

F'ro._ :

Mark. all
SuppliedBy Filter

Shiowe

Active Extensions »

Figure 30. Choosing filtering marked objects from the context menu.

Filtering of the objects is based on the criterion formulated by the user. Because
surveys [Shn9l] show that computer non-professionals have problems with
distinguishing AND/OR, the whole process follows a flow model and is performed

visually.

&Ll Conditions for filtering Products class Q@ 85 Conditions for filtering Products class g@

2 =

Filter (a) Fiter Cancel (b)
IIE‘ Conditions for filtering Products class [Z]

Filter Cancel (c)

Figure 31. Visual formulating of afiltering criterion.

A user starts with an empty, single predicate icon visualized as a blue, rounded
rectangle (part (a) of the Figure 31). Next empty predicates are added after clicking
appropriate button. Left and right buttons (small, light blue dots) add predicates in

—56-—

“horizontal” directions, which means “AND”. Top and bottom buttons add predicates in
“vertical” directions, which symbolizes “OR”.

Let’s assume that user would like to formulate filtering criterion like those from
Example 14 — give me all products where product name starts with M and number of
items (units) is more than 12 or unit’s price is less then 40.

Product Nane = ‘M’ AND (UnitslnStock > 12 OR UnitPrice < 40)

Example 14. Sample criterion for filtering (textual version)

As mentioned previously, a user starts with a single, empty predicate icon (part (a)
of the Figure 31). Then after clicking right “growing” button, a next predicate icon has
been added (part (b) of the Figure 31). Finally user click bottom button of the second
predicate, which cause adding a last predicate icon. The result is shown on the part (c)
of the Figure 31. Now user should “fill” empty predicates with appropriate conditions.
This process is supported by another window shown on Figure 32. All user have to do is
choose (from the combo box) attribute, operator and type value. There are also tool tips

for each item describing possible operations.

r

Filtering on Products class Q@

Aftribute Operator Walue

|F'r0ductName _YJ |= _vJ (b
-

Rearderlevel

Productt ame

Froduct/D
GuantityPerrit

= UnitzlnS tock
Inits0nOrder

UnitPrice !
uriquel [M

Set Cancel

Figure 32. Formulating a single predicate

The final criterion (after formulating all predicates), which is a visual counterpart
of the Example 14, shows Figure 33.

The process of formulating criterion is not completed without ways for structure
(and, or relations) modifications. This could be achieved by using drag and drop
techniques. The user can drag a predicate and drop it on:

—57—

another predicate icon, which means replacement,

asmall, red dot, which means moving to the “AND” position.

85 Conditions for filtering Products class Q@

Filter Cancel

Figure 33. Visual counterpart of the criterion from Example 14

It is also possible to click on previously formulated predicate and change its
contents. In this case, the user sees a window with appropriates widgets containing

previously entered data, which could be changed.

When the user finishes formulating criterion and clicks the Filter button, the

following action is done:

The system starts validating the predicates (its completeness) without sending

for evaluation;

If predicates are complete (all parts are defined), then the criterion are send to

the data source for evaluating; otherwise the user sees an error message;

Objects, which conform to the criterion, are marked (added to the set of
marked objects for particular class).

The whole process is very easy (even for computer non-professionals) and
intuitive. The constructed criterion could contain unlimited number of predicates,

connected in any way.

There is also a possibility to mark all objects from the class or clear existing set of

marked objects (appropriate options from the context menu shown on Figure 30).

58—

4.3.2 Navigating

Navigating is a frequently utilized technique, thus it should be especially well
(from two points of view: ergonomic and performance) designed. Briefly speaking (for
detailed description see Chapter 3.1.4): it is based on moving from one set of marked
object, via selected association role, to the target class. As a result, target class has a
new set of market objects.

Replace | Categories
Add
SupplisdBy Inkersection

Difference (Mew [Cld)
Difference (Qld | Mew)

Figure 34. Using navigating to marking objects.

In terms of the user interface, the user has to:

Choose any class as a starting point. In case if there will be no marked objects,
some of them must be marked. Otherwise the result of navigation will be an
empty set.

Decide which association role will be used and then click on it.

Select navigation policy in the context menu (Figure 34). The following
options could be selected:

0 Replace means that the new set of marked objects replace the previous
one,

0 Add will perform sum of two sets: the new one and the previous one,
without repetitions,

0 Intersections will select objects existing in both sets,

0 The last two options allow performing difference on two sets, replacing
two arguments accordingly.

—59—

During the navigation (communicating with the data source), progress bar is
shown. After successful operation, selected association and target class flashes for a
while.

4.3.3 History of Marking Objects

Due to the flexible metaphor, Mavigator’s user is able to coherently utilize many
different ways for marking objects. This is of course a big advantage, which gives total
freedom in using the system. On the other hand, it could lead to some kind of disorder
(decreasing of the user awareness), because of the many actions, which the user is able
to perform. To avoid this, all user’s actions concerning marking objects are recorded on
aspecia list.

55 Mavigator V0.7.1850.33971 g@@

File Edit Wiew Help

12! IntentionalMavigationForm

€ @ & .
<4 Back riard Zoomln Zoom Resst Zoom Out | Northwind - Default Vitual Scheme TEMP

History
Filtering on class Products (77) = -
Manual editing of marked objects for the Products class (14) Products
MNavigating: Products --> Cateqories via BelongsTo (7)
Mavigating: Products --> Order_Details wia Occursin (373) BelongsTo SuppliedEy

Mavigating: Order_Details —= Orders via BelongsTo (309)
Manual editing of marked objects for the Orders class (12)
Mavigating: Qrders —»> Customers via OrderedBy (11)
Navigating: Crders > Shippers via Ship'ia (3)

Filtering on class Shippers (3]

|Navigating: Crders -- = Shippers via Shiphia (3)|

Supplies
=18
Su ppliérs
Contairs
12830
a— Serves B

Orders

OrderedBy

Clear
Operations fee

B3 |

Filtering... OK. Number of marked objects: 3

Figure 35. List containing the history of the marking objects.

On the left side of the database schema graph, there is a list (see Figure 35)
containing all actions related to the marked objects. The list and the schema are

— 60—

separated by a widget called splitter. It allows dragging itself, which means changing
the space occupied by the list (left part of the Figure 35) and by the schema (right part
of the Figure 35). The user can read additional information (or just basic information if
it does not fit in the list’s space) from the special tool tips shown for each item
individually.

The list of marked objects activities (simply called “history”) could aso be
utilized to perform additional actions. Clicking on one of the actions, means undoing all
actions from the end up to the clicked one. There is also a possibility to use one of the
two buttons. back, forward (see left part of the toolbar from the Figure 35). Its
utilizations are very similar to buttons in Internet browser — clicking back moves back
to the previous actions, forward to the next action (of course only in case of using back
before).

4.3.4 Showing Objects

Sometimes there may be a need to see a list containing all marked objects.
However such an action would be possible only if there will be a way to present
“names’ of the objects. The problem is how the system will be able to name objects
from various classes. Our proposal is based on special method implemented by data
source wrapper, which returns dedicated label for each object. Implementations details
could be found in Chapter 5.2.

8=’ Marked objects of a Suppliers... |
e e e ———

e
Specialy Bizcuits, Ltd. | |
PE Knackebrid AB i
Refrescos Americanas LTDA
Heli Sulfwaren GmbH & Co. KG
Plutzer Lebensmittelgrobmarkte AR
Mard-0st-Fizch Handelzgeselschaft mbH
Formagai Fortini z.r.].
MNorske Meiener
Bigfoot Brewernes
Swvenzk Sjofoda AB
Aux joveus ecclésiastiques
Mew England Seafood Cannery
Leka Trading
Lyngbnszild
Zaanze Snoepfabriek
Karkki Oy)
G'day, Mate]

Clogze

Figure 36. List of marked abjects of the Suppliers class.

—61—

User of the Mavigator can choose command Show from the marked objects
context menu (see menu on Figure 30). As aresult special window containing a list of
the marked objects is shown (see Figure 36).

F':.D Marked objects of a... E]@-\

FB Fnackebrod 4B
Refrescos Amenican ==L T8 |
Heli Sufwaren Gmb | Leave only selected ‘

]

Flutzer Lebenzmittel Unmark selected
MNord-Ost-Fizch Hanw
Formagai Fartini z.r.l.
Morske Meierier .|
Bigfoot Breweries |

51 T

Cloze

Figure 37. Modifying a set of marked objects using objects list.

However this window allows performing more operations than just viewing a list
of objects. A user isableto:

Change the content of the marked objects set in two ways (when 1 or more

objects are selected) — see Figure 37:
0 by leaving only selected objects,

0 by unmarking selected objects — removing from the set.

55 Marked objects of a ... E]@ﬂ
)

Favlova, Lid.
Specialty Bizcuits, Lid.

FE k.nackebrod A8

HEfrESC A i LT s

Heli Sl Show object L

-

Flutzer | - i
MWord-04 Start extensional navigation =
Formagr Add to main basket
Morske
Bigfoot |
Svensk|
B joveLs ecclesiasigues
Mew England Seafood Canneny ;
Leka Trading -]

Leave only selected
Unmark selected

Cloge

Figure 38. Using list of objectsto perform operation with particular object.

—62—

Perform operations (when only 1 object is selected) with a particular object —

see Figure 38:

0 Show content of the object as a table containing attributes, their values,
object’s label and name as well as the icon of the class - Figure 39,

0 Start new extensional navigation,

0 Add to the main (root) basket. Of course an added object (actualy, its
OID) could be moved to other sub-basket using basket activities (drag
and drop).

- Object: Grandma Kelly... B@

Label _Gtrandma K_elly's

Clazs Suppliers

Attribute | alue

Eddress 707 Qxford Rd.

City A Arbor

CompanyM... Grandma Kelly's Homestead
ContactMame Regina Murphy
ContactTile Sales Representative
Country LISA

Fau [313) B55-3349
Phote [313) 5556735
PostalCode 43104

Region Ml

SupplierlD 3

uniquelD 3229

Hide

Figure 39. Content of the object.

4.4 Extensional Navigation

On contrary to the intensional navigation, extensional one works with individual
objects (and links) rather then groups of objects (and associations). The user is able to
“touch” particular object, its links with other object, see its content, etc. The big
problem concerning extensional navigation is legibility of graph. The problem is so
serious that the entire user interface is dependent on it.

4.4.1 Discovering Neighbourhood
As it was described in chapter 3.2, the user starts with a specific (selected) object.

This object could be chosen from various sources, in particular:

— 63—

From a list of marked objects shown in an objects viewer (see Sub-Chapter
4.3.4),

From a basket, by using:

0 drag & drop technique,

0 dedicated option from the context menu,
From another extensional navigation session.

The above activity loads direct neighbourhood of the starting object. Direct
neighbourhood means all objects are directly linked with it.

==l Mavigator V0.8.1975.22415 - [Extensional navigation] (==
oS File Edt Yiew Help

ala

-.Cl.asses' ;is.iin.i\ily i
M Cateqgories ‘}
MQ Customers Melale u}
Q Emplovess y > Cary
@ Oider_Dietails N'/\: '

ewar

% Orders ’>
@ Products Rockville
Region

w Shippers \mon b tboro
v (14 Suppliers
6 Temitaries u>
Bramlrae
ﬂewYork >
b i‘j _—————'—‘_—'_'_._.—__——’__.J

Boston
Eastern
Bedford

'> Louisville '}
Greensboro
Morristown '>
Fairport
Dy
» @ »
Providence
> Mew York Edison
Cambridge
3 | [#]
Hide lonely objects

Mavigating... done. Number of reached objects: 19

Figure 40. Fist step of the extensional navigation.

Figure 40 shows a first step of the extensional navigation window for Easter
object (in the centre of the figure) from the Region class. As it can be seen, objects are

visualized using their classes icons. It is worth noting that this figure shows direct
connection (without an empty, intermediate class EmployeeTerritories) between classes
Region and Territories. It has been achieved by using a dedicated virtual schema.

If the user would like to discover next links and objects, all he/she has to do is
click the object’s icon. The result will be downloading appropriate objects and links
from the data source, according to the active virtual schema. For instance, clicking New
York object downloads employee (“Buchanan™), who manages the territory (see bottom-
right of the Figure 41).

82! Mavigator V0.8.1975.22415 - [Extensional navigation] =[]
o Fle Edit View Help - ax

alalal |

Hide lonely objects Eucl:anan
|

|Mavigating... done. Number of reached objects: 2

Figure 41. Next step of the extensional navigation.

Of course objects common for several explorations (utilized in various
neighbourhoods) are visualized using only one icon. For instance, Figure 42 shows
three objects of the Employee class (“Fuller”, “Peacock”, “Buchanan”) accessed from
various neighbourhoods (i.e. “Buchanan” from “New York” and “Edison”). This

approach means using of special implementation techniques — see Chapter 5.4.

— 65—

5. Extensional navigation g@%
alalal |

Clagses' wisibility

w Categories '> A

Mellvile

sg Customers
g Emplayees
Q Order_Details
%\é Orders
@ Froducts
G Region
@ Shippers
Ew Suppliers
6} Territories

o
dison

E

@

New York

Providence

®

Cambridge

3 | [

Hide lonely objects Buchanan =

<] | 3]

Figure 42. Extensional navigation — common objects accessed from various neighbourhoods.

4.4.2 Layouting the Graph

As we mentioned in the previous chapters, the key issue behind extensional
navigation is legibility of the graph. To improve it we have introduced special layouting
algorithm, running in the background and automatically arranging objects icons. As a
complement to the above functionality we have added additional functions. The user is
able to:

Manual moving particular objects. Dragging and moving object causes
automatic changes the rest of the graph (without dragged object). When the
user releases the object, its position will also be smoothly rearranged.

Pin objects to a particular location (Figure 43). The layouting algorithm does

not process objects, which are pinned to the surface. Such objects have special

— 66 —

mark painted on the icon. Using special option from the context menu, the user
can un-pin object at any time.

5 Extensional navigation g@
alala |

Classes' visibility

lrﬁn,] Categories

@ Customers

Sl)

ambridge
Hide lanely objects |
I3 i i

Figure 43. Illustrating of the pinning object.

The important, general contributions to solving legibility problems are using:
zoom in, zoom out,
tool tips.

For instance Figure 44 shows zoom in on the part of the extensional navigation
session. By reading the information, we can find out that Order number 11000:

contains following products: “Original Frankfurter grune Sobe”, *Chef
Anton’'s Cajun Seasoning”, “Guarana Fantastica’,

has been delivered by “Federal Shipping”,
and has been ordered by client named “Rattlesnake Canyon Grocery”.

Additional details (i.e. regarding number of items ordered) could be found after
showing object’s content (i.e. from OrderDetails class).

—67—

-
|

/Guararé PR
Xy
11000
4 ¥
-_—
22

o4
o
Chef Anton’s Cajun Seasoning

[4r=Y

Rattlesnzke Canyon Grocery

Rattlesnake Canyon Grocery
4] Class: Customers

—

&

Federal--glhipping

-

Original Frankfurter grine Solte

Figure 44. Illustrating of the zoom in during extensional navigation session.

4.4.3 Hiding Objects

As aresult of extensional navigations (exploring the neighbourhoods), the graph
could have hundreds of objects. Mostly, only some of them are interesting for the user.
Hence there should be a way to hide some of them. There is a question how to define
objects, which are important to our research. If there will be hundreds of them, we
cannot hide them one by one. Our proposal is to hide all objects from particular class. It
could be achieved in two ways:

The first one by using menu on the left side of the window,
The second one is choosing appropriate option from object’s context menu.

The results are identical: all objects from particular class become hidden. To
reverse the action, the user has to turn on an appropriate (previously turned off) check

box. Such an action may cause creating of isolated objects (not connected with others)

— 68 —

on the diagram (because we have just hide “intermediary” - connecting objects, which
occur in hiding links too). It is possible to “clean up” the diagram - there is a special
button, which hides such objects.

As asample, let’s take into account the situation from Figure 42. The user would
like to analyze data linked only to the three employees. To achieve that the user should
turn off check box near Region class (in the list called Classes' visibility). Figure 45
shows the graph after the operation and hiding isolated objects.

B Extensional navigation E]@
Classes' visibility ‘> 1
F._r‘r] Categaries Louisville)
sg Customers V}
g Employees Braintres
@ Order_Details
%} Orders “\)
@ Products Georgetcw_\\ =
D@ Fiegion F | Pin lacation j
w
@ Shippers LUn-pin location |
i . -1
U{} Suppliers Hide all objects from this class |
@ L emtories Show object I
Start extensional navigation
Add ta main basket
@
Bostor -
£
Buchanan \
N
£ Rockville
Peacock
@ \
Edison u}
Greensboro
'y @
L] | | New York Cary
Hide lonely objects :_"
E3 ‘ | I

Figure 45. An example of hiding objects from a particular class.

4.4.4 Working with Object

Coherence of the Mavigator’'s metaphors assures that all objects, no matter in
what context (basket, extensional navigation, etc), are treated exactly the same way. By
“having” a particular object, the user has accessto a special context menu (the last three
positions from the context menu shown on Figure 46) alowing performing some
operations (described in details in chapter 4.3.4):

— 69—

Showing the content of the object,
Starting a new extensional navigation,

Adding to the main (root) basket.

&__ @

I j

Buch=nan Iew York
Pin location ‘

Un-pin location

Hide all objects from this class

Start extensional navigation
Add ko main basket

o

Edison

o
Show object |

Figure 46. Object context menu.

Besides the above general options, there are some additional operations,
accessible only in a specific context, i.e. pining object to the surface in the extensional

navigation session.

45 Baskets

".:.D Mariusz's basket g@

=g Main basket
& by Products
-\ My employees
w

Selected regions

SRS

o Leka |5elected suppliers
tj‘ﬁ] Pasta Created on 2005-06-0Z 12:42:532
The best suppliers in company,

U]E_'! Tokya Items: 4

EM Bigfoot Bresweries
£ T N
Create I
Delete I

Figure 47. User’s basket after logging in.

—70-—

Baskets act as storing places for objects. Basket Graphical User Interface (GUI)
together with Mavigator’s metaphors allows performing all operations in an easy and
intuitive way.

According to the information given in chapter 3.3 main basket and all its sub-
baskets is persistent and assigned to the particular user. Thus, after log in to the system,
user's basket is restored and accessible. Figure 47 shows an example of the user’'s
basket just after successful logging into the system. Notice a specialized tool tip
showing basket’s properties.

Next sub-chapters describe all basket activities from the user interface point of

view.

4.5.1 Creating Baskets

Creating a new basket is a very easy process. All user has to do is selecting a
parent-basket (otherwise the main basket will be selected) and enter the required data
(see Figure 48):

Name,

Description.

-

85 Create a new basket E]@H

Mame |Selected suppliers

Description The best suppliers in the company]|

Create Cancel |

Figure 48. Creating a new basket.

Basket's date of creation will be added automatically by the system.

4.5.2 Adding Objects to the Basket
There are three ways of adding objects to the baskets:

- 71—

During intensional navigation session, user can drag class's icon and drop onto
the basket. The action means adding all marked objects, from particular class,
to the newly created basket. That is, user is asked (Figure 48) to enter data
describing new basket, which improves order inside the basket.

During extensional navigation, it is possible to drag particular object’s icon
and drop it onto the basket. As a result, dropped object will be added to the
existing basket (that is, without creating new one).

During any operation on the particular object, user can choose appropriate
option (Add to the main basket) from the object’s context menu — see Figure
46.

4.5.3 Items’ Utilization

Objects from the basket could be utilized in two general ways:

The first one is started from the object’s context menu and comprises standard
object’s operations (Figure 49):

0 Show content of the object,
0 Start extensional navigation with this object,

0 Add this object to the main basket.

P

BZ' Mariusz's basket

tain bazket
i.—' My Products
- My emplovess

- -

. Selected regions

@ Marthern

I"-_. Selected suppliers
Uﬂ.‘! iLeka Trading:
. .

Edit comment

I

1~ T sShow object
t}i} B Start extensional navigation
———| Add to main basket

Create J

Delete J

Figure 49. Context menu for object in a basket.

