
Advances in Information Systems Development: Bridging the Gap between Aca-
demia and Industry. Edited by A.G. Nilsson et al., Springer, 2005

Active Extensions in a Visual Interface to
Databases

Mariusz Trzaska and Kazimierz Subieta

Polish-Japanese Institute of IT and Institute of Computer Science, Poland.
(mtrzaska, subieta)@pjwstk.edu.pl

Introduction

The retrieval capabilities of the visual information retrieval system
Mavigator have been designed for a naive user, typically a computer non-
professional. In contrast to retrieval engines on raw text (such as Google),
Mavigator addresses structured data (e.g. XML repositories). For such data
a query language is proper, however naive users cannot deal with
sophisticated retrieval methods and metaphors, especially using keyboard-
oriented languages a la SQL and script languages for formatting retrieval
output. There are two options: some generic output format (e.g. a table),
which is usually too restrictive for the users, or some attractive visual form
(e.g. a function chart), which in turn must be specialized to a particular
application and retrieval kind. Some tradeoff between these extremes is
necessary.

The Active Extensions module, which is a part of the Mavigator proto-
type [1], allows extending its existing functionalities by professional pro-
grammers. In contrast to Visage [2], which uses a dedicated script lan-
guage, Active Extensions are based on a fully-fledged programming
language (C#). Such a solution does not restrict the form of output, execu-
tion speed or algorithmic complexity of output formatting functions.

A disadvantage of our solution is that end users asking for a new output
format need cooperation with a professional programmer. We believe that
this solution is inevitable if we do not want to sacrifice the expressive
power of the visual interface. In majority of visual retrieval tasks such a
mode of making changes to end user interfaces is acceptable regarding the
time, cost and convenience.

The paper is organized as follows. In next section we discuss related
work. Then we give detailed description of our proposal concerning new
functionalities. After this, Mavigator’s information retrieval capabilities

2 Mariusz Trzaska and Kazimierz Subieta

are presented. Next section concerns implementation and architecture of a
working prototype and the last one concludes.

Related Work

The related solutions could be analysed from two points of views: methods
of modifying application’s functionalities and the way of information re-
trieval. There are not so many applications, which could be assigned to the
both mentioned groups. Hence we present them in two separate subsec-
tions.

Methods of Modifying Application’s Functionalities

DRIVE [3] is an example of a user interface to a database development
environment. The system dynamically interprets a conceptual object-
oriented data language with active constructs. Specification of the interface
is made in a textual language called NOODL. The framework includes the
following main classes: user, data, interface, and visualisation. Due to
separation of data and interfaces, each data item could have associated
multiple interface components. Each user could have own set of user-
specific views and access privileges. Visual programming facilities help in
creating queries, constraints, and other retrieval options. Although DRIVE
has been designed as an easy-to-use graphical development system, it is
disputable if every user kind (especially a naive one) will be ready to ac-
cept it.

Teallach [4] employs the idea of a Model-Based User Interface Devel-
opment Environment (MB-UIDE). It particularly supports specification of
Domain, Task and Presentation Models. A domain model is extracted from
a database scheme. Then, using a graphical editor, the user builds an inter-
face by linking together appropriate items from presentation and task mod-
els. Teallach does not introduce built-in information retrieval capabilities,
thus all retrieval methods should be designed by the user. From one point
of view it is an advantage because the user has full freedom in employing
various retrieval metaphors. On the other hand, it could be a disadvantage,
because there is no common and coherent basis of information retrieval
methods.

Visage [2] is an example of another approach. A user interface itself
contains some navigational methods for retrieval. Moreover, each data
visualization component, called frame, could be modified by attaching a
special script. Similarly to Mavigator, scripts are written by programmers.

Active Extensions in a Visual Interface to Databases 3

However, in contrast to our approach, Visage utilizes a scripting language
similar to Basic. Unfortunately the interpretation overhead limits the data-
set size that can be manipulated with no speed constraint. That is one of
the reasons for using in Mavigator a fully-fledged programming language.

