
On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

822

Usability of Visual Information Retrieval Metaphors for
Object-Oriented Databases

Mariusz Trzaska (mtrzaska@pjwstk.edu.pl)*, Kazimierz Subieta#*

#Institute of Computer Science, Ordona 21, Warsaw, Poland
*Polish-Japanese Institute of IT, Koszykowa 86, Warsaw, Poland

Abstract. We present visual metaphors of Mavigator, a visual information re-
trieval system for Web-oriented database applications. The metaphors allow
the naive users (computer non-professionals) to retrieve information from ob-
ject-oriented databases in an easy and intuitive form. Novel features of Mavi-
gator include coherent combination of a few paradigms: intentional navigation,
extensional navigation, baskets for recording retrieval results and active exten-
sions. The latter are programmed in a programming language thus allow a pro-
grammer to extend functionalities available to end users with no limitations.
Due to the flexible architecture Mavigator is able to work not only with a pro-
prietary object-oriented database but also with any information source. The ob-
jective of the corresponding PhD thesis is investigation into usability of differ-
ent visual retrieval metaphors in realistic Web applications. In this paper we
present some of the metaphors and discuss their potential for users.

1 Introduction

Databases, among other features, should provide an easy access to information. How-
ever, the “easiness” is relative to a user kind and his/her experience in computer
technologies. Nowadays more and more non-professionals use computers, especially
various applications based on Web browser-oriented interfaces. Their requirements
with respect to user-friendliness of the entire computer systems are much stronger
than requirements of computer professionals. Non-professionals usually do not ac-
cept formalized syntax, strict sophisticated rules of user action, long and specialized
training or following professional manuals. As a consequence, computer tools, in-
cluding interfaces for information retrieval, must evolve into non-sophisticated and
easy-to-use applications.

On the other hand, the interface should be simple, but not simpler than the inher-
ent complexity of the task that the user has to solve. For some tasks the typical full-
text retrieval (as e.g. in Google) is not sufficiently precise because of lack of facilities
to specify semantic meaning of data items stored on Web. The XML technologies
(including RDF, OWL, Semantic Web and other proposals) aim at putting data into
nested labelled structures with well-defined semantic meaning. There are also query

mailto:mtrzaska@pjwstk.edu.pl

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

823

languages such as XQuery to express the user needs much more precisely than it is
possible in full-text retrieval engines.

In the database domain there are many query languages proposed, in particular,
SQL as a major language for accessing relational databases. SQL, like all textual
query languages, is very powerful, but its audience, due to its complexity, is rather
limited to computer professionals. The same concerns more recent textual languages
for object-oriented databases, such as OQL [1] or SBQL [2].

Attempts to define more user-friendly interfaces have been noticed for many
years. One of the most successful was QBE [3] based on a tabular view of relational
tables and specific retrieval conditions inserted by the user into the tables. QBE was
perhaps the first graphical query interface based on visualization of a database
schema and specific visual manipulations of the user on the graphical interface. Due
to a better hardware and popularity of easy application programming interfaces for
graphical manipulations we observe recently extensive development of visual meta-
phors for information retrieval. Some of them are counterparts to their textual prede-
cessors. Other, like Value Bars [4] and the interface presented in [5] are based on
specific graphical ideas.

As noted in [6], the key issue behind such proposals is usability in real applica-
tions prepared for users who are not computer professionals. Unfortunately, usability
cannot be predicted in advance during design and implementation of an interface,
because it depends on many factors such as the readiness of the user to get some
training, inherent complexity of the task that he/she has to accomplish and adequacy
of the interface to this task, supporting various forms of user awareness during long
sessions, and others. Therefore the only way to check the usability is to implement a
particular metaphor and then, to measure some user-oriented factors (such as the
number of errors, the entire time to reach the goal, etc.) in real applications.

In this paper we present the visual querying interface Mavigator which has been
developed to allow non-computer professionals to work with object-oriented database
systems. Its key concepts include: intentional navigation, extensional navigation,
persistent baskets for recording temporary and final results of querying, and active
extensions. The first kind of navigation (intentional) is based on navigation in a
database schema graph. The user moves from vertex to vertex via edges, where verti-
ces denote classes (more precisely, collections of objects) and edges denote associa-
tions among classes (in UML terms). Additional functionalities allow the user to
build quite complex queries. The second kind of navigation (extensional) is similar
but the user navigates in a graph of objects rather than in a graph of classes. This
mode enables the user to move (in mind) from an object to an object (vertices of the
graph) via a specific link (an edge of the graph).