72—

The second way includes object’s utilization in the another Mavigator's

metaphors:

o0 Starting extensional navigation for a particular object. The user can drag
object from the basket and put it onto the extensional navigation surface.
If there are some other objects (or even dragged object), they will be
coherently utilized. The same action could be performed with a whole
basket, which means starting extensional navigation for all objects from
the basket (and all sub-baskets).

r .|
all Int =1

< 2 | & @& &

<< Back Fomvard>> | Zoomln Zoom Resst Zoom Out Northwwind - Default Yitual Schems TEMP

History . [
Filtering on class Region (4 e 7@
Filtering on class Suppliers Categories
Replacing a set of marked «

BelongsTo SuppliedBy

Suppiies % —>
EmployeeTerritories Territories |
g O EmployeelD BelongsTo
Supplie= 7 |
Replace
Union Contains |
Intersection
—
[220 | [0]s=
B < Serves =
Orders Employees R Yo Region
OrderedBy
Clear
Operations =
3 >

Figure 50. Using basket to mark objects.

0 Marking objects during the intensional navigation session. The user can
drag a basket and put it onto class visualization. Processing concerns all
objects from particular basket and all its sub-baskets. However only
objects belonging to the selected class are taking into account (the rest is
ignored). After the drop, there is possibility to choose action to perform
on anew set of marked objects (the dropped one) and existing one:

8 Replace existing set with the new one,

73—

§ Sumtwo sets (without repetition),
§ Intersect two sets.

For instance, Figure 50 illustrates above operation for the basket Selected
suppliers shown on Figure 49.

The analogical marking could be performed with a single object rather
then with the whole basket.

The second kinds of basket items are sub-baskets, which could be processed as a
whole by Active Extensions (see Chapter 4.6). In that case all objects from all sub-
baskets are put on the list and then processed. However there might be a problem
caused by the multi-class nature of the baskets (objects in the basket could become to
many different classes). As a default, an Active Extension is dedicated to process
objects from one (particular) class. The situation where processed objects belong to
different classes could lead to errors. On the other hand, abandoning multi-class basket
nature, would lead to serious restrictions for the user. Thus, an Active Extensions
programmer has to take into account that the processed objects could come from
different classes.

4.5.4 Basket’s Items Properties

Both kinds of items, which are stored in the basket, have properties. Some of them
are read-only, others could be changed using dedicated user interface. Below we
enumerate all of them, indicating if a property is read-only (R):

another sub-baskets:

0 creation date (R),

0 name,

0 description,

0 number of items in the basket (R),
objects:

0 adding date (R),

o comment, which could be add at any time after placing the object in the
basket.

— 74—

Values of properties are shown using dedicated tool tip. Sample tool tip (for a
basket) is shown on Figure 47.

4.5.5 Basket’s operations

When the user selects two baskets, there is a possibility to perform three kinds of

operations on the baskets:
Sum,
Intersection,
Difference.

The result operation could be stored in another basket (especially created) or one
in the participation baskets. Part (a) of the Figure 51 shows summing of two baskets
into another one. The user has selected Best suppliers and Tom's suppliers and then has
chosen dedicated option from the context menu. The basket Merged suppliers being the
result of operation is shown on the part (b) of the Figure 51. It is worth noting that
object Leka Trading, has occurred in both baskets. However the result contains only one

instance.

55 Mariusz's basket g@

55 Mariusz's basket ‘ 2

= e M‘.aln basket =g Main basket
+ & My Products + v My Products
My employees - g My employees
+- g Selected regions

g
+ " Selected regions =
- Best suppliers & Best suppliers
v I
L?i‘il Leka Trading LM Leka Trading
m - G .
L}‘ﬁ] Pasta Buttini s.r.l LM Pasta Buttini s.r.l
b s
Uli'_i] Tokya Traders Ulﬁl Tokya Traders
i Bigfoat Breweries w Bigfoot Breweries
I e Tom's suppliers

w | Tom's suppliers = Tom's suppliers + Best suppliers i
L}‘Ejl Mayumi's Tom's suppliers = Tom's suppliers & Best suppliers U‘ﬁ] Mapmi's
EM Refrescosd Tom's suppliers = Tom's suppliers | Best suppliers]:M Refrescos Americanas LTDA
" | i L
:L;fﬁ] Norske Mef. <Mew basket> = Tom's suppliers + Best suppliers ,L'M Morske Meisrisr
Lj‘tjl Leka Tradit ey basket> = Tom's suppliers & Best suppliers U‘ﬁ] Leka Trading
«<Mew basket> = Tom's suppliers | Best suppliers = ‘— Mer

Create] ui‘j] Leka Trading, =
- . |Merged suppliers
{4 Pasta Buttini {Created on 2005-06-02 15:56:26

w Tokyo Trade Tom's and best suppliers.
- Items: 7

EM Bigfoot Brewenes
EM M apumi's

(a) Uﬁ] Refrescos Amenicanas LTDA

Ui‘j] Morske Meierier

Delete

Create]

(b) Delete]

Figure 51. An example operation (sum of two baskets) on baskets.

—75—

And there are two more basket’'s operations from another category. They make

easier keeping order in a basket:

Any object could be moved from one basket to another. It is especially useful
when the user uses a context menu option allowing adding object to the main
basket. Then after adding, the user can create appropriate sub-baskets and
locate particular objects in suitable sub-baskets.

An object or a sub-basket could be removed from a basket. It is achieved by
selecting one and pressing Del key or clicking dedicated button in the basket

window.

4.6 Active Extensions

In chapter 3.4, we have described Active Extensions (AE), which allow expanding
existing Mavigator’s functionalities. In a user interface for AE two different groups of
functionalities could be distinguished. Next sub-chapters give their detailed description.

4.6.1 Active Extensions Editor

5 Active Extensions Editor

File Tools

/4 Default source code for thigator's Active Extensions ;A:

using 3ystem.Windows.Forms;

using System.Collections:

using com.wt.AdbstractDatabases;

using com.mwb.Mavigator.lctiveExtensions:
using Iystem;

namespace cowm.wt.Mavigator.letiveExtensions
public class ActiveExtensionInstance {
AetiveExtensionInstance () {1}

Ji <summar v

/44 Shows number of chjects in the given list.

Ji4 </ summar vz

/¢ <parsm name="IDs":</pararm

//¢ <param name="urapper":</param>

public static wvoid ShowNwberOfMarkedObjects (IList IDs, AdWrapper wrapper) {

if (IDs == null) { Tl

Compile ak. Cancel

Figure 52. Editor for the Active Extensions.

—76—

The Mavigator prototype is equipped with a quite simple Active Extensions
editor. The editor is started by an appropriate command from the top window menu and

alows:
writing a source code for the Active Extension,
loading an existing source code,
saving a created source code,
compiling a code.

Figure 52 presents an editor window with a part of the default (shipped with the
Mavigator) Active Extensions code. When AE editor is started, it tries to load the
source code from the default file located in the special Mavigator’s directory. If the file
has been found, its content is shown. Otherwise an empty file is generated. The
programmer can write any kind of Microsoft C# programs. When he/she wants to try if
the code is valid, the Compile button must be clicked. As a result, an appropriate
message is shown. In case of an error, a simple description (also containing line and

column numbers) is presented (Figure 53).

/¢ Default source code for Mavigator's Active Extensions A

using System.Vindows.Forms:

using 3ystem.Collections:

using com.mt.bbstractDatabases;

using com.mwkb.Mavigator. ActiveExtensions:

using 3ysts
Error

namespace
4

@ Compile Error; & namespace does nok directly conkain members such as fields or methodsiline: 10, column: 23

</ Sumar v
/74 <parem neme="IDs":</ params
/ /¢ <param name="wrapper'"></param:>
public static void ShowNunberOfMarkedokhijects (IList IDs, AdWrapper wrapper) {
if (IDs == null) {

|

Ok | Cancel |

Figure 53. An example message with error description regarding AE source code.

77 -

After successfully compilation programmer clicks OK button, which means that
all Active Extensions have been registered and are ready to use with one click button.

4.6.2 Using Active Extensions

As we mentioned in chapter 3.4, using of AE is very simple. There are two ways
of starting a particular Active Extension. The difference among them is that the first one
is running on a basket content and the second one operates on marked objects of a
particular class. All the user has to do is choose a class with a set of marked objects (or
just a basket) and select one of the available AE from the context menu (Figure 54). The
rest of actions depend on a particular AE.

55! IntentionalMavigationForm [Z]@
<< Back Fomward o | Zoomln Zoom Reset Zoom Out | Morthwind - Default Vitual Scheme TEMP
History m D - [
e . b 4
Filtering on class Produgts || S—— (@080 ——r s Contains B _aflaJ

Marked objects ® Clear |
Mark 4l I
SLthdBy Filter

Shiow |

Categories

FindMinirmurm At tribute.alue
FindAveragedttribukeyalue

Active Extensions >: ShowMumberOfMarkedObjects |
ActiveProjection ‘

-] *% e y—
Lo EmployeeTerritories Territories
|_:J EmployeelD BelongsTo §
gl 0
Suppliers
Belongs Contains
I B — i %
T Employees Rohors: T Region
Operationz Manages e
< [3]

Figure 54. Starting an active extension.

The implemented sample set of Active Extensions contains five entries. Three of
them are quite simple and thus will be described in one sub-chapter. The fourth and fifth
are more advanced and will be presented in the dedicated chapters.

—78—

4.6.2.1 Simple Active Extensions

The simplest AE, developed in educational purposes only (for programmers, who
want to create own AEs), only shows the number of marked objects.

Next two AEs are more useful:
The first finds the object with the minimum value of the chosen attribute,
The second one calculates the average value of the selected attribute.

All calculations are performed on marked objects or on basket content. In both
cases, the user only selects an attribute (part (a) of the Figure 55), which takes a part in
calculations. The result for the first calculation (the minimal value of the attribute) and a

label of the appropriate object shows part b of Figure 55.

B Please select an attribute of t... J

Dizcontinued
Froduct/D

UritslnStock
UritsOnOrder

Ok, | Cancel

Productbarme Minimum value
GuantityPerlnit

F‘QDlleg-BVd Minimurn value is: 2,5
urigue for object: Geitost
UnitPrice

(a)

(b)

Figure 55. Sdecting an attribute for the calculation (@) and the result (b) containing the value
and object’s label.

4.6.2.2 Active Projections

Another Active Extension developed with the Mavigator prototype is Active
Projections. They allow projecting (showing) objects on the surface, where coordinates
of the particular object depend on values of selected attributes. The approach makes
easy performing some analysis. In general, such projections could visualize
dependencies between many attributes. Their numbers start from two or three attributes
(using just 2 or 3 axis) up to 5, 6 or even more (using additional, special notation, i.e.
colors, shapes, sizes, etc). Current implementation of the Active Projections is able to

visualize dependencies between values of two attributes.

—79—

After starting the extension (exactly the same way like in the simple ones), the
user has to choose two attributes, one by one. The manner of selecting the attributes is
exactly the same like in the one described in chapter 4.6.2.1 and shown on part b of the
Figure 55. As aresult, after a short while (depending on the number of objects), the user
can see the projection. Sample projection for Products class and attributes Unit Price
and Units in Stock is shown on Figure 56. Notice the special tool tip showing the label
and values of the selected attributes for particular object.

5= Mavigator ¥0.8.1979.32853 - [Active Projection] BEx]
85 File Edit View Help -3 %

&

v

Chef Anton's| Cajun Seasoning

e
? Chchal
[itsiniock: 39
Zaanse koeken .-
2 ura
v ik
-
Gula Mala@{
=5
v_Queso Cabrales
v >]
S 3 Chang
_Chocolade e Uncle Bob's Organic Dried Pears
Aniseed Syrup «/f‘
Maxilaku 5-,
Northwoods Cranberry Sauce
&

Chef Anton's Gumbe Mix

Figure 56. Active Projection for some objects of the Products class.

Because of coherent cooperation of all Mavigator's metaphors, objects projected
on the surface, act as objects utilized in another sessions. The user can utilize the

context menu (shown on Figure 57), where there are two specialized options:

Remove object from projection, which means just removing from the

visualization,

—-80-—

Remove from the set of marked objects. The option could be used as an

additional way of modifying the set of marked objects.

-

55 Active Projection .
|)
Chef Anton's Cajun Seasoning
.l
| Remove from projection
(Genen Remove from marked objects
Show object
Start extensional navigation
. Add to main basket
W . 1 Queso Cabrales
& Chan
. “"J | g Uncle Bc—
Aniseed Syrup | ! v
<] (2]
Hide

Figure 57. Object’s context menu in Active Projections

Besides above commands, there are common objects operations described in
details in Chapter 4.4.4.

When a projection is created, the user can add new objects in an easy and intuitive
way. All he/she has to do is drag an object (from a basket or extensional navigation
surface) and drop onto the projection surface. The same action is also possible for the
whole basket (which means adding a group of all objects from the basket and all sub-
baskets). If a dropped object (or objects) belongs to the projected object class, it will be
placed according to the attributes values. Otherwise, the dropping will be ignored.

It is also possible to perform reverse actions. drag an object and drop onto:

An extensional navigation surface, which starts extensional navigation for this
object and objects already present on the surface,

A basket, which simply adds the object to the selected basket.

-81—

4.6.2.3 Objects Exporter

This extension allows exporting objects to an XML file. From the user point of
view, the whole process is straightforward and contains only a few elements, namely:

first the user has to choose values of which attributes should be exported,
then a filename should be given,
after successful exporting an appropriate message is shown to the user.

Created XML file has very simple format (Example 15), which allows importing
them by almost all nowadays applications.

<l--Objects exported by Mavigator VO0.8.1980.33966-->
<l--Generated on: 2005-06-03 19:52:49-->
<Obj ect s>
<Obj ect >
<Pr oduct Nanme>Chai </ Pr oduct Name>
<Uni t sl nSt ock>39</ Uni t sl nSt ock>
<Uni tPrice>18</UnitPrice>
</ Obj ect >
<Obj ect >
<Pr oduct Name>Chang</ Pr oduct Nane>
<Uni t sl nSt ock>17</ Uni t sl nSt ock>
<Uni tPrice>19</UnitPrice>
</ Obj ect >
<Obj ect >
<Pr oduct Nane>Ani seed Syrup</Product Name>
<Uni t sl nSt ock>13</ Uni t sl nSt ock>
<Uni tPrice>10</UnitPrice>

</ Obj ect >

</ Obj ect s>

Example 15. File generated by ExportObjects active extension.

It is worth noting that an objects exporter could be used in Mavigator’'s data
retrieval activities, which are answers to textual queries asking for values of some
atributes (rather then entire objects), i.e. name and address of the employees
performing specified conditions (see Example 2 on page 7, Example 3 on page 9).

—82—

4.7 Supporting Techniques

In this sub-chapter we would like to enumerate some items of the graphical user
interface, which assures comfortable work with the Mavigator prototype. They are not
necessary from the utilized metaphors point of view, but greatly enhance user's
awareness. They contain:

Progress indicators (see Figure 58). All actions, which could take quite long,

including:
0 connecting to the data source,
o filtering data,
0 navigating,
0 showing object’s content

are illustrated with the animation showing rotating hourglass and appropriate
message. This approach assures that the user will see that the operation is in

progress.

L=

< @ @ &

<< Back ZoomIn ZoomReset ZoomOut Morthwind - Default Virtual Scheme TEMP

History el

Filtering on class Products |

Categories

BelongsTo SuppliedBy

Filtering... Please Wait... lecTeriitories Terriories
- Belongs T
g
[a
ees s Regicn
[Hanzoes |

Clear
Dperations

Figure 58. Widget illustrating that operation isin progress.

—83-—

All surfaces utilized in Mavigator, including:
0 intensional navigation,
0 extensional navigation,
0 active projections

allows zooming in and out. The operations could be performed using dedicated
buttons or ssimply a mouse wheel.

Wherever it is possible, specialized tool tips are used. Depending on context,
they show different kinds of information, see examples on Figure 44, Figure
47 and Figure 56.

The status bar showing results of the user actions.

It is worth to notice that all of them have needed special programmatic effort,
especialy in case of a progress widget (because they require introducing threads to the
system’s design, which is always complicated).

4.8 Case Studies

This chapter contains samples of the Mavigator’s utilization. We tried to create
examples, which would be:

based on the Northwind database (and a virtual schema hiding intermediary

class EmployeeTerritories), because this is the database commonly available,

similar to those ones shown in the Chapter 2.1. Such an approach alows
comparing the Mavigator usability potential to the other systems.

Next sub-chapters give detailed description of Mavigator's user’s actions
according to case studies. All following solutions assume that a user is logged to the
system. It is worth noting that thanks to flexible metaphors, most of the cases could be
solved in many ways. A presented way is just one of the few possible.

481 Casel

Find all employees with first name *“ Robert” .

Actions

Start intensional navigation (from top window menu),
Chose Filter from the marked objects context menu for Employees class,

Define appropriate filtering criterion containing one predicate (shown on
Figure 59)

Start filtering by pressing Filter button. As a result, set of marked objects for
the Employee class will contain all objects describing employees with first
name “Robert”. In case of Northwind database it will be only one object.

s Conditions for filtering Employees class g@
L
FirstName = "Robert"

Filker | Cancel |

Figure 59. Filtering criterion for case study 1.

4.8.2 Case 2

Find all employeeswith first name “ Robert” or “ Nancy” .
Actions:

All actions are exactly the same like in the case 1, except the filtering criterion
contains 2 predicates connected with OR (Figure 60).

‘s Conditions for filtering Employees class E]@
L]
FirstName = "Robert"

] FirstName_=“Nancy" |

Filker I Cancel |

Figure 60. Filtering criterion for case study 2.

—85—

4.8.3 Case 3

Find the name of the employee who manages territory “ Cambridge” .
This case study is similar to the OQL one defined in Example 1 on page 7.

This case requires cooperation between two classes (Employee and Territory).
Actions:

Start intensional navigation,

Filter objects from Territory class (similarly like in case 1) to find territory
“Cambridge”,

Navigate from marked objects of Territory class through ManagedBy role
(click on role' s name and select Replace previous set of marked objects for the

Employee class). Asthe result, a set of MO for the Employee class, will have 1
object named “Fuller”.

As an alternative to the above action, the user can start extensional navigation
for the “Cambridge” object (from object’s viewer using context menu) and just

see all connected objects, including employee, who manages “Cambridge”
(Figure 61).

55 Extensional navigation E]@@ﬁ
alalal |

Clazzes' vizsibility
- _ £l
v || Categories [l Fuller ™.
rﬁ.r ? | Fuller
gg Customers Class: Employess

@ Order_Details | '>
E} Orders | Cambridge

gl (] b o

Hide lonely objects Cemslegn [»

Figure 61. Extensional navigation session for case 3.

— 86—

484 Case4

Find names and prices for all products from supplier “Leka Trading” where
prices are more than $18.00.

This case study is similar to the one defined in Example 2 on page 7.
Actions:
Start intensional navigation,

Filter objects from Supplier class (similarly like in case 1) to find supplier
“LekaTrading”,

Navigate from marked objects of Supplier class through the Supplies role
(click on role’s name and select Replace previous set of marked objects for
Products class). As the result, set of MO for the Products class, will have 3
objects (all from the supplier).

Filter existing set of marked object to find products with price higher than
$18.00. As aresult two objects will be marked.

<l--Cbjects exported by Mvigator VO.8.1980.33966-->
<l--Cenerated on: 2005-06-04 19:42:05-->
<bj ect s>
<bj ect >
<Pr oduct Name>| poh Cof f ee</ Product Name>
<Uni t Pri ce>46</ Uni tPri ce>
</ nj ect >
<bj ect >
<Pr oduct Name>Q@ul a Mal acca</ Pr oduct Nanme>
<Uni tPrice>19, 45</ UnitPrice>
</ nj ect >
</ Obj ect s>

Figure 62. Content of the file being solution to the case 4.

If the user really needs only names and prices (instead of the entire objects),
dedicated active extension could be utilized: Export Objects. Do the following:

—87—

o Start (from the marked objects context menu) active extension called

Export Objects,
0 Choose desired attributes, XML file name and click Export button.
0 Asaresult, the file will be created containing values of the attributes (see

Figure 62).

4.8.5 Case 5
Find employees who served orders sent to the Mexico and manage territories

located in the “ Northern” region.

This case study is similar (maybe a little bit advanced because requires
cooperation of three classes) to the one defined in Example 6 on page 11.

Actions:
Start intensional navigation,

Filter all objects from the Orders class to find al sent to “Mexico”

(ShipCountry = “Mexico”; 28 orders),

Navigate from Orders to the Employees via ServedBy (from the menu select
Replace). As aresult all employees, who sent orders to the Mexico are in the
set of marked objects (of Employee class; 7 employees).