Visual Tools for Information Retrieval

Roughly speaking, visual metaphors for information retrieval can be sub-
divided into two groups: based on a graphical query language and based on
browsing. Some systems combine features from both groups. An example
is Pesto [5] having possibilities to browse through objects from a database.
Unlike Mavigator, browsing is performed from one object to a next one.
Besides browsing, Pesto supports quite powerful query capabilities. It util-
izes a query-in-place feature, which enables the user to access nested ob-
jects, e.g. courses of particular students, but still in the one-by-one mode.
Another advantage concerns complex queries with the use of existential
and universal quantification, however, not very usable for less professional
users.

An essential issue behind such interfaces is how the user uses and ac-
cumulates information during querying. In particular, the user may see all
the attributes even those, which are not required for the current task. Oth-
erwise, the user can hide non-interesting attributes, but this requires from
him/her some extra action. Therefore, from the user point of view, there is
some tradeoff between actions preparing the information for querying and
actions of further querying. To accomplish complex queries the system
should support combinations of both types of actions.

Typical visual querying systems are Kaleidoscape [6], based on its lan-
guage Kaleidoquery, and VOODOO [7]. Both are declared to be visual
counterparts of ODMG OQL thus graphical queries are translated to their
textual counterparts and then processed by an already implemented query
engine.

An example of a browsing system is GOOVI [8]. A strong point of the
system is the ability to work with heterogeneous data sources. Another in-
teresting browser is presented in [9], which is dedicated to Criminal Intel-
ligence Analysis. It is based on an object graph and provides facilities to
make various analyses. Some of them are: retrieving all objects connected
directly/indirectly to specified objects (i.e. e. all people, who are connected
to a suspected man), finding similar objects, etc. Querying capabilities in-
clude filtering based on attributes and filter patterns. The latter allow filter-
ing links in a valid path by their name, associated type, direction or combi-

4 Mariusz Trzaska and Kazimierz Subieta

nation of these methods. The browsing style is similar to our extensional
navigation.

Active Extensions

When we started to develop methods of extending existing functionalities
two different approaches come to our minds:

• Utilizing some kind of a graphical metaphor like in [3] or [4]. Both of
them are tradeoffs between the power and easy-to-use. They are claimed
to be easy enough for the target user. In our opinion, however, for our
target user they are still too complex. Moreover, the metaphors seriously
restrict the field of user retrieval activities.

• Using a programming language. Depending on a language kind, limita-
tions can be reduced partly or at all. We have assumed that a Maviga-
tor’s user is not a programmer and will not be able to use such exten-
sions. Hence the support from a professional programmer is required.

Mavigator already employs some information retrieval metaphors (see
next section), which are powerful and yet easy-to-use, so we have decided
to provide a way to add new functionalities operating only on a query re-
sult. The approach does not complicate the entire application’s architec-
ture, but guarantees sufficient flexibility.

Mavigator is our second prototype. The first one, called Structural
Knowledge Graph Navigator (SKGN), has been designed and imple-
mented (in Java) for the European project ICONS, thus we have gathered
some practical experience of its use by computer non-professionals [10],
[11], [1]. The current prototype uses Microsoft C# as a language for active
extensions. A programmer is aware of the Mavigator meta-data environ-
ment, which allows him/her to write a source code of the required func-
tionality in C#. Writing an Active Extension source code is possible
through a Mavigator’s special editor. Once programmer compiles the code,
a particular Active Extension is ready to use (without stopping Mavigator).
Then the end user is supported with one click button causing execution of
the written code. The code processes a query result or objects recorded in a
user basket. The functionality of such programs is unlimited. Next three
sub-sections present its particular applications.

Active Extensions in a Visual Interface to Databases 5

Simple Active Extensions

A simplest type of Active Extensions may perform some calculations. In
Mavigator we have implemented popular aggregate functions, such as the
minimal attribute’s value, maximum attribute’s value and average attrib-
ute’s value. All are very easy for use. The user has to select a particular
type of calculation and then to select a particular attribute in a query result.
Then the result of the calculation is shown to the user.

Active Projections

Fig. 1. Active projections

Another application of the Active Extensions module is an active pro-

jection (Fig 1) which allows the user to visualize a set of objects. The x, y
coordinates of icons representing objects are determined by values of ob-

6 Mariusz Trzaska and Kazimierz Subieta

jects’ attributes. The current implementation uses two axes (2D), which al-
low visualizing dependencies of two attributes. Fig. 1 shows objects of the
class Product and theirs dependencies between unit’s price and units in
stock.

