

MAS ewcislo@pjwstk.edu.pl 1/9

Design and Analysis of Information
Systems (MAS)

Updated: 2025-02-28

Lecturer: Mariusz Trzaska, Ph. D. (mtrzaska@pjwstk.edu.pl, http://www.mtrzaska.com)

Classes: Emil Wcisło (ewcislo@pjwstk.edu.pl)

1. Introduction

The “Design and Analysis of Information Systems” course is devoted to practising the
skills that are necessary for transition from a conceptual model (the product of the
analysis and requirements specification phase in software development life cycle) into a
specific implementation environment, either object-oriented or relational. Students learn
some conceptual features that have no direct counterparts in a chosen implementation
environment (actually Java or MS C#). Some rules regarding designing (usability) and
implementing user interfaces and utilization of software frameworks are also presented.
The lectures are supported by the implementation including data management,
application’s behaviour and creating simple GUIs. Requirement specification and static
analysis should be done along with teaching the course “Object Modelling Techniques in
Software Analysis” (PRI). The size of a project, that each student has to do on their own,
is limited to between 10 and 15 UML classes.

2. Schedule

No. # Lecture Excercise

1 Designing and Modeling of

System Architecture

• A brief discussion of the subject and the
objectives of the project.

• Exercises of dynamic analysis.

• Class involves drawing diagrams on the

basis of the requirements. You can use the

dedicated CASE tool or traditional

whiteboard.

2 Selected Constructs of

Object-oriented

Programming Languages

Exercising of the selected constructs of object-

oriented programming language.

Class involves creating programs using various

designs. The nature and scope is defined by

level of the group (which is determined by the

teacher) and can be based on the contents of

the lecture.

3 Selected Constructs of

Object-oriented

Programming Languages

(2)

Exercising of the selected constructs of object-

oriented programming language.

4 Using Classes in Object-

oriented Programming

Languages

Exercising with the use of classes in object-

oriented programming languages.

mailto:mtrzaska@pjwstk.edu.pl
http://www.mtrzaska.com/
mailto:ewcislo@pjwstk.edu.pl

MAS ewcislo@pjwstk.edu.pl 2/9

5 Associations in Object-

oriented Programming

Languages

• Exercising of implementing association in
object-oriented programming languages
(1).

• Evaluation of the mini project MP1
(lecture material for classes)

6 Associations in Object-

oriented Programming

Languages (2)

Exercising of implementing association in

object-oriented programming languages (2).

7 Inheritance in Object-

oriented Programming

Languages

• Exercising the implementation of different
models of inheritance in object-oriented
programming languages.

• Evaluation of a mini project MP2 (lecture
material for associations)

8 Implementation of Other

UML Constructs in Object-

oriented Programming

Languages

• Exercising the implementation of various
UML structures in object-oriented
programming languages.

• Evaluation of a mini project MP3 (lecture
material for inheritance)

9 Relational Model in Object-

oriented Programming

Languages

• Evaluation of a mini project MP4 (lecture
material for constraints)

• Exercising the implementation of the
relational model in object-oriented
programming languages

10 Relational Model in Object-

oriented Programming

Languages (2)

• Exercising the implementation of the
relational model in object-oriented
programming languages

11 Usability of Graphical User

Interfaces

• Evaluation of a mini project MP5 (lecture
material for relational model)

• Work on the final project.

12 Design and

Implementation of

Graphical User Interfaces

• Exercising the implementation of graphical
user interfaces (including the use of a
dedicated GUI editor).

• Work on the final project.

13 Design and

Implementation of

Graphical User Interfaces

(2)

• Exercising the implementation of graphical
user interfaces (including the use of a
dedicated GUI editor).

• Work on the final project.

• The deadline for sending
documentation. There is no possibility
of sending the documentation later.

14 Design and

Implementation of

Evaluation of final project implementation.