Filter regionsto find “Northern” (1 region),
Navigate from Region to Territories via Contains (11 territories),

Navigate from Territories to Employees via ManagedBy and select (in the

navigation menu) Intersection (1 employee - “ Callahan™)

Because of selecting Intersection, new set of MO (containing all employees,
who manage regions from the northern region) will be intersected with the
previous set of MO (containing all employees who sent orders to the Mexico)
and will contain four employees. Figure 63 shows part of the database graph
during described session. Notice the history (left side of Figure 63) containing

all operations performed on marked objects.

— 88—

55 IntentionalNavigationForm E]@

¢¢Back Fowadss | Zoomln ZoomBeset Zoom Out | Morthwind - Defaul Vitual Scheme TEMP
History |

Filtering on class Orders (28)
Navigating: Orders --= Employees 4
Filtering on class Region (1)
Navigating: Region --> Territories vi
Navigating: Territories = Employes

Termritories

B2

Supplnlars

179 8

P
£l
Orders Employees aD0

Manages -
OrderedB Region

Clear

Operations

Figure 63. Intensional navigation session during processing case 5.

4.8.6 Case 6

Find average price of the products sent to the Mexico.
Actions:
Start intensional navigation,
Find (filter) all Orders sent to Mexico (ShipCountry = “Mexico”; 28 orders),

Navigate from Orders to the Order_Details via Contains (from the menu
select Replace). As a result all details (objects) concerning orders sent to
Mexico arein the set of marked objects (of Order_Details class; 72 objects).

Navigate from Order_Details to Products via Concerns (from the menu select
Replace). As a result all products (objects of the Products class) sent to the
Mexico are marked (45 objects).

For the Products class start Active Extension called Find Average Attribute
Value and select Unit price attribute. The average value is $30.71.

487 Case7

Find the cheapest product among those ones, which are in stock.

—-89—

Actions:
Start intensional navigation,

Find all products, which are in stock —filter with criterion containing only one

predicate shown on Figure 64.
Filtering on Products class g@
“Attribute Dperator Walue
|Units|n5tock _VJ |> _ﬂ ||:I

Set Cancel

Figure 64. Filtering predicate for case 7.

For the Products class start Active Extension called Find Minimum Attribute
Value and select Unit price attribute. The product is called “Geitost” and the
price is $2.50.

4.8.8 Case 8

Analyze the “ Seafood” products, to find out which of them are not so much on the
stock.

This case study is a little bit different to the previous ones because, the solution is
not so deterministic. This is caused by the terms “analyze” and “not so much”, which
can't be communicated to the system. Of course, there is a possibility to formulate
guery based on some threshold value (i.e. “not so much” means less than 20). However
the better solution could utilize objects’ projections.

Actions:
Start intensional navigation,
Find “Seafood” object from the Category class (using filtering),

Navigate from Categories to Products via Contains (from the menu select
Replace). Asaresult all Seafood products have been marked (12 objects).

For the Products class start Active Extension called Active Projections and

select Unit price and Units in Stock attributes. Part of the projection (zoomed

—-90-—

in) is shown on Figure 65. It can be seen (using tool tips) that stock for
“Rogede sild” isonly 5 and for “Konbu” is 24.

52 Active Projection g@@
& 1
 _
Ikura
v
A
Naravadiaxatjeshering
4
‘g} Escargots de¢ |
Rogedasict— 5
UnitsInStack: S v; =
UnitPrice: 9,5 Kon bu (%
< | [

Figure 65. Active projection for case study 8.

4.8.9 Remaining Cases

Figure 66 presents a table containing references to the examples from the chapter

2.1, which could be also solved using techniques described in previous cases.

Example Page Comments
Example 3. OQL query selecting name and age 9| Likein case 1.
of the people.
Example 4. OQL statement finding people 10| Likein case 1.

whose ageis less than 20.

Example 5. OQL query finding all people 10| Likein case 3.
working in companieslocated in England.

Figure 66. Table with Mavigator’s solutions to the OQL examples from the Chapter 2.1.

91—

5 Software Architecture and Implementation

This chapter gives detailed description of the Mavigator's architecture and
implementation. The discussed issues are illustrated with UML classes and segquences
diagrams. Some solutions also present parts of the Mavigator's source code (n
Microsoft C#). The whole chapter is divided into sub-chapters, which are organized as

follows:

at the beginning there is a general description of the Mavigator’s architecture
(chapter 5.1),

next sub-chapters discuss solutions dedicated to the particular topics, namely:
0 Wrapper to the Data Source — chapter 5.2,
0 Virtual Schemas— chapter 5.2.5,
0 Intensional Navigation — chapter 5.3,
0 Extensional Navigation — chapter 5.4,
0 Baskets— chapter 5.5,
0 Active Extensions — chapter 5.6.

And at the end of this introduction, one more thing must be stressed: when
designer or programmer develops a new computer system, aside of many other
dilemmas, one is especially significant: do we want a good performance or clear
internal design? In commercial systems, the first choice would be selected. However
because of the nature of this thesis (research), in most cases, we tried following the

second approach: clear and easy to understand the design and implementation.

5.1 Mavigator’s Architecture

As we mentioned in Chapter 4.1, there are two Mavigator’s prototypes. We also
stressed that the first one is much simpler (without Active Extensions and Virtual
Schemas) than the second one and thus will not be discussed in the dissertation.
Therefore we will focus only on the new one developed particularly for the purposes of
the present thesis.

—o2—

The Mavigator prototype is implemented as a Windows Form Application in C#
language. Its architecture (Figure 67) consists of the following elements:

Core GUI — contains implementation of the core user interface elements
like:

0 intensional and extensional navigation windows,
0 basket window,
0 Active Extensions editor, etc.

Business logic — includes implementation of the Mavigator metaphors and

some additional routines,

Active Extensions GUI — GUI elements being a part of the Active

Extensions (see Chapter 3.4) like Active Projections window,

Active Extensions — elements compiled from the source code written by
Active Extensions programmer. Arrow, which come from business logic

block symbolizes query results processed by AE,

Database wrapper — ensures communication, via defined
Abst r act Dat abase?2 interface, with any data source. Two things are

worth noting:

o all internal data processing (including Active Extensions) works
with abstract data types, which ensures that entire application will
be working in the same manner aside of the current data source,

0 moreover, the entire application works with Virtual Schemes (see
3.5). All internal actions related to the Virtual Schemas are realized

inside the wrapper.

Data source. Currently we are working with the ODRA prototype database
management system (which follows stack-based approach to query
languages [Sub95], [Sub04]), however after implementing dedicated
wrapper it is possible to work with any kind of data source:
object/relational databases, ODBC, JDBC, etc.

—-03-—

Mavigator (Windows Form Application)

Active Extensions
GUI

:

Active
Extensions

PN
AbstractDatabase2

Virtual scheme
generator

¢
¢

| Raw data '
\ gDatabase processor <:>

Figure 67. Architecture of the Mavigator prototype

5.2 Wrapper to the Data Source

«interface»
AbstractDatabase2::Adltem

+UniquelD() : AdUniquelD
+UserObject() : object

Z}

«interface» «interface»
AbstractDatabase2::AdClass AbstractDatabase2::AdObject

+Name() : string +MetaClassID() : AdUniquelD
+Label() : string +Links() : AdLink[]
+Attributes() : AdAttribute[] +Values() : AdAttributeValuef]
+Associations() . AdAssociation[] +Label() : string
+Description() : string +StoringAttributes() : bool
+lcon() : Image +Description() : string
+lconForObject() : Image +ToString() : string
+Location() : Point
+StoringLocation() : bool
+ToString() : string

Figure 68. Class diagram for interfaces: AdCl ass, AdQbj ect .

—94—

The best way to create a system, which will be independent from the connected
data source, is develop a wrapper between a data and the system. The wrapper should
receive data in some particular format (depending on the data source type) and send
them to the system in some precisely defined, generic one. That approach guarantees,
that entire system (“behind” the wrapper) will be able to work exactly the same way in
any kind of data source (after implementing particular wrapper). All data exchanged
between database and the Mavigator are defined in the namespace of interfaces called
Abst r act Dat abase2. A programmer, who would like to create a new wrapper, has
to implement all these interfaces. From the Mavigator's core functionality point of

view, all operations are performed on members of the interfaces group.

There are more then 10 interfaces defined in the Abstract Dat abase?

namespace. They describe every aspect of data management including:
classes (AdCl ass) and objects (AdQbj ect) - Figure 68,
associations (AdAssoci at i on) and links (AdLi nk) - Figure 69,

attributes (AdAttri bute) and their values (AdAttri but eVal ue) -

Figure 70,
«interface»

AbstractDatabase2::Adltem

+UniquelD() : AdUniquelD

+UserObject() : object

«interface» «interface»

AbstractDatabase2::AdAssociation AbstractDatabase2::AdLink
+Source() : AdUniquelD +MetaAssociationID() : AdUniquelD
+Target() : AdUniquelD +Source() : AdUniquelD
+Name() : string +TargetlD() : AdUniquelD
+Label() : string +ReverseLinkID() : AdUniquelD
+ReverseAssociation() : AdUniquelD +Label() : string
+Comment() : string +ToString() : string
+ToString() : string
+QueryDefinition() : string

Figure 69. Class diagram for interfaces: AdAssoci at i on, AdLi nk.

All above interfaces inherit from the base interface Adl t emdefining only two

properties:

Uni quel D, which returns instance of the AdUni quel Dfor particular item,

—95—

User Qbj ect , which returns any kind of object associated with the item.

«interface»
AbstractDatabase2::Adltem

+UniquelD() : AdUniquelD
+UserObject() : object

T

«interface» «interface»
AbstractDatabase2::AdAttribute AbstractDatabase2:: AdAttributeValue
+Name() : string +MetaAttributelD() : AdUniquelD
+Label() : string +Value() : string

+IsNumber() : bool
+isText() : bool
+Searchable() : bool
+MetaClass() : AdUniquelD
+Typel() :int

+TypeS() : string
+Mandatory() : bool
+MultipleValued() : bool
+Dictionary() : string[]
+ToString() : string
+hasDictionary() : bool

Figure 70. Class diagram for interfaces: AdAt t r i but e, AdAtt ri but eVal ue.

The next sub-chapters (up to the 5.2.4) present information without going into
implementation details. The details are given in sub-chapters of chapter 5.2.5, treating
of Virtual Schemas. The reason is that ailmost al wrapper’s aspects conform to the
topic. Thus, they are discussed after presenting, and in the context of, Virtual Schemas.

5.2.1 Unique Objects’ Identifiers

Every piece of information (object, class, link, etc), which is processed in the
Mavigator, must be uniquely identified. It is achieved by instances of the class
implementing AdUni quel D interface. In case of the ODRA wrapper, there is a class
AdCQdr aUni quel D, which implements the interface. Inside the class there is a private
attribute of type St ri ng, which has unique values among all data coming from the
wrapper. The way of calculating its value will differ depending on type of data source
and particular information type (object, atribute’'s value, etc). For instance, in our

Wrapper:

objects have numbers, which come from the ODRA database,

associations have special string being concatenation of class's name, special

constant and association’s name.

—906 —

There is one more thing worth noting: the mentioned class has overloaded two
methods responsible for comparing objects instances (bool Equal s(obj ect
id), int GCetHashCode()). Thanks to the solution, comparing instances of
identifiers is based on its values and not on C# memory references. Thus, different C#

instances of the AdUni quel D, identifying the same item, are equal.

5.2.2 Wrapper Object

The main object, which deals with communication to/from data source, is an
instance of the Odr aW apper class. The class implements all methods defined in
AdW apper and Vi rtual SchemesManager interfaces. All internal Mavigator’s
methods deal only with the mentioned class (accessed via interface type). Below we
have enumerated more significant methods and properties (property is a specia
programmatic construct, introduced in MS C# programming language, which is a some
kind of method acting like attribute) with a short comment:

void Open(parans Object[] par); Opensthe connection to the
data source. Depending on particular kind of wrapper, number and/or type of
the parameters may vary (that’s way object’s array is used).

| mmge Defaul tlcon; Returns default icon (which will be used to

visualize the class on the surface) for the class.

i nt Get Nunber OF Qbj ect s(AdUni quel D cl assUni quel D) ;
Returns the number of all objects, which belong to the given class (by its
unique ID).

I List GetAll Qojects(AdUni quel D UniquelD); Returns an
instance of the | Li st containing unique IDs of objects being neighborhood
of the given object. This is the main method used during extensional

navigation.

AdObj ect Get Obj ect (AdUni quel D id); Returns an object with a

givenid.

97—

| Li st GetlLabel s(IList UniquelDs); Retuns the |List of
AdLabel (pairs AdUni quel D and the label of an item identified by this id)
based on unique IDs.

| Li st Get Qbj ect sl Ds(| Li st | Ds, AdCriterion
Criterion); Returns the I Li st of AdUni quel Ds for given objects
(defined by I Li st of IDs), which satisfy the given criterion. The main

method used in filtering objects (intensional navigation).

| Li st Get Obj ect sl Ds(| Li st | Ds, AdAssoci ati on
Associ ati on); Returnsthel Li st of AdUni quel Dsfor all objects from
the target class, which are linked via given association with the given objects
(specified by I Li st of IDs). Given objects belong to the source class of the
association; returned objects belong to the target class. This method is used in

intensional navigation.

Adl tem GCetLocal Iten(AdUni quel D 1D); Returns an item (i.e.

object, value of the attribute, class, etc) with given ID.

5.2.3 Working with Wrapper Metadata

The tool, such as Mavigator, could not work without metadata concerning data
being processed. The wrapper metadata main object implements AdMet aDat a
interface and is returned by a special method of the wrapper. Below we have
enumerated AdMet aDat a interface methods:

int Nunber O O asses; Returns the number of classes in the DB

schema.

| Li st Cl asses; Returnsthe | Li st of classes (containing instances of
the AdCl ass) from the DB schema.

i nt Nunber O Associ ati ons; Returns the number of associations in

the DB schema.

| Li st Associ ations; Returns the | Li st of associations (containing

instances of the AdAssoci at i on) from the DB schema.

—98—

Each class from the database is described by a dedicated object of the class
implementing AdCl ass interface. The interface has special methods and properties to

discover information about classes from the database (below are the most important):
String Nanme; Returnsthe name of the class.

String Label; Returnsthe label (which sometimes could be easier to read

for the user) of the class.

AdAttribute[] Attributes; Getsan array, which stores references to
objects (instances of the AdAt t r i but e interface) defining attributes for this
class. AdAttri but e interface has another set of methods and properties

describing particular attribute:
o String Nane; Returnsthe name of an attribute.

o String Label; Returnsthe label (which sometimes could be easier

to read for the user) of an attribute.
o0 bool | sNunber; Indicatesif thisattributeisnumerical.
0 bool |sText; Indicatesif thisattributeistextual.

0 AdUni quel D Met aC ass; Returns the id of a class which this
attribute belongs to.

AdAssoci ation[] Associations; Gets an aray, which stores
references to objects (instances of the AdAssoci at i on interface) defining
associations of this class. Single association is described by the instance of the

AdAssoci at i on interface, which has following methods and properties:
0 AdUni quel D Sour ce; Returnsid of the Source (from) class.
o0 AdUni quel D Tar get; Returnsid of the Target (to) class.

o String Name; Returns the name of the association. We always use pair

»twin” associations each thus name comply with ODMB pointer’s name.

0 AdUni quel D ReverseAssoci ation; Returns id of a reverse
"twin" association. Both of them create bidirectional association
(between Source and Target).

—99—

o String QueryDefinition; Returns a query language definition
for an association (executed definition returns objects from the target
class). The content of the property depends on kind of data source that
we work with, i.e. for the ODRA database it will be an SBQL statement
and for arelational database it would be SQL command.

Thanks to the very clear and straightforward API, a programmer, who would like
to find out metadata information, should perform the following steps:

Get instance of the class (Vi rt ual Schema) implementing AdMet aDat a
interface,

Get collections containing classes and associations,

For a particular object defining database class, get arrays defining attributes
and associations.

Work with single objects (being part of the collection or arrays) defining
particular metadata items.

5.2.4 Working with Database’s Objects

Working with database objects is similar to working with metadata objects. An
instance of the database' s object (i.e. a particular employee or a product) is represented
by an instance of the class which implements AdQbj ect interface. Similarly to the
metadata’ s interfaces, this one also has dedicated methods and properties (the most

important ones):
AdUni quel D Met aCl assl D; Getsid of aclassthe object belongsto.

AdLi nk[] Links; Getsarray which stores references to objects (instances

of AdLi nk interface) defining links of the object.

AdAt tri but eVal ue[] Val ues; Gets array of references to the objects
(instances of AdAt t ri but eVal ue interface) storing values of attributes of

this object.

System String Label; Returns the value of the label (name) for this
object. Returned label could be used to show the "name" of the object

—100 -

(distinguishing one object from another when the user sees a list of some
objects).
Information about a particular object link (instance of an association) is stored by

an instance of the class implementing AdLi nk interface. By having the instance of the

class, the programmer is able to utilize following methods or properties:

AdUni quel D Met aAssoci ati onl D, Returns AdUni quel D, which

defines association of thislink.
AdUni quel D Sour cel D; Returnsid of the Source object’s link.
AdUni quel D Tar get | D; Returnsid of the Target object’s link.

AdUni quel D Rever seLi nkl D; Returns the reverse "twin" link. Both of
them creates bidirectional link (between Source and Target). The same

situation like in case of associations.

Similar situation occurs when the programmer has an instance of the
AdAt t ri but eVal ue interface, which stores information about a particular attribute

value. This interface defines just two properties:

AdUni quel D Met aAttri but el D; Returnsinformation about attribute of

the value.

System String Val ue; Returnsvalue of the attribute as a string.

Analogical to working with metadata, working with objects APl isalso easy. The
programmer can run a wrapper method (i.e. AdObj ect AdW apper::
Get Qbj ect (AdUni quel D id)), which returns an instance of the AdQhj ect
interface. Then can run a dedicated method or use properties to find out values of the
attributes or target objects ids (defined by links).

5.2.5 Virtual Schemas

In chapter 3.5 we have described the ideas behind Virtual Schemas (VS) and
motivations for introducing them into the Mavigator. In this chapter we would like to
focus on implementation details concerning this topic. The first issue, which had to be
resolved, was the way of defining a particular Virtual Schema. At the beginning, we
have two different ideas:

—101 -

The first one assumed introducing some kind of a programming language,
which constructs will be used to define virtual schema's items. Then VS

module will process a language source code to create classes, attributes, etc.
The second one was to utilize a special file defining particular items.

In general, both of them allow achieving the same goal. However the first one
requires cumbersome actions, such as parsing, interpreting, etc. Thus, finally we have

decided to follow the second approach.

A single Virtual Schema is defined in an XML file containing special tags (some
of them contain nested “sub-tags’ defining “sub-items’, i.e.: class and its attribute):

<Nane>. Defines a name (visible to the user) of the VS,
<Descr i pt i on>. Contains description for the VS,

<Cl ass>. Defines a class and contains additional, nested sub-tags:
0 <Nanme>. The name of the class,

0 <Attri bute>. Describes an attribute and contains additional, nested

sub-tags:
§ <Name>. The name of the attribute,

§ <Type>. The type of the attribute. Because the wrapper is
dedicated to the ODRA database, the type belongs to the ODRA
namespace, i.e.: Dat aSt or e. STRI NG_TYPE,

§ <SBQ.Definition> This tag's value contains an SBQL
guery language statement, which returns the value of the
attribute. It could be any valid statement (including methods, over
attributes, calculations, etc.).

<Associ at i on>. Defines bi-directional association between two classes.
We have decided to place (in file) association’s definition outside the class
definition and after all classes definitions. Thanks to the solution, we avoid
situation, when the association refers to the class, which definition has not
been read from the file yet. Below we enumerated all tags used in the
association definition:

—102 -

0 <Name>. The name of the association’s role (visible to the user),

0 <Rever seNanme>. The second name (in the opposite direction) of the

association’srole (visible to the user),

0 <SourceC assNane>. The name of the source class for the

association,

0 <Targetd assName>. The name of the target class for the

association,

0 <SourceSBQL.Definition> This tag contains an SBQL query
language statement, which defines the source association. It could be any
valid statement (including methods, over attributes, calculations, views,
etc.); however the semantic of the associations requires returning of the
object’s ids from the target class. Thus, usually it will be some kind of

path expression,

0 <Target SBQLDefi nition>. This tag contains an SBQL query
language statement, which defines the target association (the second one,
reverse). The same remarks apply like in the previous case.

Example 16 shows a definition of the simple Virtual Schema containing only two
classes and one association.

Virtual schemas are widely utilized in the entire wrapper. Almost every call to the
data source (through the wrapper) is mapped from the database view defined in VS to
particular, physical data's items stored in the data source. Following sub-chapters give
implementation details for particular actions.