After the user has retrieved some result he/she may require to present it visually in
some friendly way, e.g. as a tabular report, as a chart, as a distribution map, etc. This
is a critical issue for visual querying interfaces, as the trade-off between simplicity of
the end user interface and complexity of a possible visualization form. The number
of options and the general complexity of the interface that may be required to visual-
ize a querying result seem to be unacceptable for naive users. Therefore for achieving
the required goal we assume some contribution of computer professionals. The last

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

824

feature, called active extensions, allows a computer professional to add functional-
ities required by a particular naive user. We assume that the functionalities will be
coded in a programming language (currently C#) thus the range of the functionalities
is unlimited.

The remainder of this paper is organized as follows. In Section 2 we discuss re-
lated work on visual information retrieval facilities and explain how Mavigator dif-
fers from the existing solutions. In Section 3 we give a detailed description of the
Mavigator metaphors. Section 4 describes two prototypes: SKGN [7, 8] implemented
for the European project ICONS, and Mavigator extending and improving SKGN.
Mavigator is currently under construction. Section 5 concerns implementation and
architecture of prototypes. Section 6 briefly discusses proposed evaluation procedures
and Section 7 concludes.

2 Related Work

Due to the limited space this paper gives only an outlined overview of the related
work. The final version of the PhD thesis will contain more detailed description.

Roughly speaking, visual metaphors to information retrieval can be subdivided
into two groups: based on graphical query languages and graphical browsing inter-
faces. This subdivision is not fully precise because many systems have features from
both groups. An example is Pesto [9] having possibilities to browse through objects
from a database. Otherwise to Mavigator, the browsing is performed from one object
to a next one object. For instance, the user can display a Student class object, but to
see another student, he/she needs to click next (or previous) button and replace cur-
rent visualization. Besides browsing, Pesto supports quite powerful query capabili-
ties. It utilizes the query-in-place feature, which enables the user to access nested
objects, e.g. courses of particular students, but still in the one-by-one mode. Another
advantage concerns complex queries with the use of existential and universal quanti-
fication. Such complex features may however compromise usability for some kinds of
users and kinds of retrieval tasks.

In our opinion an essential issue behind such interfaces is how the user uses and
accumulates information during querying. For instance, the user may see all the
attributes even those, which are not required for the current task. Otherwise, the user
can hide non-interesting attributes, but this requires from him/her some extra action.
Therefore, from the user point of view, there is some trade-off between actions that
have to prepare the information necessary for querying and actions of further query-
ing. To accomplish complex queries without putting them explicitly, the system
should support any sequences of both types of actions.

Typical visual querying system are Kaleidoscape [10], based on its language Ka-
leidoquery [11], and VOODOO [12]. Both are declared to be visual counterparts of
ODMG OQL [1] thus graphical queries are first translated to their textual counter-
part and then processed by an already implemented query engine. The first one uses
an interesting approach to deal with AND/OR predicates (another proposal can be

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

825

found in [13]). It is based on a flow model described previously by Schneiderman
[14]. We find it very useful and intuitive thus we have adopted it to our metaphor.

Polaris [15], designed for relational databases, has some querying capabilities, but
it seems that the major emphasis has been put on data visualization.

A typical example of a browsing system is GOOVI [16] developed by Cassel and
Risch. Unfortunately, selecting of objects is done via a textual query editor. A strong
point of the system is the ability to work with heterogeneous data sources.

Another interesting browser is [17], which is dedicated to Criminal Intelligence
Analysis. It is based on an object graph and provides facilities to make various analy-
ses. Some of them are: retrieving all objects connected directly/indirectly to specified
objects (i. e. all people, who are connected to a suspected man), finding similar ob-
jects, etc. Querying capabilities include filtering based on attributes and filter pat-
terns. The latter allow filtering links in a valid path by their name, associated type,
direction or a combination of these methods. The manner of work is similar to the
metaphor that we have called extensional navigation.

Browsing systems relay on manual navigation from one object to a next one. Dur-
ing browsing the user can read the content of selected objects. Browsing should be an
obligatory option in situations when the user cannot define formally and precisely the
criteria concerning the search goal.

3 Mavigator Metaphors

Mavigator is made up of four metaphors: intentional navigation, extensional naviga-
tion, persistent baskets, and active extensions. The subdivision of graphical querying
to “intentional” and “extensional” can be found in [18] and [19]. We have adopted
these terms for the paradigm based on navigation in a graph. The user can combine
these metaphors in an arbitrary way to accomplish a specific task.