MAS ewcislo@pjwstk.edu.pl 3/9

Graphical User Interfaces

(3)

15 Design and

Implementation of

Graphical User Interfaces

(4)

All matters relating to the final evaluation of the

classes.

3. Mini-projects

Their goal is to test the understanding the practical ways to implement particular
constructions of the conceptual model (classes, associations, an extent, etc.) and their
cooperation with the relational model. In addition, they can be treated as a "cornerstone"
of the final project (which later will be supplemented with other required elements, e. g.
GUI). You need to implement various business constructs (all the technical information
such as the number of objects in extent, setters / getters do not apply), which are present
in the conceptual model. Every MP must be implemented as a console application and
contain examples of data and / or methods that illustrates its proper operation (localized
in the main() method). Projects evaluation schedule – see attached classes schedule.

During the evaluation you can expect questions about ongoing issues and
implementation approaches. Your late mini projects can be evaluated during next
classes, but it is associated with a 50% reduction in the score.

MP elements to be assessed1:

MP 01

Classes,

attributes

MP 02

Associations

MP 03

Inheritance

MP 04

Constraints

MP 05

Relational model2

• A class extent

• A class extent –
persistence

• A complex
attribute

• An optional
attribute

• A multi-value
attribute

• A class attribute

• A derrived
attribute

• A class method

• Method
overriding and
overloading

• “Basic”

• With an
attribute

• Qualified

• Composition

In every case:
cardinality 1-*
or *-* and
automatic
creation of a
reverse
connection.

• An abstract class
and polymorphic
method invocation

• An overlapping
inheritance

• A multi-inheritance

• A multi-aspect
inheritance

• A dynamic
inheritance

• For an
attribute

• Unique

• Subset

• Ordered

• Bag

• Xor

• Custom
business
constraint

• RM - classes

• RM –
associations (1-*
or *-*)

• RM - inheritance.

You should create
a program that
uses a database
and implements
the above
structures. You
can use any tools,
e.g. ORM-s, for
example:
Hibernate, Entity
Framework.

The topics of the MPx could be different from a topic of the final project.

1 You should propose your own business cases, i. e. do not use examples from lectures, books, etc.
2 Relational model (MR) is not applicable for students of Department of Information Management
(WZI).

MAS ewcislo@pjwstk.edu.pl 4/9

It is not allowed to combine different constructs in the same example, e.g. each kind of an
attribute should have its own business example.

Due to the anti-plagiarism procedure (see below), before an individual defense, the MPx
implementation must be uploaded to the appropriate folder in the Gakko/EduX system.

Mini-projects are an integral part of the final evaluation (see section 5.1). Thus they
should be well prepared.

4. The final project consists of two parts: a documentation and an implementation. Its topic
should be complex enough to create the appropriate number (12 - 15) meaningful
business classes. Because of this, topics like tool applications, system applications,
media players, etc. are not suitable. If you have doubts you should consult the teacher.

4.1. Documentation

4.1.1. The documentation includes the "old" part, i. e. the one that has been created
on the PRI class (included as an attachment) and the “new” documentation.
The “new” documentation copies the “old” documentation scheme, but there
are some new elements, which are mentioned below. Those who do not have
the "old" project of the PRI must develop at least: requirements (as the
"story"), the use case diagram and analytical class diagram.

4.1.2. Use cases: „New” documentation of use cases should include detailed
description of one non-trivial use case in addition to “old” documentation. The
use case should refer to another use case. The scenario for this use case
should be made using both natural language and activity diagram.

4.1.3. User interface design: based on the selected non-trivial use case, user
interface design should be made (according to the guidelines given in the
lecture).

4.1.4. For selected use case a dynamic analysis should be performed (i.e., UML
activity and state diagrams should be created). Dynamic analysis should be
completed not only by the appearance of the methods in the class diagram,
but also a discussion of its implications. “The effects” of the dynamic analysis
(perhaps not only new methods, but also new attributes, new associations,
etc.) should be placed on a class diagram redrawn from the "old" project and,
where possible, highlighted with a different color. The project must use all the
kinds of diagrams mentioned above.