Before we start, we would like to explain topic according UML’s sequence
diagrams, which will be used to illustrate particular issues. On the diagram there is an
entity called actor, who starts the whole process. Because Mavigator’s is an application
with the graphical user interface, al actors actions are performed through some
widgets. Thus, on all the diagrams, there would be an actor, calling some methods from
the widgets classes and then, there would be significant callings of the described
methods. Therefore, we have decided to join virtually (just for the diagrams purposes)
al particular widgets classes into one called just GUI. Moreover, to improve

—103 -

readability of the diagrams, we have decided to skip an actor and mark all actions
(where appropriate) as started by the GUI object.

<Vi rt ual Schene>
<Nane>Si npl e Virtual Schene</ Nane>
<Description>Sinple virtual schema.</Description>
<Cl ass>
<Nane>Cr der s</ Nane>
<Attribute>
<Nanme>Or der Dat e</ Nanme>
<Type>Dat aSt or e. STRI NG_TYPE</ Type>
<SBQLDef i ni ti on>Or der Dat e</ SBQLDef i ni ti on>
</Attribute>
</ Cl ass>
<Cl ass>
<Nanme>Shi pper s</ Nane>
<Attribute>
<Name>Shi pper | D</ Name>
<Type>Dat aSt or e. | NTEGER_TYPE</ Type>
<SBQLDef i ni ti on>Shi pper | D</ SBQLDef i ni ti on>
</Attribute>
</ Cl ass>
<Associ ati on>
<Nane>Shi pVi a</ Nane>
<Rever seNanme>Shi ps</ Rever seName>
<Sour ceCl assName>0r der s</ Sour ceCl assNanme>
<Tar get Cl assNanme>Shi pper s</ Tar get C assNane>
<Sour ceSBQLDef i ni ti on>Orders. Shi pVi a. Shi ppers; </ Sour ceSBQLDefi ni ti on>
<Tar get SBQLDef i ni ti on>Shi ppers. Shi ps. Orders; </ Tar get SBQLDefi niti on>

</ Associ ati on>

</ Vi rtual Schene>

Example 16. XML file defining simple virtual schema.
5.25.1 Opening a Data Source

As mentioned previously, opening a particular database is done via voi d

Open(parans bject[] par) method, declared in the AW apper interface

—104 —

and implemented by the OCdr aW apper class. Figure 71 shows sequence diagram
illustrating the actions taken inside the method:

At the beginning the number of arguments is checked (call number 2). If the

number is different then two, an exception is raised,

Then, in call number 3, instance of the Hasht abl e is created, which is used

as a some kind of cache memory (see chapter 5.2.5.2),

GUI : OdraWrapper| : OdraMTDatabas% virtualSchemes : Hashtable
1: Open(par)
2: [par.Length != 2] -

3:localltems := Create()-ashiabl
R

4: Load(fileName)

5: AddVirtualScheme(virtualSchemeFileName)

6:vs := Create()

[8: SetActiveVirtualScheme(|vs.Name)

L]

- VirtualSchem:
| VidualScheme

7: Add(vs.Name, vs)

A 4

Figure 71. Sequence diagram for the Odr aW apper : : Open method.

Loading data from the file into the database memory — call number 4,
Next, call number 5 adds virtual schema,

0 Creating a new instance of the Vi r t ual Schema (call number 6; more
information could be in found chapter 5.2.5.3) and adding them to the
Hasht abl e storing all loaded virtual schemas (call number 7).

o And finally setting the newly created virtual schema as an active one
(call number 8).

5.2.5.2 Usng Cache

Performance is a key issue during working with all kinds of database systems and
applications working with them. One of the common techniques is using a cache

—105 -

memory, which stores items downloaded from the repository. Thus referencing to the
particular item (link, attribute's value, etc) or metaitem (class, association, etc) does not
reguire recreating them on the application side. We have followed this approach in our
wrapper too. All items downloaded from the database are stored in a special map, where
the key is a unique id of the item (instance of the AdUni quel D) and a value is a
reference to the object. We have decided to use instance of the Hasht abl e class

(named | ocal | t ens), which supports agood performance.

There are a few simple methods, which are used to manage the cache memory,
namely:
Adl tem GetLocal Iten{AdUni quel D 1 D); The method returns an
item (object, link, attribute’s value) or meta item (class, association, attribute)
with agiven id.
int LocalltenfSize; The property simply gets the number of items

stored in the cache.

voi d O ear User Obj ect For Local Qbj ect s(); The method finds all
objects, which are stored in the cache and clear their user’s object. This is

necessary in some cases (see further chapters).

void C earUser Qbj ect For Local Attri buteVal ues(); Similar
to the above method, but clears for the attributes’ values.

One could be curious why we do not have a method to clear the cache (remove all
stored objects). In language like C#, the cleaning job is done by the garbage collector,
which will clear the memory, when there will be no references to the cache collection.

5.25.3 Loading Virtual Schema
All task related to the creating virtual schema are performed in the constructor of

the Vi r t ual Schene class. Figure 72 illustrates the whole process:

Call number 1 creates the object (also shown on Figure 71, page 105) and all

actions are started from the constructor,

—106 —

Two instances of the Ar r ayLi st class are created. They store objects of the
AdQdr aCl ass (classes, call number 2) and AdQdraAssoci ati on

(associations, call number 3),

Then Hashtabl e fronmni quel DTol t em is created, mapping from
items ids to the items instances. This map is required by the method

AdW apper : : Get Local | t empresented in the chapter 5.2.5.2,

3: associations = Create()

4: fromUniquelDToltem := Crea{eo
‘ :Hashtable
5: ReadMetaData(fileName) ‘
= Createl

8: ‘[(Favato read] ReaLj()
I

‘ 9:‘[10reacthLss]Creale() i 'LJ : AdOdraQass

! 10.‘ *[foreach assocjation] Create() ‘ 7
‘ } 11: *[foreach atfribute] Create() ! : AdOdraAttribute
| 12] I N
‘ 13: . ‘ ‘

Figure 72. Sequence diagram for creating Virtual Schema.

Call number 5 starts the ReadMet aDat a method, which do the following:

0 Createstwo objects (Fi | eSt r eam Xnml Text Reader) needed to read

virtual schema configuration from the XML file,

0 Reads al XML data and creates instances of the AdCQdr aCl ass
(information about a class), AdCdr aAt t ri but e (information about an
atribute) and AdOdr aAssoci ation (information about an

association).

More about working with metadata could be found in Chapter 5.2.3.

—107 -

5.25.4 Accessing an Object

Objects from a data source are represented by the AdOdr aChj ect class, which
implements AdObj ect interface. They could be accessed using AdQbj ect
Get Obj ect (AdUni quel D i d) method, which body is presented on the sequence

diagram from the Figure 73:
: OdraWrapper ’ localltems:Hashtable ‘
1: GetObject(id)

2: localObject = GetLocalltem(id)

3: return [localObject = null { . Ahi =
L [)] 4; obj = Create()

W
: AdOdraObject
5: Add(obj) o

|

e 6:returnobj — ‘
|

, \

Figure 73. Sequence diagram for the Odr aW apper : : Get Qbj ect (1 d) method.

The first thing, which should be performed is to check if required object isin
the cache memory (see chapter 5.2.5.2) —call 2.

If the method returns value different then nul | , which means a valid object,
the object isreturned — call 3.

Otherwise the object’s instance is created — call 4 (see further in this chapter),

Newly created object is added to the cache memory — call number 5 and
returned in call number 6.

As always in this wrapper, the entire process of creation and initialization with
proper values is performed in the constructor, which is illustrated on Figure 74 and
Figure 75 (sequence diagram has been split into two because of the readability issues):

At the beginning two instances of the ArrayLi st class are created. They
store attributes values— (call al) and links (call a2).

—108 —

Then in call a3 the id of the object’s class is retrieved and, in call a4, the

object’s class itself,

Call a5 creates OID (special object’s ids used in ODRA database), which will
be used to retrieve “original” ODRA object,

Ohject ‘ :Ojravvrgm‘ ‘ :VIrtuaIScheme‘ ‘ :Ojralvl‘l'l)atabase‘

1: create() [attributesValues:ArrayList ‘ ‘ ‘
2: Create
0 links:Arraylist ‘

3: metaClassID := GetClasisID(objectiD)
T

» L

4: theClass = Getltem(imeJaCIassID)
5 CreateOIDBasedeniqyelD(uniquelDValue) |
[

6: *[foreach attribute, GetOb"emmributeValues(obiem(Ld attributeName)

7: *[foreach attribute] Create() |
‘ \

T |

|

|

|
-
| |
| |
T T
| |
‘ ‘ : AdCdraAttributeValue
| | |

Figure 74. Sequence diagram for creating an object — part (a).

In call a6 we iterate through all attributes, and for each we retrieve al its
values (because in ODRA all attributes could have many values) and create
corresponding AdCdr aAt t r i but eVal ue instances (call a7),

Analogical steps are performed for links (calls bl to b6).

5.25.5 Downloading object’s Neighborhood

The process of download the neighborhood is widely utilized during extensional
navigation (implementation details about the topic could be found in chapter 5.4). In
this chapter we would like to discuss only wrapper’s part of the process. The wrapper’s
method, which alows downloading the neighborhood is |Li st
Get Al | Obj ect s(AdUni quel D Uni quel D) . Its content (as a sequence diagram)

is shown on Figure 76 and could be summarized as follows:

At the beginning (call number 2) the instance of the Arr ayLi st is created.
This object will store ids of the objects composing the neighborhood and id of
the starting object,

—109 -

Then, starting object is downloaded (as an instance of the AdGdr aCbj ect

class) — call number 3,

‘ theClass ; AdOdraQass ‘ ‘ asoc : AdOdraAssociation ‘ ‘ : OdraMTDatabase ‘ apper

1 asoc :=*[foreach association] asoc := GetAssociation

2: genericQuery:= QueryDefinition()

3: result := ExecuteQuery(genericQuery)

4: list:= Create() i i i Arraylist ‘
5: parseResult(list, result)
6: UpdateLinksFromTargetObjectsIDs(objectsIDs, idAssociation) ‘ 'u

Figure 75. Sequence diagram for creating an object — part (b).

{

2: list:= Create() - \
Arraylist

: OdraWrapper ’ startingObject : AdOdraObject
1: GetAllObjects(

uniquelD)

3: startingObject := GetObject(uniquelD)

4: Add(startingObject.UniquelD)

5: links := Links() |

1
6: *[foreach link in links] targetObject := GetObject(link.Targetld) 'H

7: Add(targetObject.UniuelD) ‘ ‘

»

8: return list
<~ — — — — | |

Figure 76. Sequence diagram for downloading object’ s neighborhood.

—-110-

Identifier of the starting object is added to the previously created collection —
call number 4,

For the starting object, collection storing its al links (instances of the
AdQdr aLi nk class) isaccessed in call 5,

Each object being link’ s target, is downloaded (call 6) and added to the results
collection (call 7).

Finally, in call number 8, the collection is returned.

5.2.5.6 Navigation via Association’s Role

Navigation via association’s role is utilized in the intensional navigation session.
From the wrapper’s point of view, the | Li st Get Obj ectsl Ds(IList |IDs,
AdAssoci ati on Associ ati on) method is crucial. Figure 77 illustrates the

actions performed in the method:

E : OdraWrapper association : AdOdraAssociation ‘ l : OdraMTDatabase ‘

{ {

1: GetObjectsIDs(IDs, association)

4 2: genericQuery:= QueryDefinition()

U 4: results := ExecuteQuery(query)

5: list:= Create()

:Arraylist

6: parseResult(list, results)

|
>
3: query:= GetlDsListClause(IDs) 'H
|
|
|
T
|
|
|
|
7: return list ‘
|

1

Figure 77. Sequence diagram for navigating via association.

First the query language statement for the given association is read (call

number 2),

-111 -

Then query is modified in such a way to navigate only from given (passed to
the method) objects (call number 3),

In call 4 the query is executed,

Call number 5 creates an Ar r ayLi st , which will store the ids of the objects

being the result of the navigation,

Returned result (from call 4) is parsed, converted (from ODRA native results
tothe Abst r act Dat abase format) and stored on the list.

And call 7 returns the collection containing the result of the navigation.

5.2.5.7 Filtering Objects

Filtering objects is utilized in the intensional navigation as a one of the ways of

marking objects. Wrapper has two methods performing the task:
| Li st Get ObjectslDs(AdCriterion Criterion);

| Li st Get Obj ect sl Ds(| Li st | Ds, AdCriterion
Criterion);

The first one simply calls the second one with the first parameter equalsto nul | .
Thus we are going to discuss only the second one. Its content is presented on the

sequence diagram shown on Figure 78:

In call number 2, the method checks if collection of objects’ ids is not null. If

it is so, query containing information about objects is formulated,

If passed Criterion type is different than AdCriterionFilter, an
exception is thrown. This is caused by the fact, that this prototype
implementation only works with filtering (call number 3),

Calls 4 and 5 get object describing the class being filtered,
In call 6 query (filtering) is executed,

Call number 7 creates an Ar r ayLi st , which will store the ids of the objects

being the result of the filtering,

-112 -

Returned result (from call 6) is parsed (call 8), converted (from ODRA native
resultsto the Abst r act Dat abase format) and stored on the list,

And call 9 returns the collection containing the result of the filtering.

pper ‘ criterion:AdCriterionHIterO‘ ‘ : OdraMTDatabase ‘
1: GetObjectsIDs(IDs,

criterion) ‘ ‘

2: query = [IDs != null] GetIDsListClause(IDs)

3: [Criterion is AdCriterionFilter]()
:Exception

4: metaClassld = MetaClass()

5: metaClass := GetlLocalltem(metaClassid)

[

6: results := ExecuteQuery(query)

7: list:= Create()

ist:Arraylist

8: parseResult(list, results)

9: return list

U

Figure 78. Sequence diagram for filtering objects.

5.25.8 Workingwith Labels

Sometimes in Mavigator we have to deal with objects labels. It happens often
during working with baskets or the list of objects. Thus there must be a method, which
for given objects’ ids, return their labels (actually labels and ids). And this actually what
the | Li st GetLabel s(IList UniquelDs) method do: returns a collection
containing instances of the AdQdr aLabel class. The whole process is illustrated on

the sequence diagram from Figure 79:

First the ArrayLi st is created for goring the list containing pairs: object’s
id and label (stored in instance AdCdr aLabel) —call 2,

Then for each object’s id from the passed list — call 3:

0 Get class'sid for an object with given id (call 4),

- 113 -

0 Get the class object with the above id (call 5),
o Find attribute acting as object’s label — call 6,

0 Get value of the attribute in call 7 (simplified on diagram- actually the
array of values is processed),

0 Create an instance of the AdLabel (call 8) and add it to the list (call 9).

And finally, after processing all objects' ids, thelist is returned in call 10.

apper ‘ :VirtualScheme ‘ ‘ class ; AdOdradass ‘ : OdraMTDatabase ‘
1: Getlabels(IDs) ‘

2: labels = Create()

3 *Toreach idinIDs]

labels:ArrayList

4: classID := GetClassID(objectiD)

6: atfributeLabel := LabelAttribute()

5: dlass = Getitem(id) ‘

7: label := GetObjectAttributeValues(objectOid, atiributeName)

8: labelObj := Create(id, label)

9: Add(labelObj)

10: return list 7J

|
|
|
|
|
|

:
|
|

Figure 79. Sequence diagram for creating labels for objects.

5.25.9 Dealing with configuration

Mavigator’s wrapper works with two kinds of data, which could be recognized as
aconfiguration:

Virtual Schemas, because they influence the way how user see database
schema graph,

General configuration file, dedicated to the database.

Because Virtual Schemas' configuration has been already discussed we will
concentrate only on the second case.

—114-

Wrapper's configuration is stored in an XML file containing different sections,
related to the particular topics:

hj ect s. Label s. For each objects class, defines name of the attribute,

which values will be used as a object’s labels,

hj ect s. | mages. For each objects class, defines the file name storing a

graphics (icon), to visualize the object (i.e. during extensional navigation),

Cl asses. Locati ons. For each class, defines its location (in terms of

coordination’s: X, y) on the surface in the intensional navigation window,

Ol asses. | mages. For each class defines the file name storing a graphics
(icon), to visualize the class (in intensional navigation). The file could be

different than file used to visualize objects of the same class.

<?xm version="1.0" encodi ng="utf-8"?>
<l-- Configuration file for the Odra AdW apper
Dat abaseName: Northwi nd -->
<profile>
<section nane="Qbj ects. Label s">
<entry nanme="Enpl oyees" >Last Nane</entry>
<entry name="Cust onmers" >ConpanyNanme</ entry>
</ section>
<section nane="Qbj ects. | nmges" >
<entry name="Enpl oyees" >Cl assesl cons\ Movi eDi rect or. png</entry>
<entry nanme="Customners">Cl assesl cons\ Per son. png</entry>
</ section>
<section name="C asses. Locati ons">
<entry name="Enpl oyees" >550; 400</ entry>
<entry name="Cust oners">200; 700</entry>
</ section>
<section nane="Cl asses. | mages" >
<entry name="Enpl oyees">Cl assesl cons\ Movi eDi rect or. png</entry>
<entry nanme="Custoners">Cl assesl cons\ Per son. png</entry>

</ section>

</profile>

Example 17. Sample configuration file.

—-115-

Example 17 shows sample XML file containing configuration for the simplified

(cut to only two classes) Northwind database.

5.3 Intensional Navigation

Before we go into details, we notice that almost all calls to the “business’
Mavigator's methods (like the dstarting new intensional navigation:
startl ntensi onal Navi gati on()) are the results of some GUI interaction.
Thus, they are done via dedicated handler methods (linked to the particular widgets, and
triggered on specified user’s actions. i.e. click) i.e. nmuVi ewl nt ensi onal
Navi gati on_Cl i ck. However, because of clarity, they are skipped in descriptions

and diagrams.

The next sub-chapters discuss particular topics related to the implementation of

the intensional navigation.

5.3.1 Starting a New Session

When the user starts intensional navigation session using appropriate command of
the Mavigator's main menu, the st art | nt ensi onal Navi gat i on method from

the Mai nFr ane classisrun.

1: startintentionalNavigation

2: return [this.database = null] retumn . -
< — — — — — 3: Create(ThreadProc_StartintensionalNavigation)

Thread

4: Start

6: ShowMit(caption) L% : IntensionalNavigationForm
{ 7: HideWait() |
8: Show() T

Figure 80. Sequence diagram for starting a new intensional navigation session — an overview.

- 116 -

The process's explanation has been split (because of the diagram’ s size) into three
parts. The first one, an overview, illustrated by the sequence diagram shown on Figure

80, consists of the following elements:

Checking if data source has not been opened. In that case, the special message
is shown (not presented on the diagram) and starting is interrupted — call

number 2,

Creating a new thread with a method passed as a parameter — call number 3. In
fact, the thread’s utilization looks little bit more complicated. However we

have skipped some items, used in code, but not shown on the diagram.
Starting created thread — call 4,

Showing “wait” window to the user (cal 6). In the mean time, the started
thread creates (call 5) a new Instance of the

| nt ensi onal Navi gat i onFor mclass— see further,

When creating is done, the method Hi deWai t () is called (message number
7,

Finally, after unblocking modal “waiting” window, the Show() method isrun

—call number 8.

The second explanation's part discuss creating (in a separate thread) and
initialization instance of the | nt ensi onal Navi gat i onFor mclass. The sequence

diagram, shown on Figure 81, helps to understand the process:

Call 2 among creating ordinary window’s widgets (not shown) creates (call 3)
instance of the GraphPanel class, which is used to visualize database

schema graph,

In call 4 some graph’s properties are set (shown only one of them) and in call

5 (shown only one) handler methods are assigned,
Call 6 uses global class method to load icons for the toolbar,

Call 7 run significant method, which fills the graph with edges and vertices

(see further),

—-117-

And the last call (8) creates instance of the UndoManager class to handle
undo (back) and redo (forward) operations.

1: Create() - IntensionalNavigationForm
2: InitializzComponent()

3: Create() : GraphPanel

4 4: UseHighQuality(true) ‘

5: DragDrop(graph_DragDrop)

8: Create() 5
:UndoManager

\

\

\

\

\

\

\ L]
‘ 6: LoadTooIbarIcons(tooIBarNan%e, toolBar)
\

\

\

\

\

\

7: FillinGraph() ‘ 'H
|
|
|
|
|

Figure 81. Sequence diagram for creating instance of the
| nt ensi onal Navi gat i onFor mclass.