Intentional and extensional navigation are based on navigation in a graph ac-
cording to semantic associations among objects. Because a schema graph (usually
dozens of nodes) is much smaller than a corresponding object graph (possibly mil-
lions of nodes), we anticipate that intentional navigation will be used as a basic re-
trieval method, while extensional navigation will be auxiliary and used primarily to
refine the results. Next subsections contain description of the methods.

3.1 Intentional navigation

Intentional navigation utilizes a database schema graph. Figure 1 shows a part of
such a graph for the Structural Fund Knowledge Portal implemented within the
European project ICONS. A graph consists of the following primitives:

• Vertices, which represent classes or collections of objects. With each of them
we associate two numbers: the number of objects that are marked by the user
(see further) and the number of all objects in the class,

• Edges, which represent semantic associations among objects (in UML terms),

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

826

• Labels with names of association roles. They are understood as pointers from
objects to objects (like in the ODMG standard, C++ binding).

Figure 1. Intentional navigation graph

The user can navigate through vertices via edges. Objects which are relevant for
the user (candidates to be within the search result) can be marked, i.e. added to the
group of marked objects. There are a number of actions, which cause objects to be
marked:

• Filtering through a predicate based on objects’ attributes. The action cause
marking those objects for which the corresponding predicate is true. There
are two options: objects to mark are taken from a set of already marked ob-
jects or from entire extension of the class. Filtering objects through a predi-
cate is analogous to the SQL select clause.

• Manual selection. Using values of special attributes from objects (identifying
objects by comprehensive phrases) it is possible to mark particular objects
manually. It is especially useful when the number of objects is not too large
and there are no common properties among them.

• Navigation (Figure 2) from marked objects of one class, through a selected
association role, to objects of another class. An object from a target class be-
came marked if there is an association link to the object from a marked object
in the source class. Figure 2 explains the idea. Let’s assume that the Firm set
of marked objects has four marked objects: F1,…,F4. Than, navigating from
Firm via employs cause marking eight objects: E1,…,E8. This activity is simi-
lar to using path expressions in query languages. A new set of marked objects
(the result of navigation) replaces existing one. It is also possible to perform a
union or intersection of new marked objects with the old ones. Notice that the
later options allow one to perform a query like: get all employees working in
the “Main” department and earning more than 5000. The options are easy to
understand (even for naive users) and greatly enhance the retrieval capabili-
ties.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

827

Employee Firmworks in

*

employs

*

E1
E2

E3
E4

E5

E7
E6

E8

F1

F2

F3

F4

Employee Firmworks in

*

employs

*

E1
E2

E3
E4

E5

E7
E6

E8

F1

F2

F3

F4

Figure 2. Intentional navigation

• Basket activities. Dragging and dropping the content of a basket on a class
icon causes some operation on the marked objects of the class. A new set of
marked objects taken from the basket can replace the existing set of marked
objects, can be summed with it, can be intersected with it, or can be sub-
tracted from it (equivalents to OR, AND and NOT).

• Active extensions. In principle, this capability is introduced to process
marked objects rather than to mark objects. However, because all the informa-
tion on marked objects is accessible from a C# program the capability can
also be used to mark objects.

Intentional navigation and its features allow the user to receive (in many steps but
in a simple way) the same effects as through complex, nested queries. Integrating
these methods with an extensional navigation, manual selection and other options
supports the user even with the power not available in typical query languages.

An open issue concerns functionalities that are available in typical query lan-
guages, such as queries involving joins and aggregate functions. There is no techni-
cal problem to introduce them to Mavigator (except some extra implementation ef-
fort) but we want to avoid situation when excess options will cause our interface to
be too complex for the users. We hope that during evaluation we will find answers
on such questions.

3.2 Extensional navigation

Extensional navigation takes place inside extensions of classes. Graph’s vertices
represent objects, and graph’s edges represent links. When the user double clicks on
a vertex, an appropriate neighbourhood (objects and links) is downloaded from the
database, which means “growing” of the graph.

Extensional navigation is useful when there are no common rules (or they are
hard to define) among required objects. In such a situation the user can start naviga-
tion from any related object, and then follow the links. It is possible to use basket for
storing temporary objects or to use them as starting points for the navigation.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

828

3.3 Baskets

Baskets are persistent storages of search results. They store two kinds of entities:
unique object identifiers (OIDs) and sub-baskets (Figure 3). The hierarchy of baskets
is especially useful for information categorization and keeping order. Each basket
has its name that is typed in by the user during its creation. The user is also not
aware OIDs, because special objects labels are used. During both kinds of navigation
it is possible to drag an object (or a set of marked objects) and to drop them onto a
basket. The main basket (holding all the OIDs and sub-baskets) is assigned to a par-
ticular user. At the end of a user session all baskets are stored in the database.