An active projection makes it possible to perform some data mining in-
vestigations, in particular, to identify some groups of objects. For instance
it is easy to see in Fig. 1 two groups, where one includes cheap products
with a higher stock and the second one (right-bottom corner) more expen-
sive products with a smaller stock. One can also observe that there are
more cheap products than expensive ones.

Besides the visual analysis of objects dependencies it is also possible to
utilize projections in more active fashion. Object taken from a basket can
be dropped on projection’s surface, which cause right (based on attributes
values) placement. It is also possible to perform reverse action: drag an ob-
ject from the surface onto the basket (which cause recording object in a
basket).

Objects Exporters

Objects exporters allow cooperating with other software systems. Having a
query result, it is possible to send it to other programs, such as Excel,
Crystal Reports, etc. That approach makes it possible a subsequent
processing of Mavigator’s results of querying/browsing. The current
prototype exports to XML files, which could be post-processed by a
number of modern software tools.

Information Retrieval Capabilities

Mavigator is made up of three metaphors utilized for information retrieval:
intensional navigation, extensional navigation and persistent baskets. The
subdivision of graphical querying to “intensional” and “extensional” can
be found in [12]. We have adopted these terms for the paradigm based on
navigation in a graph. The user can combine these metaphors in an
arbitrary way to accomplish a specific task.

Intensional and extensional navigation are based on navigation in a
graph according to semantic associations among objects. Because a
schema graph (usually dozens of nodes) is much smaller than a corre-
sponding object graph (possibly millions of nodes), we anticipate that in-
tensional navigation will be used as a basic retrieval method, while exten-
sional navigation will be auxiliary and used primarily to refine the results.

Active Extensions in a Visual Interface to Databases 7

Next subsections contain short description of the methods (for detailed one
see [1]).

Intensional Navigation

Fig. 2. Intensional navigation window

Intensional navigation utilizes a database schema graph. Fig 2 shows a

window containing a database schema graph of the Northwind sample
(shipped with the MS SQL Server). A graph consists of the following
primitives:

• Vertices, which represent classes or collections of objects. With each of
them we associate two numbers: the number of objects that are marked
by the user (see further) and the number of all objects in the class,

• Edges, which represent semantic associations among objects (in the
UML terms),

• Labels with names of association roles. They are understood as pointers
from objects to objects (like in the ODMG standard, C++ binding).

8 Mariusz Trzaska and Kazimierz Subieta

Employee Firmworks in

*

employs

*

E1
E2

E3
E4

E5

E7
E6

E8

F1

F2

F3

F4

Employee Firmworks in

*

employs

*

E1
E2

E3
E4

E5

E7
E6

E8

F1

F2

F3

F4

Fig. 3. Explanation of marking objects using intensional navigation

The user can navigate through vertices via edges. Objects that are rele-
vant for the user (candidates to the search result) can be marked, i.e. added
to the group of marked objects. There are a number of actions, which cause
objects to be marked:

• Filtering through a predicate based on objects’ attributes. The action
causes marking those objects for which the corresponding predicate is
true.

• Manual selection. Using values of special attributes from objects (identi-
fying objects by comprehensive phrases) it is possible to mark particular
objects manually. It is especially useful when the number of objects is
not too large and there are no common properties among them.

• Navigation (Fig 3) from marked objects of one class, through a selected
association role, to objects of another class. An object from a target
class is marked if there is an association link to the object from a
marked object in the source class. Fig 3 explains the idea. Let’s assume
that the Firm set of marked objects has four marked objects: F1,…,F4.
Than, navigating from Firm via employs causes marking eight objects:
E1,…,E8. This activity is similar to using path expressions in query lan-
guages. A new set of marked objects (the result of navigation) replaces
an existing one. It is also possible to perform a union or intersection of
new marked objects with the old ones.

• Basket activities – see section about baskets.
• Active extensions. In principle, this capability is introduced to process

marked objects rather than to mark objects. However, because all the in-
formation on marked objects is accessible from an Active Extension
source code, the capability can also be used to mark objects.