And the last part discussesthe Fi | | Graph() method, which fills the graph with
classes and associations (and roles). Corresponding sequence diagram (simplified) is
shown on Figure 82:

At the beginning, three map collections are created (calls: 2, 3, 4),
Then for each class in the data source:
0 Add vertex (call number 6) as avisualization of the class,

0 Remember number of objects for this class in the map (call 7),

-118 -

0 Remember mapping from class's id to the corresponding vertex (call
number 8),

For each association (simplified description):
0 Add edge to the graph (call 10),
0 Remember mapping from association’s id to the edge,

0 Addrole'slabel for the association.

: IntensionalNavigationForm ‘ : GraphPanel

‘ 1: FillinGraph()

]

2: Create() idToVertex:Hashtable
3: Create()

>/ idToEdge:Hashtable
4: Create() ‘ \} idToNumber OfObjects:Hashtable ‘

5: *[for each class] ‘ ‘ ‘
6 daverte.) | \ |
|

|

|

|

|

|

|

|

|

|

7: Add(aClass.UniquelD, numberOfOb'Lscts)

8: Add(aClass.UniquelD, \ertexS) |

T 9: *[for each association]

10: AddEdge(...)

]

11: Add(asoc.UniquelD, edge)

12: AddRoleLabel(...)

]

Figure 82. Sequence diagramillustrating Fi | | 1 nGr aph() method.

5.3.2 Filtering Objects

Filtering objects is used, as a one of the ways, to marking objects in intensional
navigation. It is started from the context menu (Figure 30, page 56), which means

creating instance of the Cont ext Menu class, showing it and catching user’s choice.

- 119 -

As aresult the Fi | t er Mar kedQbj ect s() method is started. Their interior (in a

simplified form) is shown using sequence diagram on Figure 83:

‘ : IntensionalNavigationForm ‘ idToVertex:Hashtable
1: FlterMarkedObjects(aClass)
2: Create() : VisualFilteringForm
3: Create()

/} : GraphicalConditionControl ‘

4: ShowDialog() o

5: DoFiltering()

7: return incomplete
I=null] retumn

|
|
|
|
|
|
6: incomplete := Getlnco‘mpleteltem()
|
8: GetTexCriterion() ‘
t

9: PerformFiltering(aClass, whereClause, undoManager)

| | M

10: UpdateNavigationSteps()‘H

11: wertex:= Get(aCIassAUn‘iquelD)

T \ \

| |

| |

| |

| |

| |

12: AddAnimationVertex(verﬁex) ‘
| |

| |

| |

Figure 83. Sequence diagram for filtering objects.

Call 2 creates window of the Vi sual Fi | t er i ngFor mclass, which is used

to graphically (see 4.3.1) formulate the filtering criterion.

In call 3 the instance of the Gr aphi cal Condi ti onControl class is
created,

Call 4 shows the window as a modal dialog. User is able to “draw” a criterion
and then clicks the Filtering button, which runs DoFi | t eri ng() method
(call 5),

-120 -

0 Call 6 checksif criterion is complete. Otherwise returns (call number 7),
o Call 8 getsfiltering criterion, visually formulated by the user,

o Call 9 darts filtering asynchronously (using threads, not shown on the
diagram),

In call 10, history of marked objects' activities is updated (see chapter 5.3.6),

Finally, calls 11 and 12 handle animation of the filtered class (graph’ s vertex).

5.3.3 Navigating

Navigating is started when a user clicks on the association’s role. As a result,
Navi gat e(AdAssoci ati on association, Point point) method is
started, which shows the context menu and run
Cr eat eAndRunNavi agti onThread() method. Their operations (simplified

version) are illustrated on the sequence diagram shown on Figure 84:

IntensionalNavigationForm ‘ :AdOdraMsociation‘ ‘ : OdraWrapper ‘ ‘sourceC:AdOdraGass ‘

1: Navigate(association, point)

2: CreateAndRunNavagtionThread() ‘

3: Create()

|
| |
|
|

4: sourcelD = Source(%

5: sourceC = GetLocalltem(sourcelD)

6: targetlD := Targetsz

7: targetC := GetLocal I*em(targetiD) ‘

8: markedObjects := UserObject()

10: Create()

|
[
o |
11: U dateNa\AganonTteps()
|
U | |
| |

T I

:IntensionalNavigationStep

9: newIDs := GetObjectsIDs(IDs, Association) 'u
|
[
I

Figure 84. Sequence diagram illustrating navigating from class to class via association’s role.

-121 -

Call 1 displays context menu with navigation's options and handles user’s

input (also deals with the progress window — not shown on the diagram),
Call 2 starts a new thread performing navigating:

0 Calls4 - 7 getsinstances of classes describing source and target classes
of the navigation,

o Call 8retrieves acollection (stored as a user’s object) holding class's set

of marked objects,

o Call 9refersto the data wrapper and retrieves ids of the objects being the
result of navigation,

0 Call 10 creates an object, which is used to performing undo of the

navigation,

0 And call 11 updates navigation steps (see chapter 5.3.6).

5.3.4 Showing Objects

3 o | | st
| |

1: list := ShowObjects(aClass, tltlel

‘ 2: list:= ShowObjects(objectsIDs, title, returnNeWIDs)

ist I=null] 'U

4: step := Create(aClass, list) ‘

: IntentionalNavigationStep

5: AddEdit(step)

6: UpdateNavigationSteps()

]

|

|
|

|
|
| |

7: Refresh()

|
|

|
|
| |

i

\ \
\ \
\ \
| \
[|
\ \
| |
-
\ \
| |
Figure 85. Sequence diagram for showing objects — part 1.
A list of marked objects could be shown during an intensional navigation session.

The appropriate command is started from the marked objects context menu and results

in running the voi d ShowObj ect s(AdC ass aC ass, String title)

-122 -

method from the | nt ensi onal Navi gat i onFor mclass. This operation performs

only two general steps (see Figure 85):

starts a more general version (call 2) from the Mai nFr ame class - | Li st
ShowCbj ects(IList objectslDs, String title, bool
ret ur nNewi Ds) ,

checks if the shown list has been modified (call 3). If so then add instance of
the | nt ensi onal Navi gati onSt ep class (call 4), which records the
previous state of the list. Then updates the steps list (call 5, 6) and refreshes
the graph (call 7).
The man pat of showing objects is performed inside | Li st
ShowObj ect s(| Li st obj ect sl Ds, String title, bool

returnNewl Ds) method of the Mai nFranme class. Its functioning has been
illustrated on the sequence diagram shown on Figure 86:

: IntensionalNavigationForm ‘ ‘ : MainFrame ‘ ‘ : CdraWrapper ‘ ‘ :ListBox ‘

| |
1: list:= ShowObjects(...)

| il |

I 5: InitializzComponent() ‘

|

6: LoadLabels() ‘

|

7: labels = GetlLabels(UniquelDs)

»

9: Add(label)

|

|

|

|

‘ 8: [foreach label in labels ’H
|]

|

|

|

|

Figure 86. Sequence diagram for showing objects — part 2

call 2 shows simplified version of creating a new thread, which is responsible
for the whole process,

- 123 -

call 3 shows progress window and “locks’ the main thread until the new one

ends,

call 4 creates awindow for showing objects’ labels,

call 5 initializes widgets (also adds listener for user’s actions),

call 6 loads labels from the wrapper and adds them to the appropriate widget

(shownoncals7-9).

5.3.5 Handling Drag&Drop
The Drag and Drop metaphor is widely used in nowadays application. In
Mavigator and intensional navigation particularly, it is used to perform two main tasks:
Dropping object from the basket or extensional navigation,

Dragging class's visualization (icon) and drop onto the basket.

The Mavigator’s prototype utilizes the native C# mechanism, which simplifies the
whole task. Objects, which are dragged among different Mavigator’s metaphors, are
stored inside two kinds of instances:

Transport er AdCl ass class, which is used during transfer to the basket,

and stores instance of the AdCl ass,

Transport er AdUni quel Ds class, which is utilized more widely: in
baskets, extensional navigation and intensional navigation. This instance stores
thel Li st with ids of the objects being dragged.

The general idea is as follows:

Add an appropriate handler method to the control (widget), which catches
particular kinds of D&D process (start dragging, dropping, dragging over, etc),
i.e the voi d gr aph_Dr agDr op(obj ect sender,

Dr agEvent Ar gs e) method catches dropping the item onto the intensional

navigation surface,
Inside the dedicated handler method, the programmer has to:

0 Take out atransferred item from the instance of the Dr agEvent Ar gs

class,

—124 -

o Perform appropriate actions, according to the operation’s semantics,
0 Set an appropriate effect (special property of the Dr agEvent Ar gs

class) on the operation.

5.3.6 Dealing with Back/Forward

Operations related to the marked objects are stored on a special list as so-called
edits. The main concept is based on the Java’'s UndoManager class. All actions are

supported by the couple of classes:

UndoManager (which implements| UndoManager interface) manages and

stores edits. More important methods:
o void AddEdit (I Editltem edit) —addssingleedit tothelist,
0 void Undo() - Performsan undo operation for the current edit,
0 void Redo() - Performsaredo operation for the current edit,

0 void UndoTo(lEditltem edit) - Undoes all changes from the
current edit to the given edit,

0 void RedoTo(lEditltem edit) - Redoes al changes from the
current edit to the given edit,

| nt ensi onal Navi gati onStep (which implements |Editltem
interface), stores and manages single edit (navigation step). More important
methods:

0 bool CanRedo() - Returns true if a redo operation would be

successful now, false otherwise,

0 bool CanUndo() - Returns true if a undo operation would be

successful now, false otherwise,

0 String CetPresentationNanme() - Provides a localized, human
readable description of this edit,

0 voi d Undo() - Undoesthe edit that was made,

0 voi d Redo() - Re-appliesthe edit, assuming that it has been undone.

- 125 -

o override String ToString() —overridden version of the native
C# method. Allows presenting correct labels in C# widgets.

All the above methods are self-explained thus we are not going to discuss them. A
short overview of the general idea is as follows:

all edits are stored by the UndoManager ,
each single edit storestwo version of data:
o after the change,
0 before the change,

when a user would like to perform the undo operation, UndoManager calls
the Undo method for the current edit. Asthe result, the previous version of the
datais set,

opposing actions are taken during requesting redo operation.

5.4 Extensional Navigation

From the implementation point of view, extensional navigation is resource
demanding. It is mainly caused by the potentially big number of objects to work with.
However, due to the nature of this research, we avoid complicated optimization
techniques, which could have destructing impact on the clarity of the prototype design.
The following sub-chapters discuss particular topics.

5.4.1 Starting Navigation
Extensional navigation could be started by the appropriate command from the

object context menu. However, the menu is accessible to the user, in many Mavigator’s
metaphors, including baskets, object operations, etc. Still, all actions refer to the single
general method (from the Mai nFr ame class): voi d
St art Ext ensi onal Navi gati on(AduUni quel D i dQObject). The method

works as follow:
creates an instance of the Ext ensi onal Navi gat i onFor mclass,

creates an empty Ar r ayLi st and adds a starting object,

- 126 -

shows the form and sats the void Fill Gaph(lList
listStartingObjectl| Ds) method, which downloads the starting object
neighbourhood.

5.4.2 Downloading Neighbourhood

Roughly speaking, downloading object’ s neighbourhood means running thevoi d
FillGaph(lList listStartingObjectlDs) method with a dsarting
object’s id passed as a parameter. Operations performed by the method are illustrated

using sequence diagram shown on Figure 87:

‘ : ExtensionalNavigationForm ‘ ‘ : OdraWrapper ‘ ‘ : GraphPanel ‘
1: FillGraph(listStartingObjectiD:
ph(is nptjectls 2: Create()
:Thread ‘ ‘
l3: ShowWait() .
4: BeginUpdate()
|

» |

5: *[foreach staninngIﬁ)]

| - |

6: SetWaitCaption(caption) ‘ ‘

' 7: GetObject(id))
8: v:= GetVertexForObject(idObject, referencePoint)

| ¢

U‘ 9: *[foreach link] ‘
] |

|

|

10: GetObject(targetiD l

11: tV:= GetVertexrorObject(idObject, referencePoint)

u:lz GetEdgeForLink(link, v, tv)

”

14: HideWait()

U

|
|
|
13: EndUpdate() ‘
|
|
|

Figure 87. Sequence diagram for downloading object’s neighborhood (extensional navigation)

Call 2 creates a new thread (simplified version), which is responsible for the

operation,

Call 3 “locks’ GUI and shows waiting window,

-127 -

Call 4 notifies the graph panel that there will be changes to the graph,
Call 5 process each object’ s id separately:

o Call 6 changes the waiting caption,

o Call 7 getsthe “source’ object,

o Call 8 getsvertex for the source object (or creates a new one if required).
Each extensional navigation session has its own set of visualized objects.
The same object, even referenced from different places is aways
represented by the same icon on the graph

0 Call 9 processes each link separately:

§ Cal 10 gets object (instance of the AdObj ect class) for the
target object’s id of the processed link,

§ Call 11 retrieves a vertex for the above object,

§ Call 12 returns (or creates if necessary) an edge for the source

and target vertex,
o Call 13 notifies the graph about ending the changes,

Finally, call 14 hides the wait window and “unlocks’ the GUI.

5.4.3 Layouting the Graph

Layouting the extensional navigation graph is managed by a special object
belonging to the Layout Touch class. The timer calls repeatedly (about 25 times per
second) a special method (Run()) of the class, in the background of the main thread,
which assures smooth animation of the vertices and edges. The implemented algorithm
is based on the one introduced in the LayoutGraph example shipped with the Java JDK
and TouchGraph.

Roughly speaking the process of layouting the graph is performed in the following
steps, executed by the following methods (started from the Run() method of the
Layout Touch object):

voi d rel axEdges() — calculates nodes motion vectorsto pull them close

together,

- 128 -

voi d avoi dLabel s() —move nodes in such away to avoid labels,

voi d noveNodes() — moves nodes according to the predefined motions

vectors.

5.4.4 Working with Object

An object content is presented using instance of the Obj ect Vi ewer For mclass.
Similarly to the starting extensional navigation, user starts the process by executing
appropriate command from the context menu. As the result the
Show(bj ect (AdUni quel D obj ect | D) method from the Mai nFr ane class is
run. The method creates a new thread, which asynchronously presents a selected object.
Figure 88 illustrates the process:

‘ : OdraWrapper ‘ ‘ckﬁ:AdOdraOass ‘

1: ShowObject(objectiD)

2: Create()

3: Create(id)

|
|
‘

5: obj := GetObject(id)

6: class := GetLocalltem(obj.classID) T

7: IconForObject()

|
|
|
|
|
|
‘ »
8: LoadContent() ‘
| |
| |
|
|
\
|
\

9: *[foreach value in values]

10: attr := GetLocalltem(vaJue.anribEtelD)

:ListViewltem

11: item := Create(attr, value) 'H
\

Figure 88. Sequence diagram for showing object.

Call 3 creates a new instance of the Obj ect Vi ewer For mclass,
Call 5 retrieves an object from the wrapper, and call 6 its class,

Call 7 getsicon for the object (which will be shown to the user),

- 129 -

Call 8 load content of the object, which means values (as strings) of al its
attributes,

0 For each value (call 9), its attribute is retrieved (call 10)

o And new instance of the Li st Vi ew t em class is created (storing
attribute and its value).

5.5 Baskets

Baskets are shown using an instance of the Basket For mclass. However they
are stored inside tags (Tag property) of the Tr eeVi ewiVS object (this is a modified
version of the core C# Tr eeVi ew control). This object is visualized on the Figure 47
(page 70). Aside of the mentioned classes, basket implementation is based on the

following classes:

Basket | t em—main super class for basket items. Assures basic functionality
like storing referencing tree node, label, associated tool tip (declaration only)

and overridden version of the ToSt ri ng() method,

Basket Fol der — stores information about sub/super basket. Mainly

implements overridden versions of the tool tip and description properties,

Basket Obj ect —recordsthe information about a single object in the basket.
Contains an overridden version of the tool tip and comment properties, and
also id of the object. That is, baskets store only object ids.

As mentioned earlier, baskets also support drag and drop technique. However, we
are not going to describe it, because the implementation is based on rules already
discussed in chapter 5.3.5.

5.5.1 Creating Basket
Creating of a new basket is started by clicking the button Create in the window
shown on Figure 47 (page 70). The activity starts Tr eeNode Cr eat eBasket

(TreeNode node) method of the Basket For mclass, which acts as follow (Figure
89):

—-130-

Call 2 create a new instance of window, which allows entering name and
description of the basket,

Call 3 shows above window,

Call 4 creates tree node and call 5 object, which stores information about new
basket,

Call 6 and 7 ensures visibility of the new basket in the tree,

Call 8 returns the newly created node (containing Basket Fol der).

’ QU ‘ ’ : BasketForm ‘
l l
|

1: CreateBasket(node) |

2: Create()

H bfForm : BasketFolderForm ‘

4: node := Create()

>[[node:TreeNode
‘ >[[: BasketFolder

5: Create()

6: BExpand()

7: EnsureMsible()

8: return node
~ - = — 7

Figure 89. Sequence diagram for creating a new basket.

5.5.2 Basket’s Operations

Performing basket’s operations is possible from the context menu. Choosing a
suitable command starts an appropriate method (the names are self explained):

voi d PerfornSunOf Basket (...);
void Perform ntersecti onOf Basket (...);

void PerfornDifferenceO Basket(...);

-131-

All of them get three parameters:

two of them contain instances of the Tr eeNode class, which are the

arguments of the operations,
the third one is also a Tr eeNode instance, which will have the result of the
operation.

The methods work in the similar way, so we will discuss their implementation
using only one of them: voi d Perform ntersecti onOf Basket (Tr eeNode
nodeA, TreeNode nodeB, TreeNode nodeResult). Figure 90 contains

sequence diagram illustrating performed actions:

| 1: PerformintersectionOfBasket(A B, |
2: Create() [AArrayList
3: Create()

LB:ArraylList

4: Create() ‘ LRArraylist
5: AddObjectsToLis{(A LA true)

|
6: AddObjectsToLisJ(B, LB, true) ‘
|

] |

7: result:= IntersechwoSets(LA LB)‘

8: AddObjectsToBasket(result, R)

%

|
|
|
|
|
|
|
‘ 'u
|
| | |
| | |
. . I
Figure 90. Sequence diagram illustrating operation on baskets.

Calls2 and 3 create Ar r ayLi st s to sore operation’s parameters.
Call 4 creates another Ar r ayLi st for the results.

Calls 5 and 6 add basket’s items (from all nested baskets) as objects to lists.
Thus, each of lists contains objects ids from all nested baskets (without
information about sub-baskets). The third method’'s parameter indicates if
repetitions are disallowed.

-132 -

Call 7 runs method, which performs appropriate operation (intersection) on
two lists. Theresult is returned.

Call 8 converts the result containing objects ids to the appropriate tree
constructs (instances of the Tr eeNode linked with Basket Obj ect 9).

5.5.3 Baskets’ Persistency
Basket’'s persistency is implemented using the C# native serialization.
Unfortunately, the Tr eeVi ew control does not support serialization itself. Thus,

manual methods have been introduced:

voi d SaveBasket (Stream stream; saves basket’'s content to the
given stream. Calls class method (static) voi d SaveTree(TreeVi ew

tree, Stream strean).

voi d LoadBasket (Stream strean); loadsbasket’'s content from the
given stream. Calls class method (static) voi d LoadTree(TreeVi ew

tree, Stream strean.

Roughly speaking above methods utilize instances of the Bi nar yFor mat t er
class to load/save items, which the contents consist of. Each of the items is read/written

in turn, one by one fronV to the stream.

5.6 Active Extensions

The Mavigator prototype utilizes active extensions written in Microsoft C#. The
functionality requires compiling and running a source code (which implements a
particular extension) during execution (runtime) of Mavigator. When we started

thinking about the way of implementation, two different solutions came to our minds:

Our first idea was to define some programming interface, which should be

implemented by a particular class created by the programmer,

The second approach has been based on implementing only one method with

special parameters.

Finally we have found that the first approach would be exaggeration. Thus we
have decided to follow the second one. Programmer who wants to develop a particular

—-133 -

Active Extension has to create only one method (in special class): publ i c, stati c,

with two parameters.
instance of the data wrapper,
collection containing ids of the objects being processed.