Figure 3. Visualization of the basket containing two sub-baskets and three objects

Below we list all basket activities:
• Create a new basket.
• Change basket properties (name, description).
• Remove selected items (sub-baskets or objects).
• Perform operations on two baskets: sum of baskets, intersection of baskets,

and set-theoretic difference of baskets. The operation result can be stored in
one of the participating baskets or in a new one.

• Drag an object and drop it onto an extensional navigation frame. As the re-
sult, the neighbourhood (other objects and links) of a dropped object will be
downloaded from the repository.

• Drag a basket and drop it onto class’s visualization in the intentional naviga-
tion window. As the result a new set of marked object can be created (replace,
add, intersect, subtract). Only objects of that class are considered.

Baskets allow storing selected objects in a very intuitive and structured way. Navi-
gation could be stopped at any time and temporary results (currently selected/marked
objects) can be named, stored and accessed at any time.

3.4 Active Extensions

Active extensions provide a way to add new functionalities operating on marked
objects or objects recorded in baskets. In order to achieve the maximal power and
flexibility active extensions are based on a fully-fledged programming language.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

829

Such a solution requires collaboration of an end user with a programmer who will
write the code accomplishing the required functionalities.

The prototype, currently under construction, will be based on Microsoft C# as a
language for active extensions. A programmer will be aware of the Mavigator meta-
data environment, which will allow him/her to write a source code of the required
functionality in C#. Then the end user will be supported with one click button caus-
ing execution of the written code. The code will process the visually selected set of
marked objects or objects recorded in a user basket. The functionality of such pro-
grams is unlimited. Next two sub-sections present its particular applications.

3.4.1 Active Projections
Active projections allow visualizing a set of marked objects where position (in terms
of x, y coordinates) of each of them will be based on value of particular objects’ at-
tributes. By using two or three axes it is possible to visualize dependencies of two or
three attributes. The number of attributes could be increased due to other visual fea-
tures. In particular [15, 20, 21] propose to use the features of visual icons such as
shape, size, orientation, colour, texture and correlate them with values of additional
attributes. For instance, the size of an employee icon could be proportional to his/her
salary. Such an approach makes it possible to identify some groups of marked ob-
jects. For instance it will be easy to see the group of employees who are paid less
than $2000 and have some specified experiences.

Besides the visual analysis of objects dependencies it is also possible to utilize pro-
jections in more active fashion. Object taken from a basket could be dropped on
projection’s surface, which cause right (based on attributes values) placement. It is
also possible to perform reverse action: drag object from surface onto the basket
(which cause recording object in a basket). We also consider some kind of exten-
sional navigation on projection’s surface: clicking on object’s visualization causes
visualizing its neighbourhood. To avoid misunderstanding, objects from the
neighbourhood should be visually distinguished (e.g. because they could have types
different from the type of visualized objects).

3.4.2 Objects Exporters
Objects exporters allow cooperating with other software systems. By having a se-
lected set of marked objects, it is possible to send it to other programs, such as Excel,
Crystal Reports, etc. That approach makes it possible a subsequent processing of
Mavigator’s results of querying/browsing.

4 User Interface for Mavigator

There are two implemented prototypes, which follow the Mavigator metaphors. First
one, called Structural Knowledge Graph Navigator (SKGN), have been developed
during the European project ICONS (Figure 4). It utilizes almost all (except Active
projections) concepts described in the previous sections.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

830

Figure 4. SKGN window during intentional navigation

SKGN has a lot of features, which make them easy to use by casual users. For in-
stance, during intentional navigation all activities involving marked objects could be
undone or redone. This is similar to browser back/forward buttons. Each step is
stored and shown in the list (see left side of Figure 4). There is also the possibility to
go back to any previous step from the recorded history of navigation.

An extensional navigation window allows to utilize facilities such as zoom in/out
and scroll bars. All of these functionalities improve navigation and legibility of the
graph. Because of legibility, permanent showing of link labels is avoided (however it
is possible to turn it on in the user’s options). Instead, ontology, auto ontology and
specialized tool tips features are introduced. The ontology functionality means that
when an object is selected, its class is selected too (on a classes graph – the inten-
tional navigation window). Auto ontology is similar to ontology with one difference
– selecting an object’s class proceeds when object’s tool tip is shown (without select-
ing the object). A similar functionality has been implemented for links.