Intensional navigation and its features allow the user to receive (in many
steps but in a simple way) the same effects as through complex, nested
queries. Integrating these methods with extensional navigation, manual se-

Active Extensions in a Visual Interface to Databases 9

lection and other options supports the user even with the power not avail-
able in typical query languages.

An open issue concerns functionalities that are available in typical query
languages, such as queries involving joins and aggregate functions. There
are no technical problems to introduce them to Mavigator (except some ex-
tra implementation effort) but we want to avoid situation when excess op-
tions will cause our interface to be too complex for the users. We hope that
during evaluation we will find answers on such questions.

Extensional Navigation

Extensional navigation takes place inside extensions of classes. Graph’s
vertices represent objects, and graph’s edges represent links. When the
user double clicks on a vertex, an appropriate neighborhood (objects and
links) is downloaded from the database, which means “growing” of the
graph.

Extensional navigation is useful when there are no common rules (or
they are hard to define) among required objects. In such a situation the
user can start navigation from any related object, and then follow the links.
It is possible to use basket for storing temporary objects or to use them as
starting points for the navigation.

Baskets

Baskets are persistent storages of search results. They store two kinds of
entities: unique object identifiers (OIDs) and sub-baskets. The hierarchy of
baskets is especially useful for information categorization and keeping
order. Each basket has its name that is typed in by the user during its
creation. The user is also not aware of OIDs, because special objects labels
are used. During both kinds of navigation, it is possible to drag an object
(or a set of marked objects) and to drop them onto a basket. The main
basket (holding all the OIDs and sub-baskets) is assigned to a particular
user. At the end of a user session, all baskets are stored in the database.

Basket activities include: creating a new basket, removing selected
items (sub-baskets or objects), performing operations on two baskets (sum
of baskets, intersection of baskets, and set-theoretic difference of baskets;
the operation result can be stored in one of the participating baskets or in a
new one). There are also two more advanced operations:

10 Mariusz Trzaska and Kazimierz Subieta

• Drag an object and drop it onto an extensional navigation frame. As the
result, the neighborhood (other objects and links) of a dropped object
will be downloaded from the database.

• Drag a basket and drop it onto class’s visualization in the intensional
navigation window. As the result, a new set of marked object can be
created. Only objects of that class are considered.

Software Architecture and Implementation

The Mavigator prototype is implemented as a Windows Form Application
in the C# language. Its architecture (Fig 4) consists of the following ele-
ments:

Mavigator (Windows Form Application)

Core GUI

Business logic

Database
wrapper

Data

source

AbstractDatabase2

Raw data
processor

Virtual scheme
generator

Active
Extensions GUI

Active
Extensions

AbstractDatabase2

Mavigator (Windows Form Application)

Core GUI

Business logic

Database
wrapper

Data

source

AbstractDatabase2

Raw data
processor

Virtual scheme
generator

Active
Extensions GUI

Active
Extensions

AbstractDatabase2

Fig. 4. Architecture of the Mavigator prototype

• Core GUI – contains implementation of the core user interface elements
like intensional navigation window, basket window, etc.,

• Business logic – includes implementation of the Mavigator retrieval
metaphors and some additional routines,

• Active Extensions GUI – GUI elements being a part of Active Exten-
sions like an Active Projections window,

• Active Extensions – elements compiled from a source code written by
an Active Extensions programmer. The arrow, which comes from the
business logic block, symbolizes query results processed by AE,

• A database wrapper – ensures communication, via the defined Ab-
stractDatabase2 interface, with any data source. We note that all internal
data processing (including Active Extensions) works on an abstract data
model (independent of implementation), which ensures that an entire
application can work in the same manner aside of the current (possibly,

Active Extensions in a Visual Interface to Databases 11

heterogeneous) data sources. Moreover, an entire application works with
virtual schemas. They allow to redefine (using the SBQL query lan-
guage [[13]]) a physically database scheme. This option can be useful
for security, hiding some parts of data, changing data names, and so on.

• Data sources. Currently we are working with an ODRA prototype data-
base, however after implementing a dedicated wrapper it is possible to
work with any kind of data source, including object/relational databases,
XML/RDF files and repositories, ODBC, JDBC, etc.