Of coursg, inside the method could be any valid C# code including calling other
modules, creating objects, etc. After successful compilation, system adds this method to
the list of created extensions. When the user wish to run a particular Active Extension,
the system starts an associated method, passing instance of the data wrapper and
collection of objects’ ids'.

The whole process of managing Active Extensions is performed by the instance of

the Act i veExt ensi onEngi ne class. Its main methods are enumerated below:
bool Conpi | ed; Indicatesif an assembly is compiled and ready to run,
String SourceCode; Getsor setsasource code as a C# string,

voi d AddAssenbl yReference(String referenceNane); Adds
an assembly reference (needed by classes utilized in Active Eextensions
methods,

void Run(String nethodName, |IList [IDs, AdWapper
wr apper); Runsa method with the given name. Passes two parameters to

the method: list of uni quel Ds and instance of the wrapper,

bool Conpil e(); compilesthe source and creates assembly (ready to run)

in memory. Utilizes instances of the following classes (or interfaces):
o CShar pCodePr ovi der,
o | CodeConpil er,
o Conpil er Paraneters,
o Conpil erResults,

0 Assenbly.

—134—

| Li st Met hodsNanes; Gets a list containing names of all methods,
which have two parameters. | Li st , AW apper . Each of them is treated as

asingle Active Extension. Thus Active Extensions names must be unique,
Couple of methods to handle error messages.

The AE engine also provides some helper methods (grouped in the
Act i veExt ensi onsUsef ul Met hods class, as public and static), which

could be useful in implementing own extensions:

double Get M nVal ue(AW apper wrapper, |IList |IDs,
AdAttribute attribute, ref AdObject mnObject, ref

i nt counter); Returnsthe minimum value of a given attribute for a given

set of objects,

doubl e Get MaxVal ue(AW apper w apper, IList |Ds,
AdAttribute attribute, ref AdObject maxQbject, ref

int counter); Returns the maximum value of a given attribute for a

given set of objects,

String Get Attri but eval ue(AW apper wr apper,
AdUni quel D objectI D, AdAttribute attribute); Returns a

value (asa St r i ng) of agiven attribute for a given object (by itsID),

String GetAttributeVal ue(AdW apper w apper, AdObject
obj, AdAttribute attribute); Returnsavalue(asaStri ng) of a

given attribute for a given object (by its instance),

bool | sCl assCont ai nsAttri but e(AdC ass t hed ass,

AdAttri bute atr); Indicatesif agiven class contains agiven attribute.

Roughly speaking, a programmer, who would like to creste an own Active

Extension, hasto perform only few simple steps:

define a new method (public, static) with two parameters. | Li st
| Ds, AdW apper wr apper and put it into

Act i veExt ensi onl nst ance class. The name of the method could by

—-135-

any kind, upon the condition that will be uniqgue among other methods in the

class,
fill the method’ s body with an appropriate source code,

add appropriate using statements before the class definition.

public static void ShowNumber Of Mar kedObj ect s(I Li st |1 Ds, AdWapper w apper)
{
if(1Ds == null)
{
MessageBox. Show(" There are no marked objects defined for this class!",

"W apper version " + wapper. Version);

MessageBox. Show(" Nunber of marked objects: " + |Ds. Count,

"W apper version " + wapper. Version);

Example 18. Source code of the simple Active Extension.
Example 18 presents the source code of the very simple Active Extension, which

shows the number of objects passed for processing. Two things are worth noting:

the number of objects is retrieved from the collection's property:
| Li st:: Count,

showing awrapper version illustrates wrapper utilization.

—136 -

6 Mavigator’s Evaluation

According to [Shn03] and [Nor04], the application’s evaluation process has four
main aims:
Discovering major problems that could result in a human error or lead to

frustration of the user,

Reducing training time,

Increasing performance and efficiency,

Improving user’ s satisfaction from using the software.

Application’s usability could be defined as an ability to satisfy user's needs
related to the application. As noted in [MurOOb] there are two fundamental approaches
to usability:

By principles. This means choosing such usability principles, which will be
adequate for particular kind of application and user. Some of them have been
described in Chapter 4.7 (page 83),

By evaluation. This approach requires evaluation by the users, which means
that the whole application (or at least some part of them) must be developed.
The easy part of the method is criticizing current solutions. Unfortunately the

hard one is deciding what to change to improve it.

We believe that applications developers have to try joining two above
approaches. During the entire application’s creation process, all known usability
principles must be taken into consideration. Still, after developing a “beta” version,
evaluation with users must be conducted. During researches for this thesis we follow

thisrule.
In [Pla04] Plaisant distinguish four thematic areas of evaluation:

Controlled experiments comparing design elements. The studies in this
category might compare specific widgets or compare mappings of information

to graphical display,

- 137 -

Usability evaluation of a tool. Those studies might provide feedback on the
problems that users encountered with a tool and show how designers went on
to refine the design,

Controlled experiments comparing two or more tools. Those studies usually

try to compare a novel technique with the state of the art.

Case studies of tools in realistic settings. This is the least common type of
studies. The advantage of case studies is that they report on users in their
natural environment doing real tasks, demonstrating feasibility and in-context
usefulness. The disadvantage is that they are time consuming to conduct, and

results may not be replicable.

Our first prototype SKGN has been used in the European project ICONS'. Thus it
has been informally evaluated during using for the Structural Fund Projects Portal.
Hence we have some informal response from the users, generally very positive.
However, this thesis requires more formal evaluation.

We have decided to conduct usability evaluation of the tool (the second area of
evaluation). Next sub-chapters give detailed description of the process and discuss the

results.

6.1 Procedure

Mavigator's evaluation has been conducted by the 6 subjects in three groups
(because of problems with scheduling). All of them were students from the Polish-
Japanese Ingtitute of Information Technology (different departments). All surveys were
in Polish and based on [Hol93], [Nor00].

At the beginning, subjects have to answer questions about their experience and
knowledge. All answers were from range O (lack of knowledge) to 10 (expert). Below

we have enumerated all of them (question 1.1 isjust an id of the subject):

1.2 Object-oriented database concepts (classes, associations, etc.),
1.3 Microsoft Access experience,
1.4 Textual query language experiences (i.e. SQL, OQL),

1 EU 5th Framework project ICONS (Intelligent Content Management System), 1ST-2001-32429

—138 -

1.5 Visual information retrieval system experience,
1.6 Programming language experience.
Then, all subjects were trained on the Mavigator prototype. The training program

consisted of:
Short introduction with description of motivations behind Mavigator,
Review of background concepts like:
0 database schema graph,
0 classes, associations, attributes, etc.
Discussion of Mavigator’s key concepts.
0 Intensional navigation,
0 Extensional navigation,
0 Baskets,
0 Active Extensions,
0 Virtual Schemas.

Detailed instructions on using the prototype. This includes demonstration of

using particular techniques like filtering, navigating, etc.

After the training, subjects have to find answers for particular query questions. As
guery questions, the case studies described in Chapters 4.8.1 - 4.8.8 (pages 84 - 90)
have been utilized. For each query question, each subject has to fulfil survey with the

following items (2.1 isan id of the subject, 2.2 isthe number of the query question):

2.3 Difficulty of the query question — from 1 (easy) to 10 (very hard),
2.4 Success - in percents,
2.5 Timeto completion — in minutes,
2.6 Remarks.
At the end of evaluating, after solving all query problems, each user answers

summary questions about the metaphors, prototype, €etc:

3.1 Comprehensibility — from 1 (confusing) to 10 (clear),
3.2 Ease of use—from 1 (difficult) to 10 (easy),
3.3 Speed of use —from 1 (slow) to 10 (fast),

—-139 -

3.4 Performance — from 1 (slow) to 10 (fast),

3.5 Overall satisfaction —from 1 (terrible) to 10 (wonderful),
3.6 Remarks,

3.7 ldeas for improvement,

3.8 Ideasfor new Active Extensions.

6.2 Results

Detailed results could be found in appendix D on page 165. Next sub-chapters

contain summary of the results.

6.2.1 Subjects

14

Questions

Figure 91. Average information about subjects.

Figure 91 shows average values given by subjects describing themselves. Bars
refer to the questions shown on page 142. According to the answers, all subjects have
been quite familiar with database concepts (question 1.2, page 142), MS Access
(question 1.3, page 142), textual query languages (question 1.4, page 142) and
programming language (question 1.6, page 143). However, most of them were not
familiar with graphical user interfaces (question 1.5, page 143). From the testing point

—140 —

of view, maybe it would be better to find subjects less familiar with these topics.
However, we have to take into account that some of the answers could be a little bit
exaggerated. This might be caused by the fact that subjects were students (and the
administrator of the experiment was their teacher), who should be familiar with the

mentioned terms.

6.2.2 Query Questions

Figure 92 presents chart showing two kinds of information (for each query

question):
Average difficulty of the query questions (bars),

Average time to completion (line).

6,00

5,00 -

4,00 +

Difficulty
w
o
o
Time to completion

2,00 1

1,00 4 [Difficulty

== Time to
completion

0,00 -

Query question

Figure 92. Chart showing dependence between questions' difficulty and time for completion.

As it can be seen, queries, which has been judged as harder, take more time to
complete (except the fourth one). Also, amost all queries (without one — for one
subject), have been completed in 100 percent (not shown on the chart). The shortest
time to complete was 1.5 min. (for number 1 and 7), the longest one was 5.5 min. (for

number 4) and an average time to complete was about 2 minutes and 45 seconds.

—141-

According to the subjects answers, the most harder question was number 3 and then
number 6. However, even the hardest ones, still have been judged as easier than

medium (lessthen 5 in the 10 degrees scale).

6.2.3 Overall Results

Figure 93 shows average answers (to the questions from page 143), given by the
subjects, about Mavigator’s prototype. Roughly speaking, all answers are positive (more
then 5 in the tenth degrees scale).

Comprehensibility (question 3.1), which is a very important factor in graphical
user interfaces, has average value 6.5 with minimum at 4 (one subject) and maximum at
8 (also one subject). Most subjects give 7/10.

Average answer

33

Survey question

Figure 93. Chart showing average answers about Mavigator.

Another important factor, which has been judged by the subjects, is ease of use
(question 3.2). In this case, marks vary from 6, through 7 and 8 up to the 9. Average
value was 7.3/10, which is quite high.

Speed of use (question 3.3), which is different from speed of working
(performance — 3.4), describes things like the way of using options, running actions, etc.

—142 -

This factor is related in some way to the comprehensibility, and has achieved average
value about 6.6/10.

Speed of working (question 3.4) is not so important in case of prototypes.
Moreover performance of the information retrieval tools (including Mavigator) is
tightly connected with the performance of the data source. The current prototype works
with the ODRA experimental database server, which has not been optimized yet.

However, in this field Mavigator also got quite a good result: 7/10.

And the last factor, which has been assessed - overall satisfaction of the user. This
is very subjective judgment and has big impact on the user’s decision: do | really want
to use the tool? Fortunately, Mavigator’s users give them average mark about 7.5/10
with minimum at 7 and maximum at 9. Such a result bears good testimony to the ideas
and metaphors behind Mavigator.

6.2.4 Users’ Remarks

Subjects have the right (and they have been encouraged to) to makes comments
and remarks. All of them have been carefully analyzed. Most of them were related to
the graphical user interface (and have been taken into account) and not to the metaphors

itself. Next subchapters discuss the most important ones.

6.2.4.1 Items Lists

One subject noticed that alist of attributes during defining a single predicate is not
sorted any way. As a result all lists (of items of any kind) appearing in the prototype
have been analyzed and sorted alphabetically.

6.2.4.2 Showing Objects
Another subject gave attention that one of the most frequently performed

operations is showing marked objects. Thus, it would be nice to have an opportunity to
perform it very quick. Hence, a new way of showing marked objects has been added:
when a user double clicks on the classicon, alist of marked object is shown.

6.2.4.3 Showing Basket

Next problem was connected with showing basket’s window. When the window

has been shown, and then another window covered them, choosing Show basket from

—143 -

the menu, has no effect. It has been fixed by bringing the basket’s window to the front
(after selecting appropriate option form the menu).

6.2.4.4 Working with Single Predicate

When a user defines a single predicate (for filtering some objects; see Figure 32
on page 57), there is a necessity to enter some values. One of the subjects suggests that
application should prompt values of the selected attributes read from existing objects.
The idea is obviously good. However, its implementation could lead to serious
performance problems. This is caused by the fact that prompting values requires reading
all objects from the database (or at least all values of the particular attribute). This is
technically possible, but the performance overhead makes it questionable.

6.2.4.5 Help System

A few subjects ask for a help system. Of course this is a must in a commercial
application. However, due to the prototype nature of the project, such a system has not
been implemented.

6.2.4.6 Marking objectswith filtering

During filtering objects, one of the subjects, reported that filtering system does not
work. After the short investigation, come out that the user is filtering from O marked
objects, which leads to marking O objects. As a result, a dedicated message has been
added, which informs the user about the situation.

6.3 Summary

Conducted surveys satisfied two important evaluation’s targets:
Allowed improving the prototype,
Proved rightness of the Mavigator’s ideas and metaphors.

Overall high marks, issued by the prototype’s users confirm Mavigator's high
usability and easy-in-use.

— 144 —

7 Conclusion and Future Work

The goal of this thesis was to make an investigations into visual metaphors, which
allow naive users (computer non-professionals) working with an object-oriented
database. The research had shown that such metaphors must fulfilment following

reguirements:

Expressive power. The user must be able to perform queries similar to ones
expressed in textual languages.

Easiness of use. Because of special kind of the user, the proposed metaphors
must be easy in use and intuitive.

Information filtration. Nowadays domains are very complicated. Thus
database schema graphs, describing the domains are complicated too. Hence
there must be a way to limit shown graph to parts, which are really interested
to the user.

Customization. There must be a way to customize a database schema graph,

including classes' and attributes’ names, adding/hiding associations, etc.

Flexibility. It is quite obvious that it is not possible to create (or even define)
functionality, which suits needs of all users. So, there must be a way to add
new functions to the existing ones. In particularly, those modifications should

allow changing the way of presenting query results.

User awareness. During the whole process of information retrieval, the user

must be aware of all performed actions.

Coherence. All the utilized metaphors must be able to exchange information.
The same entities existing in different metaphors must be treated exactly in the

same way.

Interoperability. Information is retrieved by some purposes. Sometimes, it is
enough to consume the information inside the metaphors, but there must be
also away to utilize information in external systems.

Result’s recording. A user must be able to store any kind of information (not
only final results), which has been retrieved during the process.

—145-—

7.1 Our Proposal

Our proposal, caled Mavigator, fulfils all the previously enumerated
requirements. The implemented prototype proves that each of them isreflected in one or
more Mavigator’s metaphors:

Intensional navigation allows navigation in a database schema graph, where
classes act as vertices and associations as edges. The user can mark objects,
which are the result of the query. Marked objects could be viewed, stored or
subsequently processed.

Extensional navigation enables navigation between particular objects. It is
possible to move from one object to another one connected by a link (an

instance of an association).

Baskets make it possible to store objects. Each basket could contain other
(nested) baskets or objects. The main basket as well as its sub-baskets is
persistent and assigned to the particular user.

The Virtual Schemas module allows redefining a database schema graph (they
acts as some kind of database views, but on the application side rather on the
database server side). Changes may include renaming classes or attributes,
adding or removing associations, and others.

Active Extensions, implemented by the programmer, make it possible to add
new functionalities to the application, even without stopping it. Particular
utilizations include adding new functions operating on database objects
(average, minimum, maximum)?, new ways of analyzing data (Active

Projections) or exporting data (Objects exporter)>.

In our prototype all the above metaphors are supported by user-friendly GUI
widgets like tool tips, combo boxes, etc. Also we have introduced a dedicated solution

to visually formulate logical conditions for filtering objects.

Moreover, the presented metaphors treat same items in exactly the same way: for
instance, an object utilized in a basket has the same set of common options like in

extensional navigation or in the specialization of Active Extension called Active

2 |temsin brackets have been implemented in the prototype.

— 146 —

Projections. Such an approach improves not only user’s awareness but also the explicit

power of the entire solution.

7.2 Future Work

The Mavigator prototype shows basic visual retrieval metaphors that perhaps in a

similar manner can be implemented in other systems addressing structural data

Mavigator is fully functional tool. However, due to the nature of this work, some

changes and improvements could be made. Future works could concerns following

topics:

Adding new functions to the core metaphors, for instance adding querying
mode to the intensional navigation. In the present solution, when a user has to
navigate from the A class to B and then from B to C, to find objects from the C
class, al intermediatory objects are downloaded and marked. It could be
useful to record user’s actions and then to execute them in one click without

downloading intermediatory results,

New wrappers to other data sources. The current prototype works with the
ODRA database management system. Some other wrappers to other database
systems, e.g. to relational or XML-oriented, could be implemented,

Performance improvements. As mentioned previously, the entire prototype has
been developed to keep clarity of the solutions (and code) rather then
performance. In real life application it should be changed,

Moving Virtual Schema module above the wrapper level. Such an approach
makes the module independent from particular data source and a dedicated

Wrapper.

— 147 -

8 Bibliography

[Ahl92]

[Bar03]

[Bat91]

[Bers3]

[Car96]

[CasD1]

[Cat00]

[Chig2]

[Co000]

Ahlberg, C., Williamson, C., Shneiderman, B.: Dynamic
queries for information exploration: An implementation and
evaluation. In Proceedings of the Conference on Human
Factors in Computing Systems (SIGCHI '92), pp. 619-626.
ACM Press. 1992

Barclay, P.J., Griffiths, T., McKirdy, J., Kennedy, J., Cooper,
R., Paton, N.W. and Gray, P.: Teallach - A Flexible User-
Interface Development Environment for Object Database
Applications, J. Visual Languages and Computing, 14(1), 47-
77, 2003.

Batini C., Catarci T., Costabile M.F., Leviadi S.: Visual
Strategies for Querying Databases. Proc. of the IEEE Int.
Workshop on Visual Languages, Japan, October 1991.

Bertin J.: Semiology of Graphics. Madison, Wis.: Univ. of
Wisconsin Press, 1983. Translated by W. J. Berg

Carey M.J,, Haas L.M., Maganty V., Williams JH.: PESTO:
An Integrated Query/Browser for Object Databases. Proc.
VLDB (1996) 203-214

Cassel K., Risch T.: An Object-Oriented Multi-Mediator
Browser. 2nd International Workshop on User Interfaces to
Data Intensive Systems, Zurich, Switzerland, May 31 - June 1,
2001

Catarci T.: What Happened When Database Researchers Met
Usability. Information Systems 25(3), 2000, 177-212.

Chimera, R.: Value Bars. An Information Visualization and
Navigation Tool for Multi-Attribute Listings. Proc. ACM CHI
‘92, pp. 293-294, (1992).

Cooper, R., McKirdy, J., Griffiths, T., Barclay, P., Paton, N.,

— 148 -

[Der97]

[Fer99]

[Gri01]

[Hol93]

[Jon99]

[Jos02]

[Koz03]

[Kum97]

Gray, P., Kennedy, J. and Goble, C.: Conceptual Modelling for
Database User Interfaces. In Arisawa, H. & Catarci, T. (Eds),
Visual Database Systems - VDBS5, 2000 pp129-138. : Kluwer
Academic Publishers.

Derthick M., Kolojgjchick J., Roth S.F.: An Interactive Visual
Query Environment for Exploring Data, Proceedings of the
ACM Symposium on User Interface Software and Technology
(UIST '97), ACM Press, (1997) 189-198

Fegaras L.. VOODOO: A Visua Object-Oriented Database
Language For ODMG OQL. ECOOP Workshop on Object-
Oriented Databases 1999, 61-72

Griffiths, T., Barclay, P., Paton, N., McKirdy, J., Kennedy, J.,
Gray, P., Cooper, R., Goble, C., da Silva P.: Tedlach: Model
Based User Interface Development Environment for Object
Databases. Interacting with Computers 14 (2001), pp 31-68,

Elsevier.

Holyer A.: Methods for Evaluating User Interfaces. Cognitive
Research Paper No. 301, School of Cognitive and Computing
Sciences, University of Sussex, Brighton, 1993.

Jones S., Mclnnes S.: A graphical user interface for boolean
query specification. International Journal on Digital Libraries
Special Issue on User Interfaces for Digital Libraries,
2(2/3):207-223, 1999

Josifovski V., Risch T.: Query Decomposition for a Distributed
Object-Oriented Mediator System. Distributed and Parallel
Databases J., 11(3), pp 307-336, Kluwer, May 2002.