In Mavigator we plan to implement all functionalities described above and many
others. Some of them are listed below:

• Create a new user interface based on filter flow model [14] for visual defini-
tion of predicates.

• Additional activities for marked objects, which could be implemented using
Active Extensions (see chapter 3.4). New functions, such as average, maxi-
mum, minimum, sum, etc., allow one to perform other kinds of queries.

• Stickers. A user may want to annotate particular object(s). To do this we
would like to introduce little stickers, which can hold any kind of informa-
tion, which are important to users. Stickers will be persistent and assigned to
a particular user.

• Extending the utilized data model by generalization. We realize, however,
that excessive complexity of a data model could have impact on the easy-of-
use and in consequence, on usability.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

831

• Visual joins. They should allow to group objects from two or more classes, for
instance, an employee object with a company object. A group of objects would
be treated as an ordinary object, with possibilities of filtering, navigating,
marking, storing in a basket, etc.

Two later ideas will be carefully evaluated whether they could be acceptable and
useful for a sufficiently wide range of users.

5 Software Architecture and Implementation

The Structural Knowledge Graph Navigator has been implemented as a Java applet.
Due to the flexible architecture, it is possible to connect it to any data source
(through a proprietary wrapper).

The Mavigator prototype, currently under construction, is implemented as a Win-
dows Form Application in C# language. Its architecture (Figure 5) consists of the
following elements:

• GUI – contains implementation of the user interface,
• Business logic – includes implementation of the Mavigator metaphors and

some additional routines,
• Database wrapper – ensures communication, via defined AbstractDatabase2

interface, with any database. Currently we are working with Matisse [22]
post-relational database. In future we plan to develop wrappers to other ob-
ject-oriented database management systems, including our own prototype
ODRA (Object Database for Rapid Application development).

Mavigator (Windows Form Application)

GUI
Business

logic
Database
wrapper Object-oriented

Database

Mavigator (Windows Form Application)

GUI
Business

logic
Database
wrapper Object-oriented

Database

Mavigator (Windows Form Application)

GUI
Business

logic
Database
wrapper Object-oriented

Database
Object-oriented

Database

Figure 5. Architecture of the Mavigator prototype

The Mavigator prototype will utilize active extensions written in Microsoft C#.
The functionality requires compiling and running source code (which will start par-
ticular extension) during execution (runtime) of the Mavigator. We have already
recognized how to implement such a functionality in C#. The solution needs to de-
fine interface having methods to be invoked during user’s activities and to determine
a way to compile the user’s code. Both problems are currently solved and we start to
implement corresponding functionalities.

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

832

6 Evaluation

The SKGN prototype has been used for the Structural Fund Projects Portal thus we
have some informal response from the users, generally very positive. SKGN, as a
part of European project ICONS, has also been positively assessed by the Project
Officers.

Mavigator will be tested according to prepared formal scenarios from the point of
view of usability, efficiency, easy-of-use and expressive power. Two (or more) groups
of users will get typical queries; sample queries can be found e.g. in [10, 23]. One of
the groups will use the Mavigator, the rest other methods (such a textual query lan-
guages or other visual tools). The results will be judged from various points of view.
More information about evaluating visual tools and graphical user interfaces can be
found in [24, 25, 26].

7 Conclusion

This paper describes the Mavigator prototype and its visual metaphors that offer new
quality for visual querying of object-oriented databases. Our ideas have been pre-
sented from the PhD thesis point of view. We have stressed the items, which should
be included in the dissertation. We have also enumerated some open issues, which
should be carefully investigated. We hope that the OTM PhD Symposium will be a
great opportunity to discuss problems related to visual querying and our particular
approach to solve them.

References

1. Object Data Management Group: The Object Database Standard ODMG, Release 3.0.
R.G.G.Cattel, D.K.Barry, Ed., Morgan Kaufmann, 2000

2. Subieta K., Beeri C., Matthes F., Schmidt J.W.: A Stack-Based Approach to Query
Languages. Proc. 2nd East-West Database Workshop, 1994, Springer Workshops in
Computing, 1995, 159-180

3. Zloof M. M.: Query-by-Example: A Database Language. IBM Syst. Journal, 16(4),
1977, 324-343

4. Chimera, R.: Value Bars: An Information Visualization and Navigation Tool for Multi-
Attribute Listings. Proc. ACM CHI ‘92, pp. 293-294, (1992).