4.1.5. Before the "final" class diagram, which forms the basis for implementation, it is
necessary to include elements specifying the design decisions (for example,
based on the relevant parts of the diagram), e.g. how to implement a class
extent.

4.1.6. In summary, the "final" (design) class diagram differs from the diagram
provided on the PRI in the following sections:

1. Has more details

2. All structures which do not exist in a given programming language are
transformed (according to the design decisions)

3. Is supplemented with methods resulting from dynamic analysis

4.1.7. You should take care of the readability of the entire documentation,
especially diagrams (some vector format is recommended, e. g. Enhanced
Metafile). Hence, you should ensure that:

1. the UML notation is correctly applied (not “similar” graphical elements),

2. each of them is properly described/entitled,

MAS ewcislo@pjwstk.edu.pl 5/9

3. diagrams are prepared in a suitable tool (e. g. UMLet),

4. you use fonts which are big enough (100% A4 view should be readable,
e.g. on a printed page; increase the font size if required),

5. diagrams are not divided into parts,

6. layout is clear, e.g. draw inheritance as vertical lines and associations as
horizontal ones, avoid crossing lines, associations have cardinalities and
names, etc.

4.1.8. Documentation should be delivered in a single PDF file
(MAS_Group_Lastname_Firstname_StudentNo.pdf) sent to the email address
of the teacher. Deadline - see the attached schedule.

4.1.9. A summary of the contents of the project documentation (PRI + MAS):

1. User requirements

2. The use case diagram

3. The class diagram - analytical

4. The class diagram - design

5. The scenario of selected use case (as text)

6. The activity diagram for picked use case

7. The state diagram for selected class

8. The GUI design

9. The discussion of design decisions and the effect of dynamic analysis

4.1.10. The evaluation of the documentation will be issued in accordance with the
table below (prerequisite: meeting the requirements of paragraph 4.1):

Criterion Max points

The complexity of the business domain 10

Documenting the use case(s) (scenario and diagram) 10

Correctness and complexity of the design class diagram 35

Correctness and complexity of the activity diagram 10

Correctness and complexity of the state diagram 10

The GUI design 10

Discussion of the design decisions 10

Readability and organization of the document 5

Total 100

4.2. Implementation

4.2.1. The whole structure (all the classes with appropriate associations).

4.2.2. Methods required to implement the use case (or cases).

4.2.3. Elements of the graphical user interface (GUI), which are necessary to
present a working implementation of the selected use case. Each project
must have a GUI.

MAS ewcislo@pjwstk.edu.pl 6/9

4.2.4. Minimum implementation of the GUI must involve an interaction of two
classes connected with an association (required target cardinality: many), for
example: there are two classes: an Employee and a Company; a widget
(capable of showing many items, e.g. ListBox) contains a list of companies,
after clicking on any item it should display another widget (capable of showing
many items, e.g. ListBox) which contains a list of its employees retrieved
using a defined association (usually it means no SQL queries). GUI
implementation, which only creates connections between objects and does
not allow for the above interaction, is not enough to pass the project.
Similarly, solutions e.g. with a single widget, a TextBox, target cardinality “1”
or just filtering the extent (instead of using a previously defined association)
are insufficient.

4.2.5. The implementation must contain sample data showing the correct operation.

4.2.6. Pay attention to quality, ergonomics and usability of GUI (e.g., windows
scaling, colors, philosophy of actions) - it is an important component of the
final assessment. Design and implementation of GUI (you can use dedicated
editors) shall be in accordance with the principles of usability, described at the
lecture.