H.Kozankiewicz, JLeszczytowski, K.Subieta. Updateable
XML Views. Proc. of ADBIS 03, Springer LNCS 2798, 2003,
385-399

Kumar, H., Plaisant, C., Shneiderman, B.: Browsing

— 149 -

[Mit96a]

[Mit96h]

[Mur00]

[Mur00b]

[Mur9s]

[Nor00]

[Nor04]

[Now98]

Hierarchical Data with Multi-Level Dynamic Queries and
Pruning. IJHCI, vol. 46, pp. 103-124, (1997).

Mitchell K., Kennedy J., Barclay P.: A framework for user-
interfaces to databases, in Procs of Workshop on Advanced
Visual Interfaces, ACM press (1996)

Mitchell K., Kennedy J.: DRIVE: An environment for the
organised construction of user interfaces to databases, 3rd
International Workshop on Interfaces to Databases, Springer-
Verlag Electronic WIC (1996).

Murray N., Paton N.W., Goble C.A., Bryce J.: Kaleidoquery -
A Flow-based Visual Language and its Evaluation. Journal of
Visual Languages and Computing 11(2), 2000, 151-189

Murphu N.: Principles of User Interface Design. Internet
Appliance Design Article, December 2000,
http://www.embedded.com/2000/0012/0012ial.htm.

Murray N., Goble C., Paton N.: Kaleidoscape: A 3D
Environment for Querying ODMG Compliant Databases. In
Proceedings of Visual Databases 4, L'Aquila, Italy, May 27-29,
1998

North C. L., A User Interface for Coordinating Visualizations
Based on Relational Schemata: Snap-Together Visualization.
PhD Dissertation, Graduate School of the University of
Maryland, College Park, 2000.

Norman K. L., Panizzi E.: Levels of Automation and User
Participation in Usability Testing, University of Maryland,
Laboratory for Automation Psychology and Decision
Processes, Technical Report: LAP-2004-01, HCIL-2004-17,
2004.

Nowell L.T.. Graphical Encoding for Information
Visualization: Using Icon Color, Shape, and Size To Convey

—150 -

http://www.embedded.com/2000/0012/0012ia1.htm

[ODMOO0]

[Pla04]

[Rot94]

[Rot97]

[Shig]

[Shn03]

[Shn91]

[Smi02]

Nominal and Quantitative Data. PhD dissertation, Virginia
Polytechnic Institute and State University, 1998

Object Data Management Group: The Object Database
Standard ODMG, Release 3.0. R.G.G.Cattel, D.K.Barry, Ed.,
Morgan Kaufmann, 2000

Plaisant C.: The Challenge of Information Visualization
Evaluation. In Proc. of Conf. on Advanced Visual Interfaces
AVI’04 (2004)

Roth, S. F., Kolojejchick, J., Mattis, J, Goldstein, J.
Interactive graphic design using automatic presentation
knowledge. In Proceedings of the Conference on Human
Factors in Computing Systems (SIGCHI '94), pp. 112-117.
1994

Roth F., Chuah M., Kerpedjiev S., Kolojegjchick J., Lucas P.:
Towards an Information Visualization Workspace: Combining
Multiple Means of Expression. Human-Computer Interaction
Journal, Volume 12, Numbers 1 & 2, 1997, 131-185.

Shipman D.: The functional data model and the data language
DAPLEX. ACM Transactions on Database Systems, vol. 6, no.
1, 1981.

Shneiderman B., Plaisant C.: Designing the user interface:
Strategies for effective human-computer interaction (4" Ed).
Reading, MA: Addison-Wesley, 2003.

Shneiderman, B.: Visual user interfaces for information
exploration. In Proceedings of the 54th Annual Meeting of the
American Society for Information Science, pages379-384,
Medford.NJ, 1991.L earned Information Inc.

Smith M., King P.: The Exploratory Construction Of Database
Views. Research Report: BBKCS-02-02, School of Computer
Science and Information Systems, Birkbeck College,

—151 -

[Sto02]

[Sub04]

[Subgs]

[Trz044]

[Trz04b]

[Trz04c]

[Wal]

[Z1077]

University of London, 2002

Stolte Ch., Tang D., Hanrahan P.: Polaris: A System for Query,
Analysis and Visualization of Multidimensional Relational
Databases. |EEE Transactions on Visualization and Computer
Graphics, Vol 8, No 1, January-March 2002

Subieta K.: Theory and Construction of Object-Oriented Query
Languages. Editors of the Polish-Japanese Ingtitute of
Information Technology, Warsaw 2004, ISBN 83-89244-29-2,
522 pages (in Polish)

Subieta K., Beeri C., Matthes F., Schmidt JW.: A Stack-Based
Approach to Query Languages. Proc. 2nd East-West Database
Workshop, 1994, Springer Workshops in Computing, 1995,
159-180

Trzaska M., Subieta K.: Structural Knowledge Graph
Navigator For The Icons Prototype. Proc. of the IASTED
International Conference on Databases and Applications (DBA
2004)

Trzaska, M., K.Subieta, K.: The User as Navigator. Proc. 8th
East-European Conference on Advances in Databases and
Information Systems (ADBIS), September 2004, Budapest,
Hungary

M. Trzaska, K. Subietaz Usability of Visual Information
Retrieval Metaphors for Object-Oriented Databases.
Proceedings of the On The Move Federated Conferences and
Workshops (DOA, ODBASE, CooplS, PhD Symposium),
Springer Lecture Notes in Computer Science (LNCS 3292), pp.
822-833, October 25-29, 2004, Larnaca, Cyprus.

Walrus - Graph Visualization Tool,
http://www.caida.org/tools/visualization/ walrus/

Zloof M. M.: Query-by-Example: A Database Language. |IBM

—-152 -

http://www.caida.org/tools/visualization/

Syst. Journal, 16(4), 1977, 324-343

—153 -

9 Appendices

A - Abbreviations

B - List of figures

C - List of examples

D - User Study Materials

E - Extended Abstract (in Polish)

—154 —

A. Abbreviations

DBMS
GUI
MDI
OCL
oQL
SDI
UML
ul
XML

Database Management System
Graphical User Interface

Multi Document Interface
UML’s object constraint language
Object Query Language

Single Document Interface
Unified Modeling Language

User Interface

eXtensible Markup Language

—155-

B. List of figures

FIGURE 1. PESTO AND ITSQUERY =IN-=PLACE0uutttuttutttrertssemssms 6
FIGURE 2. VOODOO QUERY SELECTING THE NAME OF THE DEPARTMENT WHOSE HEAD ISSMITH.............. 7

FIGURE 3. VOODOO QUERY FINDING NAMES AND ADDRESSES OF ALL INSTRUCTORSIN CSE DEPARTMENT

WHO EARN MORE THAN 100 000.........cciiitiiiiiie e iiiiiitiee e e e s seiirre e e e e e e s ssnbeae e s e e e s ssnnraeeeaaeessnnnnes 8
FIGURE 4. REPRESENTATION OF A DATABASE SCHEMA IN KALEIDOSCAPEcccuvvviierieeessiirieeeeeae e s ssnsvneeeas 8
FIGURE 5. KALEIDOQUERY CONSTRUCT SELECTING NAME AND AGE OF THE PEOPLE.cccevcvveeeiiiieeeeineeen, 9
FIGURE 6. KALEIDOQUERY CONSTRUCT FINDING PEOPLE WITH THE AGE LESSTHAN 20.vvvveveeeeiiiiiineenn. 9

FIGURE 7. KALEIDOQUERY CONSTRUCT FINDING ALL PEOPLE WORKING IN COMPANIES LOCATED IN
N L Y] TN 10

FIGURE 8. KALEIDOQUERY CONSTRUCT INTERSECTING TWO SETS: ALL PEOPLE WHO WORK FOR |BM

COMPANY AND PEOPLE WHOSE EMPLOYER'SLOCATION ISLONDONccvviiiiiiiiiieereeeesiiiiieeens 11
FIGURE 9. THE POLARISUSER INTERFACE.cciutttttttiaeesisstteeessassssasssseessassssassssesssassssassssssssessssnnssssneess 12
FIGURE 10. THE GOOV | TYPE BROWSER. ..eeiiiutttttteteessiautteseseessssasssssessassssasssssssesassssnsssssssssessssnsssssseess 13
FIGURE 11. THE WATSON USER INTERFACE.uuuttttitieesiiiutrereesesssssissssnessassssassssssssssssssnssssssessssessnnsssssenss 13
FIGURE 12. VIRTUAL MUSEUM CONSTRUCTED INDRIVE.ooiiiiiiiiiee et 17
FIGURE 13. TEALLACH TOOL, SHOWING A LINK BETWEEN THE TASK AND DOMAIN MODELS...........ccvvveen.. 18
FIGURE 14. TEALLACH PRESENTATION MODEL TOOL. 1eeiiituutttreeseeesiiurrrnessassssssssssneesssssssssssssesssssssssssssneess 19
FIGURE 15. DATABASE SCHEMA GRAPH IN THE VISAGEuuvtiiiiieeiiiiiiiieeeee e s s ssiiteeeesa e s s ssnssneeeaeesssnnnseneeas 20
FIGURE 16. CONSTRUCTING MAP VISUALIZATION IN THE VISAGE.utttiiiieeeiiiiiiieeeee e e s ssirineee s e e e s ssnnsenees 21
FIGURE 17. INTENSIONAL NAVIGATION GRAPHtttitieeiiiiiititeeeeessssistanessasssssssssssesassssnsssssesssssssnsssssseess 26
FIGURE 18. [LLUSTRATION OF THE FILTER-FLOW APPROACH TO DEFINING PREDICATES.vvvveeeeeesiierienenss 27
FIGURE 19. MARKING OBJECTS VIA INTENSIONAL NAVIGATION ..cciiitviiieeieeesiiinieeeeseessssnnrseessesesssnsssnens 28
FIGURE 20. EXTENSIONAL NAVIGATION GRAPHcettiieiiiiittiteeeeeesssisstanessasssssssssssessassssnssssssessessssssssssneees 31
FIGURE 21. SCREENSHOT GENERATED BY THE WALRUS - GRAPH VISUALIZATION TOOL.....ccvvveeeiiinrrnnenn. 32
FIGURE 22. VISUALIZATION OF THE BASKET CONTAINING THREE SUB-BASKETS AND FIVE OBJECTS........... 35
FIGURE 23. ACTIVE PROJECTIONS. .. uuuttttttteeesiautteeeesassssasssssessassssassssssessassssasssssssesassssassssssessesssssnsssneess 41
FIGURE 24. EXAMPLE OF A DATABASE VIRTUAL SCHEMAuuuutiiiiiiitiiieeeeetieasaaaaaeeessaessssssnssssssssssssseeeeees 45
FIGURE 25. [LLUSTRATION OF HIDING INTERMEDIARY CLASSES.uuutitiiiieeesiiirireeeeeessssssnseessssssssnssssees 47

FIGURE 26. STRUCTURAL KNOWLEDGE GRAPH NAVIGATOR (SKGN) DURING INTENSIONAL NAVIGATION 49

FIGURE 27. MAVIGATOR PROTOTYPE JUST AFTER STARTING. 11tttiiiiiittiieeeieeesisisiseeeeeesssssssnnessesssssnsssnees 53
FIGURE 28. OPEN DATABASE WINDOW. ..1ettteeiiiuuttteeesesssiasssssessasssiassssssessassssasssssssessssssamsssssessessssnnssssseess 54
FIGURE 29. MAVIGATOR’ SWINDOW DURING INTENSIONAL NAVIGATION SESSION. ...cccovvvriieereeeesiinneenenns 55
FIGURE 30. CHOOSING FILTERING MARKED OBJECTS FROM THE CONTEXT MENU...ccvvveiiiiiiiieeeeeeesssnvveneens 56
FIGURE 31. VISUAL FORMULATING OF A FILTERING CRITERIONcuuttrietieeesiiinirneesessssnsssnnessessssnnsssnens 56
FIGURE 32. FORMULATING A SINGLE PREDICATE ..1vuttiieiiiitttteeeeesesisiustsnessassssassssssssssssssssssssesssssssssssssneess 57

— 156 —

FIGURE 33. VISUAL COUNTERPART OF THE CRITERION FROM EXAMPLE 14uuuiiiiiiiiiiiiieie e 58

FIGURE 34. USING NAVIGATING TO MARKING OBJECTS. .. .uutttretieeesiiurrenessassssassssnssssssssnssssssesssssssssssssnenes 59
FIGURE 35. LIST CONTAINING THE HISTORY OF THE MARKING OBJECTS. .evieeiiiiurireeeeeessssnsiseeesesesssnssenenas 60
FIGURE 36. LIST OF MARKED OBJECTS OF THE SUPPLIERS CLASS. ... uuuttttetieeesisirireeeseessssssssnessssssssssssssees 61
FIGURE 37. MODIFYING A SET OF MARKED OBJECTS USING OBJECTSLIST. ceeeiivtriieereeeessiinirneeseeesssnnsenenas 62
FIGURE 38. USING LIST OF OBJECTS TO PERFORM OPERATION WITH PARTICULAR OBJECTvceeevvreeeennee. 62
FIGURE 39. CONTENT OF THE OBJECT . t1tttttteeiiisutreneesaessiasssssessesssiassssssessessssasssssssessssssmmsssssessessssnnssssseess 63
FIGURE 40. FIST STEP OF THE EXTENSIONAL NAVIGATION . ..utttttteeiiiiiurrreeeeaessssiusrseeesassssnsssssesssssssssssssseees 64
FIGURE 41. NEXT STEP OF THE EXTENSIONAL NAVIGATION. ..1tttteeeiiiurtreeriaeesisinstsnsessssssnsssssnessessssssssssseees 65

FIGURE 42. EXTENSIONAL NAVIGATION —COMMON OBJECTS ACCESSED FROM VARIOUS NEIGHBORHOODS.

... 66
FIGURE 43. ILLUSTRATING OF THE PINNING OBJECTeciiiuuttteeeeeeessenttseessasssssssssnsesaesssnnsssnssssssssnnsssssens 67
FIGURE 44. [LLUSTRATING OF THE ZOOM IN DURING EXTENSIONAL NAVIGATION SESSION. ...cevveeeiiieerrenenn. 68
FIGURE 45. AN EXAMPLE OF HIDING OBJECTSFROM A PARTICULAR CLASS.uuvviiirieeesiiirireeeeesesssnnsenenas 69
FIGURE 46. OBIECT CONTEXT MENU. 1.uttttttteeiiiiiutteeeeseesssssstssessessssassssssessessssasssssssessssssnmsssssessessssnnnsssseens 70
FIGURE 47. USER' SBASKET AFTER LOGGING IN...uuttttieeiiiiurrieeeeesesisiusssnessassssssssssssesasssssssssssessssssssnssssseees 70
FIGURE 48. CREATING A NEW BASKET . 11tttttteiiiiutttteeseeesissstssessasssiasssssnessassssasssssssessssssamsssssessessssnnsssseens 71
FIGURE 49. CONTEXT MENU FOR OBJECT IN A BASKET . ..uuttttetieeesiiurrrneesasssssssssssesassssssnsssesssssssnsssssseees 72
FIGURE 50. USING BASKET TOMARK OBJECTS. ...ttttttteeesiaurrereeeesssissssssneesasssiasssssssessssssassssssessessssnnssssseees 73
FIGURE 51. AN EXAMPLE OPERATION (SUM OF TWO BASKETS) ON BASKETS.....cciteerteerteesieesieesreesreesieenieens 75
FIGURE 52. EDITOR FOR THE ACTIVE EXTENSIONS. ..eiiiiiiiitiieetee e e s ieittree e s e e s s s sitvaee e s e e s s ssnnnreeesaeessnnnsneneeas 76
FIGURE 53. AN EXAMPLE MESSAGE WITH ERROR DESCRIPTION REGARDING AE SOURCE CODE. 77
FIGURE 54. STARTING AN ACTIVE EXTENSION. 1..uttttttieeisiiurrtreeeesssisusssnessassssasssssnsesasssssssssssessesessnnssssneess 78

FIGURE 55. SELECTING AN ATTRIBUTE FOR THE CALCULATION (A) AND THE RESULT (B) CONTAINING THE

VALUE AND OBJECT SLABEL . .etttiiiiiittiietteeessistttreeesaesssssstsseesaesssassssaeesaeesssnssssnessassssnnssssnnees 79
FIGURE 56. ACTIVE PROJECTION FOR SOME OBJECTS OF THE PRODUCTS CLASS. ..vvvvieeiiiiiiiieeeeeeessinvienenas 80
FIGURE 57. OBJECT' SCONTEXT MENU IN ACTIVE PROJECTIONSuuvviiieiieeesiiiriieeeeeeesssnnnneeesesesssnssenenas 8l
FIGURE 58. WIDGET ILLUSTRATING THAT OPERATION ISIN PROGRESS. ...ccieeiiiitriieeeeeessisnnineeesesesssnssenens 83
FIGURE 59. FILTERING CRITERION FOR CASE STUDY L....iiiiiiiiiie e i iiitiieen e e e e s csirtree e e e e e ssnnvan e e s e e e s s snnnnnees 85
FIGURE 60. FILTERING CRITERION FOR CASE STUDY 2....ciiuttttiiieeeiisiurtneessasssssssssssesasssssssssssesssssssnssssssees 85
FIGURE 61. EXTENSIONAL NAVIGATION SESSION FOR CASE 3. ..ciiiiiiiitiieeeieeessiitireeese e s s ssnnineeesesesssnnssnenas 86
FIGURE 62. CONTENT OF THE FILE BEING SOLUTION TO THE CASE 4. ..vvvveiiieeeiiciiiieee e e e e s ssvveeee e e e snnneneeas 87
FIGURE 63. INTENSIONAL NAVIGATION SESSION DURING PROCESSING CASE 5.....vvvivieeiiiiiiiieeee e ciiieeen 89
FIGURE 64. FILTERING PREDICATE FOR CASE 7. ..uttttttteeiiiiittiteesaessisiasssnessassssassssssesassssnsssssssssssssnssssssenss 90
FIGURE 65. ACTIVE PROJECTION FOR CASE STUDY 8. ...ciiiiiiiiiiiiee e s iiitiieee e e e e s ssitrree e s e e e s ssnnraee e e s e e s ssnnsenees 91

FIGURE 66. TABLE WITH MAVIGATOR’ S SOLUTIONS TO THE OQL EXAMPLES FROM THE CHAPTER 2.1...... 91

FIGURE 67. ARCHITECTURE OF THE MAVIGATOR PROTOTYPEccvvvvtierreeesreeeesserersesereseeersesesssssssssessseeee. o)
FIGURE 68. CLASSDIAGRAM FOR INTERFACES. ADCLASS, ADOBJIECTcuvvvrtrreerreeerreererereseeresesesesssssseeseees 94
FIGURE 69. CLASSDIAGRAM FOR INTERFACES: ADASSOC! ATI ON, ADLI NK. ...vvvvvvrrrreerereeereereeeeeeeeeeereeeeeeees 95

—157 -

FIGURE 70. CLASSDIAGRAM FOR INTERFACES. ADATTRI BUTE, ADATTRI BUTEVALUE. ...cvvviiiieiiiieviiiiiieeeens 96

FIGURE 71. SEQUENCE DIAGRAM FOR ODRAVWRAPPER: | OPEN METHOD.ccvvvvveereeeeereerereeeeeeseseeeseeeeeeeeees 105
FIGURE 72. SEQUENCE DIAGRAM FOR CREATING VIRTUAL SCHEMAcuvvviieeeeerereeeeeereeereeeeseseeeseerseeeeees 107
FIGURE 73. SEQUENCE DIAGRAM FOR THE ODRAVWRAPPER: : GETOBJECT(| D) METHOD.......cvvveeieenine 108
FIGURE 74. SEQUENCE DIAGRAM FOR CREATING AN OBJECT —PART (A). ..evvtrurirrirrenresresne e snne e 109
FIGURE 75. SEQUENCE DIAGRAM FOR CREATING AN OBJECT —PART (B)...eeruverurerresresiresnresnesnnesne s 110
FIGURE 76. SEQUENCE DIAGRAM FOR DOWNLOADING OBJECT’ SNEIGHBORHOOD.cccvvveveerererereeerennenns 110
FIGURE 77. SEQUENCE DIAGRAM FOR NAVIGATING VIA ASSOCIATION. ...vvvvrrerrerreeeeereerereeeeeeresseeseereeeeeees 111
FIGURE 78. SEQUENCE DIAGRAM FOR FILTERING OBJECTS. ...euvvtttuerrerereeseersssssessessesssssssssessssssssssssssssmeees 113
FIGURE 79. SEQUENCE DIAGRAM FOR CREATING LABELS FOR OBJECTS.....ccetvrterrrreeeeeerereeeseereseeeseessesseees 114

FIGURE 80. SEQUENCE DIAGRAM FOR STARTING A NEW INTENSIONAL NAVIGATION SESSION — AN
OVERVIEW. iittuiiittiee it e ettt eesab e s sab e e s e b e e sabaee s e b e e sabaa e e s e ba s e s e bas s e seban e sebaasesesanaseransarnes 116

FIGURE 81. SEQUENCE DIAGRAM FOR CREATING INSTANCE OF THE | NTENSI ONAL NAVI GATI ONFORMCLASS.