The Mavigator prototype utilizes active extensions written in Microsoft
C#. The functionality requires compiling and running a source code (which
implements a particular extension) during execution (runtime) of the
Mavigator. Our first idea was to define some programming interface im-
plemented by a particular C# class created by the programmer. However,
finally we have found that such a solution would be too heavy with respect
to the goal. The programmer developing a particular Active Extension has
to create only one method (in a special class): public, static, with two pa-
rameters: an instance of a data wrapper and a collection containing OIDs
of the objects being processed. Of course, inside the method could be any
valid C# code including calling other modules, creating objects, etc. After
successful compilation, the system adds this method to the list of created
extensions. When the user wishes to run a particular Active Extension, the
system runs an associated method, passing an instance of the data wrapper
and a collection of objects’ OIDs as parameters.

Conclusions and Future Work

We have presented Mavigator, which offers new qualities in extending
existing application’s functionalities. The Active Extensions, which use a
fully-fledged programming language, make it possible to create any kind
of additions to the Mavigator’s core functions. The designed architecture is
flexible and allows the users to work with any kind of a data source. The
utilized data retrieval metaphors are easy to understand for casual (naive)
users.

We plan to conduct a formal usability test on a group of users. We have
some, generally positive, informal input coming from the users of the
ICONS prototype. We also plan investigations concerning new visual
functionalities and metaphors, which will make our tool more powerful
and easy-to-use.

12 Mariusz Trzaska and Kazimierz Subieta

References

[1] Trzaska M, Subieta K (2004) Usability of Visual Information Retrieval
Metaphors for Object-Oriented Databases. Proc of the On The Move Feder-
ated Conferences and Workshops (DOA, ODBASE, CoopIS, PhD Sympo-
sium) Springer Lecture Notes in Computer Science (LNCS 3292)

[2] Roth F, Chuah M, Kerpedjiev S, Kolojejchick J, Lucas P (1997) Towards an
Information Visualization Workspace: Combining Multiple Means of Ex-
pression. Human-Computer Interaction Journal, vol 12, no 1 & 2, pp 131-185

[3] Mitchell K, Kennedy J (1996) DRIVE: An Environment for the Organised
Construction of User Interfaces to Databases. 3rd International Workshop on
Interfaces to Databases. Springer-Verlag Electronic WIC

[4] Barclay PJ, Griffiths T, McKirdy J, Kennedy J, Cooper R, Paton NW, Gray P
(2003) Teallach – A Flexible User-Interface Development Environment for
Object Database Applications. Journal of Visual Languages and Computing,
vol 14, no 1, pp 47-77

[5] Carey MJ, Haas LM, Maganty V, Williams JH (1996) PESTO: An Integrated
Query/Browser for Object Databases. Proc of VLDB

[6] Murray N, Goble C, Paton N (1998) Kaleidoscape: A 3D Environment for
Querying ODMG Compliant Databases. Proc of Visual Databases 4 L'Aquila
Italy 27-29 May

[7] Fegaras L (1999) VOODOO: A Visual Object-Oriented Database Language
for ODMG OQL. ECOOP Workshop on Object-Oriented Databases 1999

[8] Cassel K, Risch T (2001) An Object-Oriented Multi-Mediator Browser. 2nd
International Workshop on User Interfaces to Data Intensive Systems. Zürich
Switzerland

[9] Smith M, King P (2002) The Exploratory Construction Of Database Views.
Research Report BBKCS-02-02 School of CS and IS Birkbeck College Uni-
versity of London

[10] Trzaska M, Subieta K (2004) Structural Knowledge Graph Navigator for the
Icons Prototype. Proc of the IASTED International Conference on Databases
and Applications (DBA 2004)

[11] Trzaska M, Subieta K (2004) The User as Navigator. Proc of the 8th East-
European Conference on Advances in Databases and Information Systems
(ADBIS) September 2004 Budapest Hungary

[12] Batini C, Catarci T, Costabile MF, Levialdi S (1991) Visual Strategies for
Querying Databases. Proc of the IEEE International Workshop on Visual
Languages. Japan

[13] Subieta K, Beeri C, Matthes F, Schmidt JW (1995) A Stack-Based Approach
to Query Languages. Proc of the 2nd East-West Database Workshop,
Springer Workshops in Computing