4.2.7. All data stored in the system must be persistent (e.g. file, database, dedicated
library, etc.).

4.2.8. Implementation of the project will be individually evaluated during classes (see
below).

4.2.9. Language of the implementation can be Java, C# or C++. Other languages
should be agreed with the teacher.

4.2.10. The grade for the implementation will be issued in accordance with the
following table (prerequisite: meeting the requirements of Section. 4.2):

Criterion
Max

points

Complexity, scope and correctness of the implemented

functionality

20

The scope and correctness of completed object-oriented

constructs

25

Code quality (names, structure, comments etc.) 5

The elegance of implemented solutions 15

The way of the persistence implementation 10

The implementation of the GUI (including usability/

ergonomics)

20

Project presentation 5

Total 100

MAS ewcislo@pjwstk.edu.pl 7/9

 The final project does not have to include all constructs from mini-projects.

4.3. Each project will be evaluated individually. During the evaluation, you can expect
detailed questions about the way of the implementation, e. g. “What will be if…”,
“Why it's done this way…”, “Please make the following modifications...”. People who
implemented the projects personally should not have any problems with answering
the above questions. Lack of ability to answer above questions will result in negative
grade of the classes.

Due to the anti-plagiarism procedure (see below), before an individual defense, the
project implementation must be uploaded to the appropriate folder in the
Gakko/EduX system.

4.4. The following aspects of the project will be evaluated (see also points 4.1.10,
4.2.10):

4.4.1. The difficulty of the task.

4.4.2. The realized scope of the functionality.

4.4.3. The quality of the code including comments, that allow to automatically
generate API documentation.

4.4.4. The elegance of implemented solutions, including the GUI ergonomics

5. The credit of the exercises

Final evaluation of the exercise consists of the following components:

5.1. Points for mini-projects (no need to individually pass each of them): 20 + 20 + 20 +
16 + 24 = 100 pts.,

5.2. Evaluation of the project:

5.2.1. Grade for the implementation

5.2.2. Grade for the documentation

With each part (5.1, 5.2.1, 5.2.2) you must obtain a passing mark (50% or 3,0).

Therefore, people, who for example pass MPs, and does not pass the project will not

pass the classes.

Additionally, you can earn up to 15 points for solving tasks described during lectures.

These bonus points are added to the total number of points (see Para. 5.1), provided you

have at least 50% of the points.

6. Plagiarism

All submitted source codes (mini-projects, final project) will undergo anti-plagiarism
procedure. If borrowings from other programs are detected:

1. all programs where common code was detected receive 0 points;
2. it is not possible to send a corrected version of such a program, which

may lead to failing the exercises without a chance to correct them in the
current semester;

3. no determination will be made to investigate who copied the source codes
from whom.

Before defending the MPx and the final project, it must be uploaded to the appropriate
folder in the Gakko/EduX system. Dates are provided by the class tutor.

7. Deadlines

MAS ewcislo@pjwstk.edu.pl 8/9

Deadlines for the various tasks (mini-projects, final project documentation, and
implementation of the final project) are given in the table (point 2). Exceeding deadlines
will result serious reduction in the mark, including up to failing the exercises.

There is no possibility of passing exercises at the end of the semester, conditional on the
exam, retake session, etc.

8. The exam

MAS exam consists of two parts (total points are the foundation of the mark):

8.1. Test. You should evaluate each of the questions (Y / N). Correct answer is 2 point.,
Incorrect -2 point., No response - 0 points.

8.2. Practical exercises. You should name and briefly discuss how to implement the
given structure drawn on the attached conceptual class diagram.

There is no exemption from the exam.

An example exam: http://www.mtrzaska.com/mas-egzamin.

9. Resources

9.1. The electronic version of the lectures:

http://www.mtrzaska.com/mas

Due to the complex nature of these issues, it is recommended to attend the lecture

(regardless of the fact that these materials are available on-line).

9.2. Book (polish version): M. Trzaska: „Modelowanie i implementacja systemów
informatycznych”. PJATK. ISBN 978-83-89244-71-3.

• Electronic version of the book (eBook works on platforms: Windows, iOS,
Android, mobile devices and readers) in internet bookstore Ibuk: PDF version.