... 118
FIGURE 82. SEQUENCE DIAGRAM ILLUSTRATING FI LLI NGRAPH() METHOD.....cccuieierirerreeie e 119
FIGURE 83. SEQUENCE DIAGRAM FOR FILTERING OBJECTS. ...euvvttrrurrerereeeeersssssssssssssssssssesesssssssssssssssmmeees 120

FIGURE 84. SEQUENCE DIAGRAM ILLUSTRATING NAVIGATING FROM CLASSTO CLASS VIA ASSOCIATION'S

=Rt 121
FIGURE 85. SEQUENCE DIAGRAM FOR SHOWING OBJECTS —PART L...oiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeees 124
FIGURE 86. SEQUENCE DIAGRAM FOR SHOWING OBJECTS —PART 2....evvveeriiereereerereeeeeererereseesesssessssseesees 125

FIGURE 87. SEQUENCE DIAGRAM FOR DOWNLOADING OBJECT’ SNEIGHBORHOOD (EXTENSIONAL

NAVIGATION) ©ttettesteesteesteesteesseesseesteesbeesbeesbeesbeesbeeab e e abeesb e e abeesbeeaaeesbeeabeenbeenbeenbeenanennnennnas 129
FIGURE 88. SEQUENCE DIAGRAM FOR SHOWING OBJECTuvvvveeereersereressssssssssesssssssssssssssssssssssssssssssmmsee 131
FIGURE 89. SEQUENCE DIAGRAM FOR CREATING A NEW BASKETuuuvtveetereereereereeeeereereseeeseesesssesseseeereee. 134
FIGURE 90. SEQUENCE DIAGRAM ILLUSTRATING OPERATION ON BASKETS.cvvvvereeeeeerereeeeeerereeereseseeeenes 135
FIGURE 91. AVERAGE INFORMATION ABOUT SUBJECTS. ..uuvtteerieeeiiinrierereesesssssssnesasssssssssseesssssssnssssneees 144

FIGURE 92. CHART SHOWING DEPENDENCE BETWEEN QUESTIONS' DIFFICULTY AND TIME FOR COMPLETION.

—158 —

C. List of examples

EXAMPLE 1. OQL QUERY SELECTING THE NAME OF THE DEPARTMENT WHOSE HEAD ISSMITH.ccccuvvvneen. 7

EXAMPLE 2. OQL QUERY FINDING NAMES AND ADDRESSES OF ALL INSTRUCTORS IN CSE DEPARTMENT

WHO EARN MORE THAN 100 000.........ciiiiiiiiiiie e e i iiiiiieee e e e s sritiae e e s e e e s ssnraee e s e e e s s snnraeesaaeessnnnnes 7
EXAMPLE 3. OQL QUERY SELECTING NAME AND AGE OF THE PEOPLE. ...vcvvieiiiiiiiiiiereeeesssivieeessaesssnsssnnenas 9
EXAMPLE 4. OQL STATEMENT FINDING PEOPLE WHOSE AGE ISLESSTHAN 20.......cutiiiiiiiieiiiee e 10
EXAMPLE 5. OQL QUERY FINDING ALL PEOPLE WORKING IN COMPANIES LOCATED IN ENGLAND.............. 10

EXAMPLE 6. OQL QUERY INTERSECTING TWO SETS: ALL PEOPLE WHO WORK FOR | BM COMPANY AND
PEOPLE WHOSE EMPLOYER'SLOCATION ISLONDON ...uuuiiiiiiiiiiiiii et eeevve e e e e eaaaas 11

EXAMPLE 7. DEFINITION OF A CLASS REPRESENTING A MUSEUM ARTEFACT IN A NOODL DATABASE....... 15

EXAMPLE 8. SAMPLE USER CLASSDEFINITION IN NOODL.......cciiiiiiiiiicceeeeeete et eeava e 15
EXAMPLE 9. SAMPLE DEFINITION OF AN INTERFACE IN NOODL. ...ovvuiiiiiiiiiiiiiieie et 16
EXAMPLE 10. PARTIAL DEFINITION OF THE ASSOCIATION BETWEEN TWO CLASSES.cevvvuiiiieeiieeriiiinieeeens 46

EXAMPLE 11. DEFINITIONS OF THE TWO ASSOCIATIONS: (A) RETURNS ALL OBJECTS, (B) RETURNSONLY UP-

TO-DATE OBJECT S ttttttttttttetnssssssnnsssssnsssmssmsnnns 47
EXAMPLE 12. PARTIAL DEFINITIONS OF TWO ASSOCIATIONS, UTILIZING INTERMEDIATE CLASS..........vve.... 48
ExXAMPLE 13. PARTIAL DEFINITION OF THE ASSOCIATION, WHICH “HIDES” INTERMEDIATE CLASS. 48
EXAMPLE 14. SAMPLE CRITERION FOR FILTERING (TEXTUAL VERSION) ...eetietierieesteenieesieesieesreesneesreesieens 57
EXAMPLE 15. FILE GENERATED BY EXPORTOBJECTS ACTIVE EXTENSION. 1.ceiiuiriiieeeeeesisirrrreeeeeesssnnnnenenas 82
EXAMPLE 16. XML FILE DEFINING SIMPLE VIRTUAL SCHEMAL. ...eciiittiieeeeeeessittieeesae e s sssnssaneesaesssnnnsnnees 104
EXAMPLE 17. SAMPLE CONFIGURATION FILE. . .uuttttttteeeiiiiutrneeseesesisussseessssessssssseessssssssssssessssssssnsssseees 115
EXAMPLE 18. SOURCE CODE OF THE SIMPLE ACTIVE EXTENSION.uvviiiiieeiiiiiiiiiee e e e ssivveee e e e e s snnreneeas 140

—159 -

D. User Study Materials

1. Information about subjects

1.1 Subject id

1.2 Object-oriented database concepts (classes, associations, etc.) —from 0 (lack
of knowledge) to 10 (expert).

1.3 Microsoft Access experience — from O (lack of knowledge) to 10 (expert).
1.4 Textual query language experiences (i.e. SQL, OQL) — from O (lack of

knowledge) to 10 (expert).

1.5 Visua information retrieval system experience — from O (lack of
knowledge) to 10 (expert).

1.6 Programming language experience — from O (lack of knowledge) to 10
(expert).

1.1 1.2 1.3 1.4 15 1.6

o0~ WN (-
(s Rl NENRIORENEEN]
0 |U1(© |01 ||
© 01|00 |01
o0 |N O[NP
O |U1(© |01 |00 |~

2. Information about query questions

2.1 1d of the subject

2.2 Number of the query question (shown as columns in the above tables)
2.3 Difficulty of the query question —from 1 (easy) to 10 (very hard)

2.4 Success - in percents

2.5 Time to completion — in minutes

2.6 Remarks (not shown because they were in Polish. However the most
important ones have been discussed in chapter 6.2.4 on page 148)

Query 1 |Query 2 [Query 3 [Query 4 | Query 5 [Query 6 | Query 7 | Query 8
2.1 1
2.3 1 2 3 2 3 2 3 3
2.4 100 100 50 100 100 100 100 100
2.5 0,5 1 5 1 5 2 2 2

—160 -

Query 1 | Query 2 | Query 3 | Query 4 | Query 5 | Query 6 | Query 7 | Query 8

2.1 2
2.3 1 2 3 3 5 5 4 4
2.4 100 100 100 100 100 100 100 100
25 0,5 0,5 15 3 5 3 2 2
Query 1 | Query 2 | Query 3 | Query 4 | Query 5 | Query 6 | Query 7 | Query 8
2.1 3
2.3 1 2 5 5 3 2 2 3
2.4 100 100 100 100 100 100 100 100
25 2 4 5 3 3 2 2 3
Query 1 | Query 2 | Query 3 | Query 4 | Query 5 | Query 6 | Query 7 | Query 8
2.1 4
2.3 5 7 8 3 7 6 3 3
2.4 100 100 100 100 100 100 100 100
2.5 1 2 3 1 3 2 1 1
Query 1 | Query 2 | Query 3 | Query 4 | Query 5 | Query 6 | Query 7 | Query 8
2.1 5
2.3 1 1 5 5 1 5 1 1
2.4 100 100 100 100 100 100 100 100
25 1 1 3 4 1 4 1 2
Query 1 | Query 2 | Query 3 | Query 4 | Query 5 | Query 6 | Query 7 | Query 8
2.1 6
2.3 1 3 2 3 2 3 1 5
2.4 100 100 100 100 100 100 100 100
25 4 8 3 20 1 1 1 5

3. Overall information

3.1 Comprehensibility — from 1 (confusing) to 10 (clear)
3.2 Ease of use—from 1 (difficult) to 10 (easy)

3.3 Speed of use—from 1 (slow) to 10 (fast)

3.4 Performance — from 1 (slow) to 10 (fast)

3.5 Overall satisfaction —from 1 (terrible) to 10 (wonderful)

3.6 Remarks (not shown because they were in Polish. However the most
important ones have been discussed in chapter 6.2.4 on page 148)

3.7 ldeas for improvement (same as above)
3.8 Ideas for new Active Extensions (same as above)

- 161 -

0 N~ N~
(90]
< N~ n o
™ -
™ n n| oo
(90]
N [o0] | ©
(90]
— N~ Ol <
(90]
i) (90] Nl ©
(2]
i
(&)
=
EE)
>
0

- 162 -

E. Extended Abstract (in Polish)

Uzytecznos¢ metafor wizyjnych dla wyszukiwania
informacji w obiektowych bazach danych

Celem ninigjsze] rozprawy bylo wypracowanie zalozen dotyczacych uzytecznego
graficznego interfejsu do wyszukiwania informacji w obiektowych bazach danych.
Problemem naukowym wymagajacym tu rozwiazania jest pogodzenie prostoty i
wygody srodkéw wyszukiwawczych dla powszechnego (tzw. naiwnego) uzytkownika z
uniwersalnoscia tych srodkéw. Jak wiadomo, sa to sprawy z natury sprzeczne. Badania
musza bardzo powaznie potraktowaé walor uzytecznosci praktycznel (usability)
oferowanego interfejsu do wyszukiwania, jego akceptacji przez uwzytkownika. Brak tego
waloru oznacza nieprzydatnos¢ w praktyce, czyli kleske. Istnigje wiele tego rodzaju
klesk badan w informatyce. Przyktadem sa réznorodne graficzne jezyki zapytan, oraz
liczne pomysty teoretyczne, takie jak programowanie baz danych przy pomocy regut
logicznych (Datalog), projektowanie baz danych przy uzyciu zaleznosci funkcjonalnych
i wielowartosciowych, itp., ktére nie zyskaty akceptacji uzytkownikéw, mimo ze byty

opracowane i propagowane przez wybitne zespoty naukowe.

Te obserwacje sa podstawa metody naukowej, ktdra zastosowalismy w naszej
pracy. Polega ona na zbudowaniu prototypu oraz wnioskowaniu na jego podstawie o
uzytecznosci badz bezuzytecznosci pewnych pomystow. Nalezy podkresli¢, ze tego
rodzaju badania oznaczaja dziatanie w przestrzeni z ogromna iloscia arbitralnych
wyborow, zas ocena waloréw ich uzytecznosci jest w duzej mierze subiektywna.
Metoda badawcza polega na wypracowaniu pewnej metafory, ktéra nawiazuje do
predyspozycji psychologicznych potencjalnego uzytkownika, jego naturalnych
odruchdw i skojarzen. W przypadku tej rozprawy taka metafora jest nawigacja, czyli
przemieszczanie si¢ pewnego punktu w grafie, majace bezposrednie skojarzenia z
fizycznym poruszaniem si¢ bytow materialnych (ludzi, pojazdéw) w pewnej topologii

przestrzenngj.

Metoda wyszukiwania informacji musi by¢ adekwatna w stosunku do rodzaju
danych, ktére 53 przeszukiwane, oraz w stosunku do rodzaju docelowego uzytkownika
tgg metody. Obserwacja ta jest szczegllnie wazna w przypadku naiwnych

- 163 -

uzytkownikow (komputerowych nie-profesjonalistow), ktérzy nie s w dstanie (i
najczesciel nie chca) uczy¢ si¢ wyrafinowanych metod wymagajacych znacznego
wysitku i znajomosci komputerowe egzotyki. W odroznieniu od silnikdw
wyszukiwawczych takich jak Google dziatajacych na nie-interpretowanym tekscie
jezyka naturalnego, wiele nowych technologii (w szczegdlnosci repozytoria XML/RDF
lub obiektowe bazy danych) dziata na danych strukturalnych, gdzie struktura, nazwy i
powiazania danych wyznaczaja biznesowe znaczenie danych dla uzytkownika.
Poniewaz takie technologie sa coraz czgscigj stosowane w biznesie, konieczne s
interfejsy uzytkownika umozliwiajace sprawne i przyjacielskie odpytywanie i
przegladanie takich strukturalnych danych. Jednakze naiwni uzytkownicy nie beda w
stanie opanowa¢ ztozonych regut syntaktycznych, semantycznych i pragmatycznych
jezykéw , klawiaturowych”, takich jak SQL, OQL lub XQuery oraz specjalnych
jezykow skryptowych dla formatowania rezultatu przeszukiwania. Ten rodzaj
uzytkownika preferuje przyjacielskie interfejsy graficzne oparte na operacji myszka
racze] niz klawiatura. Obecne oczekiwania powszechnego uzytkownika sa znacznie
zwiekszone wskutek pojawienia si¢ wielu bardzo przyjacielskich programow, ktére sa
doskonale przystosowane do naturalnych odruchow i skojarzen uzytkownikow.

W dysertacji proponujemy zestaw metafor graficznych, ktére sa rezultatem badan
nad tatwym w uzyciu i jednoczesnie bardzo mocnym mechanizmem wyszukiwawczym.

Podstawowa teza dysertacji jest odpowiedz na pi¢¢ zasadniczych pytan:

Jak przedstawi¢ dane dla uzytkownika, aby mogt on zrozumie¢, co jest
przeszukiwane, jaka jest druktura przeszukiwanego zasobu, oraz jak
ograniczy¢ jego pole widzenia tylko do tego fragmentu, ktére jest mu
potrzebny?

Jakie metafory graficzne sa odpowiednie do operacji wyszukiwawczych oraz

jak rezultat wyszukiwania ma by¢ zapamigtany?
Jak rezultat wyszukiwania zaprezentowat uzytkownikowi?

Jakich érodkéw nalezy uzy¢ celem podtrzymania swiadomosci uzytkownika,
t.j. takiego jego stanu, w ktérym nie czuje si¢ on zagubiony, co do celu
przeszukiwania oraz etapu, na ktérym sie znajduje?

—164 —

Jak rozszerza¢ funkcjonalnos¢ aplikacji, w zaleznosci od potrzeb konkretnego

uzytkownika?

Te pytania sa krytyczne w stosunku do uzytecznosci catosci interfejsu
graficznego. Zaniedbanie dowolnego z nich moze spowodowac niska uzytecznosé, czyli

klgske danej propozycji mechanizmu wyszukiwawczego.

Odpowiedzi na pytania zostalty wypracowane przy pomocy prototypu nazwanego
Mavigator. W ramach rozprawy doktorskiej zaproponowalismy oraz
zaimplementowaismy oryginalne rozwiazania, ktoére nie s3 oczywiscie jedyne:
stanowia one raczej pewna spdjna propozycje nie majaca precedensdw w literaturze,
oparta 0 dobrze wyrazona ideg nawigacji w grafie. Rozwiazania te pozwalgja jednak na
pewne ogolne wnioski. W zakresie pierwszego pytania proponujemy ograniczenie
schematu danych widzianego przez uzytkownika przy pomocy wirtualnych perspektyw
odnoszacych si¢ m.in. do asocjacji pomigdzy danych. Warto zauwazyc, ze tego rodzaju
perspektywy dostarczajace wirtualnych asocjacji nie wystepuja jak dotad w zadnych
znanym systemie komercyjnym lub prototypie badawczym (zgodnie z nasza wiedza).
Zaproponowalismy modut nazwany Virtual Schemas, w ktérym perspektyw s
definiowane w jezyku zapytan SBQL. Uzycie tego modutu wymaga pewnej wiedzy
informatycznej (SBQL jest bardzigj interfejsem programistycznym niz jezykiem dla
powszechnego uzytkownika), ale zaktadamy, ze uzytkownik koncowy nie musi
uczestniczy¢ w przygotowaniu wilasciwego mu podschematu - jest to rola
administratora bazy danych.

Jako metafory wyszukiwawcze zostata zaproponowana nawigacja intencyjna (w
grafie schematu bazy danych), nawigacja ekstensyjna (w grafie obiektéw) oraz trwate
koszyki do przechowywania rezultatow wyszukiwania oraz przegladania. Metafory te
Sa wzmocnione mechanizmami drag and drop, operacjami na zbiorach (suma,
przecigcie, roznica zbiorow), klasycznymi warunkami dziatajacymi na atrybutach, oraz
innymi opcjami.

Wyprowadzanie rezultatdw sesji wyszukiwawczej jest jednym z trudnigjszych
probleméw. Chodzi tu o pogodzenie réznorodnych form wizualizacji danych (czesto
bardzo ztozonych, np. wizualizacja wielowymiarowych funkcji) z prostota interfejsu.
Naszym zdaniem, kompromis w tym wzgledzie jest bardzo trudny i prawdopodobnie
dla wielu zastosowan w ogole nie isthigje. Z tego powodu zaproponowalismy modut

—165 -

Active Extensions, ktéry pozwala na zaprogramowanie w Kklasycznym jezyku
programowania (aktualnie C#) dowolne] formy wizualizacji (wlaczajac wizualizacje
stosowane w eksploracji danych lub animacje) lub funkcji rozszerzajacej, a nastepnie
wykorzystanie jef w Mavigatorze. W tym przypadku uzytkownik koncowy musi
wspbtpracowat z profesionalnym programista, ktéry przygotowuje dla niego
odpowiednie moduty wizualizacyjne. Jest to rozwiazanie rozsadne i by¢ moze jedyne
mozliwe. Pewien zbior takich modutow wizualizacyjnych oraz funkcji operujacych na
danych moze by¢ przygotowany w momencie tworzenia danej aplikacji i nastgpnie
wielokrotnie uzywany przez jg uzytkownikow.

Jezeli chodzi o podtrzymanie swiadomosci uzytkownika, proponujemy pewien
zestaw standardowych rozwiazan, takich jak przechowywanie historii akcji
uzytkownika, mozliwos¢ cofnigcia si¢ do poprzednich krokéw, hierarchiczna budowa,
nazywanie i adnotowanie koszykéw rezultatow, itd.

Proponowane rozwiazania sa poréwnane ze stanem sztuki w zakresie interfejsow
do wizyjnego wyszukiwania danych oraz wizualizacji danych. Porownanie pokazuje, ze
proponowane rozwiazania nie maja precedensow w literaturze i pod wieloma
wzgledami przewyzszaja istniejace propozycje. Praca zawiera takze rozwazania na
temat uzytecznosci generalnie oraz uzytecznosci proponowanych metafor, poparte
dyskusja oraz obserwacjami empirycznymi.

Potaczenie wymienionych koncepcji w spojna catos¢ byto znacznym wyzwaniem
badawczym, zas wnioski moga przynies¢ rozwigzania o duzym znaczeniu dla
powszechnej praktyki. Ustawienie wszystkich elementow w spljna i konsekwentna
calos¢ stanowito takze swoisty ,rebus’ techniczny wymagajacy profesonalizmu w
zakresie technik programistycznych. Przedstawione rozwiazania wymagaly takze
znacznej wiedzy, wyobrazni oraz wielu prob implementacyjnych. Oryginalnos¢ i
atrakcyjnos¢ zaproponowanych rozwiagzan zostata potwierdzona poprzez opublikowanie
lub zaakceptowanie czterech artykutbw na renomowanych migdzynarodowych
konferencjach naukowych.

— 166 —