5. Kumar, H., Plaisant, C., Shneiderman, B.: Browsing Hierarchical Data with Multi-
Level Dynamic Queries and Pruning. IJHCI, vol. 46, pp. 103-124, (1997).

6. Catarci T.: What Happened When Database Researchers Met Usability. Information
Systems 25(3), 2000, 177-212.

7. Trzaska M., Subieta K.: Structural Knowledge Graph Navigator For The Icons Proto-
type. Proc. of the IASTED International Conference on Databases and Applications
(DBA 2004)

On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops,
Agia Napa, Cyprus, October 25-29, 2004

Springer Lecture Notes in Computer Science (LNCS 3292), pp. 822–833, 2004.

833

8. Trzaska, M., K.Subieta, K.: The User as Navigator. Proc. 8th East-European Confer-
ence on Advances in Databases and Information Systems (ADBIS), September 2004,
Budapest, Hungary, to appear

9. Carey M.J., Haas L.M., Maganty V., Williams J.H.: PESTO: An Integrated
Query/Browser for Object Databases. Proc. VLDB (1996) 203-214

10. Murray N., Goble C., Paton N.: Kaleidoscape: A 3D Environment for Querying ODMG
Compliant Databases. In Proceedings of Visual Databases 4, L'Aquila, Italy, May 27-
29, 1998

11. Murray N., Paton N.W., Goble C.A., Bryce J.: Kaleidoquery - A Flow-based Visual
Language and its Evaluation. Journal of Visual Languages and Computing 11(2), 2000,
151-189

12. Fegaras L.: VOODOO: A Visual Object-Oriented Database Language For ODMG OQL.
ECOOP Workshop on Object-Oriented Databases 1999, 61-72

13. Jones S., McInnes S.: A graphical user interface for boolean query specification. Inter-
national Journal on Digital Libraries Special Issue on User Interfaces for Digital Librar-
ies, 2(2/3):207–223, 1999

14. Shneiderman, B.: Visual user interfaces for information exploration. In Proceedings of
the 54th Annual Meeting of the American Society for Information Science, pages379–
384, Medford.NJ, 1991.Learned Information Inc.

15. Stolte Ch., Tang D., Hanrahan P.: Polaris: A System for Query, Analysis and Visualiza-
tion of Multidimensional Relational Databases. IEEE Transactions on Visualization and
Computer Graphics, Vol 8, No 1, January-March 2002

16. Cassel K., Risch T.: An Object-Oriented Multi-Mediator Browser. 2nd International
Workshop on User Interfaces to Data Intensive Systems, Zürich, Switzerland, May 31 -
June 1, 2001

17. Smith M., King P.: The Exploratory Construction Of Database Views. Research Report:
BBKCS-02-02, School of Computer Science and Information Systems, Birkbeck Col-
lege, University of London, 2002

18. Batini C., Catarci T., Costabile M.F., Levialdi S.: Visual Strategies for Querying Data-
bases. Proc. of the IEEE Int. Workshop on Visual Languages, Japan, October 1991.

19. Derthick M., Kolojejchick J., Roth S.F.: An Interactive Visual Query Environment for
Exploring Data, Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST '97), ACM Press, (1997) 189-198

20. Bertin J.: Semiology of Graphics. Madison, Wis.: Univ. of Wisconsin Press, 1983.
Translated by W. J. Berg

21. Nowell L.T.: Graphical Encoding for Information Visualization: Using Icon Color,
Shape, and Size To Convey Nominal and Quantitative Data. PhD dissertation, Virginia
Polytechnic Institute and State University, 1998

22. Matisse – a post-relational database. www.matisse.com
23. Chavda M., Wood P. T.: Towards an ODMG-Compliant Visual Object Query Lan-

guage. In Proc. 23rd Int. Conf. on Very Large Data Bases, 1997, pp. 456-465
24. Ivory M. Y., Hearst M. A.: The state of the art in automating usability evaluation of

user interfaces. ACM Comput. Surv. 33(4): 470-516 (2001)
25. Plaisant C.: The Challenge of Information Visualization Evaluation. In Proc. of Conf. on

Advanced Visual Interfaces AVI’04 (2004) (to appear)
26. Rivadeneira W., Bederson B. B.: A Study of Search Result Clustering Interfaces: Com-

paring Textual and Zoomable User Interfaces. Human-Computer Interaction Lab / Univ.
of Maryland, Report no HCIL-2003-36, October 2003

http://www.matisse.com