• Print version: PJATK bookstore.

• Fragments w PDF: http://www.mtrzaska.com/mas-ksiazka

9.3. General Information (may appear in newer versions).

http://www.mtrzaska.com/mas-informacje

9.4. Sample programming tasks

These programming tasks are only intended to guide programming material (learned
during previous courses) and their solutions will not be assessed as part of the
subject MAS (Modeling and Analysis of Information Systems). They can be used
during the "Selected constructions of object-oriented programming languages" class.
Students starting the MAS course should be able to solve the vast majority of the
following tasks.

https://www.mtrzaska.com/mas-programming-tasks/

9.5. Free books on-line:

9.5.1. Bruce Eckel - Thinking in Java: http://www.mindview.net/Books/TIJ/

9.5.2. Allen B. Downey - How to Think Like a Computer Scientist: Java Version:
http://www.greenteapress.com/thinkapjava/

9.5.3. Robert Sedgewick and Kevin Wayne - Introduction to Programming in Java:
An Interdisciplinary Approach: http://introcs.cs.princeton.edu/home/

9.6. Implementation tools

http://www.mtrzaska.com/mas-egzamin
http://www.mtrzaska.com/mas
https://www.ibuk.pl/fiszka/43694/modelowanie-i-implementacja-systemow-informatycznych.html
https://sklep.pja.edu.pl/produkt/modelowanie-i-implementacja-systemow-informatycznych/
http://www.mtrzaska.com/mas-ksiazka
http://www.mtrzaska.com/mas-informacje
https://www.mtrzaska.com/mas-programming-tasks/
http://www.mindview.net/Books/TIJ/
http://www.greenteapress.com/thinkapjava/
http://introcs.cs.princeton.edu/home/

MAS ewcislo@pjwstk.edu.pl 9/9

Due to the fact that there is quite a large freedom to choose the technology of the project,

there is no mandatory tools list. However, the following list contains tools, which can be

useful:

• CASE tools (including diagramming editors):

o UMLet (open source, multiplatform): https://www.umlet.com/

o Visual Paradigm Community Edition: http://www.visual-paradigm.com
(also on-line edition),

o Lucid Charts https://lucid.app/ (also on-line edition),

o ArgoUML: http://argouml.tigris.org/,

o MagicDraw Community Edition: http://www.magicdraw.com,

o StarUML: http://staruml.sourceforge.net/en/,

o NetBeans for Java: http://www.netbeans.org/ (allows, for example, the
creation of UML diagrams and source code generation)

o MS Visio (ELMS license available for PJAIT students)

o A comprehensive list of tools:
http://en.wikipedia.org/wiki/List_of_UML_tools.

• IDE

o IntelliJ IDEA (free Community): https://www.jetbrains.com/idea/

o Eclipse for Java: http://www.eclipse.org/,

o NetBeans for Java: http://www.netbeans.org/,

o MS Visual Studio (ELMS license available for PJIIT students)

• GUI editors

o Included in NetBeans;

o For Eclipse: Jigloo SWT/Swing GUI Builder
(http://www.cloudgarden.com/jigloo/);

o For Eclipse: WindowBuilder Pro - free to use after the acquisition by
Google (http://code.google.com/intl/pl/webtoolkit/tools/wbpro);

o Included in MS Visual Studio.

If you have any doubts, please contact: mtrzaska@pjwstk.edu.pl

https://www.umlet.com/
http://www.visual-paradigm.com/
https://lucid.app/
http://argouml.tigris.org/
http://www.magicdraw.com/
http://staruml.sourceforge.net/en/
http://www.netbeans.org/
http://en.wikipedia.org/wiki/List_of_UML_tools
https://www.jetbrains.com/idea/
http://www.eclipse.org/
http://www.netbeans.org/
http://www.cloudgarden.com/jigloo/
http://code.google.com/intl/pl/webtoolkit/tools/wbpro

