
Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Algorithms and Data Structures
Sorting 2

Marcin Sydow



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Topics covered by this lecture:

Stability of Sorting Algorithms

Quick Sort

Is it possible to sort faster than with Θ(n · log(n))
complexity?

Countsort

RadixSort



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Stability

A sorting algorithm is stable if it preserves the original order of

ties (elements of the same value)

Most sorting algorithms are easily adapted to be stable, but it is

not always the case.

Stability is of high importance in practical applications. E.g.

when the records of a database are sorted, usually the sorting key is

one of many attributes of the relation. The equality of the value of

this attribute does not mean equality of the whole records, of course,

and is a common case in practice.

If sorting algorithm is stable it is possible to sort multi-attribute

records in iterations - attribute by attribute (because the

outcome of the previous iteration is not destroyed, due to

stability)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Short recap of the last lecture

3 sorting algorithms were discussed up to now:

selectionSort

insertionSort

mergeSort

Two �rst algorithms have square complexity but the third one

is faster it has linear-logarithmic complexity.

In merge sort, the choice of the underlying data structure is

important (linked list instead of array) to avoid unacceptably

high space complexity of algorithm.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Quick Sort - idea

Quick sort is based on the �divide and conquer� approach.

The idea is as follows (recursive version):

1 For the sequence of length 1 nothing has to be done (stop

the recursion)

2 longer sequence is reorganised so that some element M

(called �pivot�) of the sequence is put on ��nal� position so

that there is no larger element �to the left� of M and no

smaller element �to the right� of M.

3 subsequently steps 1 and 2 are applied to the �left� and

�right� subsequences (recursively)

The idea of quick sort comes from C.A.R.Hoare.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Analysis

The algorithm described above can be e�cient only when the

procedure described in step 2 is e�cient.

This procedure can be implemented so that it has linear time

complexity and it works in place (constant space complexity) if

we take comparison as the dominating operation and sequence

length as the datasize.

Due to this, quick sort is e�cient.

Note: the procedure is nothing di�erent than Partition

discussed on the third lecture.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Partition procedure - reminder

partition(S, l, r)

For a given sequence S (bound by two indexes l and r) the

partition procedure selects some element M (called �pivot�)

and e�ciently reorganises the sequence so that M is put on

such a ��nal� position so that there is no larger element �to the

left� of M and no smaller element �to the right� of M.

The partition procedure returns the �nal index of element M.

For the following assumptions:

Dominating operation: comparing 2 elements

Data size: the length of the array n = (r − l + 1)

The partition procedure can be implemented so that it's time

complexity is W (n) = A(n) = Θ(n) and space complexity is

S(n) = O(1)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Partition - possible implementation

input: a - array of integers; l,r - leftmost and rightmost indexes,
respectively;
output: the �nal index of the �pivot� element M; the side e�ect:
array is reorganised (no larger on left, no smaller on right)

partition(a, l, r){

i = l + 1;

j = r;

m = a[l];

temp;

do{

while((i < r) && (a[i] <= m)) i++;

while((j > i) && (a[j] >= m)) j--;

if(i < j) {temp = a[i]; a[i] = a[j]; a[j] = temp;}

}while(i < j);

// when (i==r):

if(a[i] > m) {a[l] = a[i - 1]; a[i - 1] = m; return i - 1;}

else {a[l] = a[i]; a[i] = m; return i;}

}



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - pseudo-code

Having de�ned partition it is now easy to write a recursive

QuickSort algorithm described before:

input: a - array of integers; l,r - leftmost and rightmost indexes

of the array

(the procedure does not return anything)

quicksort(a, l, r){

if(l >= r) return;

k = partition(a, l, r);

quicksort(a, l, k - 1);

quicksort(a, k + 1, r);

}



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - analysis

Let n denote the lenght of the array - data size.

Dominating operation: comparing 2 elements of the sequence

The above version of quick sort is recursive and its time

complexity depends directly on the recursion depth.

Notice that on each level of the recursion the total number of

comparisons (in partition) is of the rank Θ(n)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - analysis, cont.

The quick sort algorithm, after each partition call, calls itself

recursively for each of 2 parts of �reorganised� sequence

(assuming the length of subsequence is igher than 1)

First, for simplicity assume that the �pivot� element is put

always in the middle of the array. In such a case the recursion

tree is as in the merge sort algorithm (i.e. it is �balanced�).

Thus, the recursion depth would be Θ(log(n)).

In such a case, the time complexity of the algorithm would be:

T (n) = Θ(n · log(n))



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - average complexity

It can be proved, that if we assume the uniform distribution of

all the possible input permutations, the average time complexity

is also linear-logarithmic:

A(n) = Θ(n · log(n))

Furthermore, it can be shown that the multiplicative constant is

not high - about 1.44.

Both theoretical analyses and empirical experiments show that

quick sort is one of the fastests sorting algorithms (that use

comparisons). Thus the name - quick sort.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - pessimistic complexity

The pessimistic case is when the recursion depth is maximum

possible. What input data causes this?

Input data which is already sorted (or invertedly sorted).

What is the recursion depth in such case? linear (Θ(n))

Thus, the pessimistic complexity of the presented version of the

QuickSort algorithm is, unfortunately square

W (n) = Θ(n2)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - pessimistic complexity

The pessimistic case is when the recursion depth is maximum

possible. What input data causes this?

Input data which is already sorted (or invertedly sorted).

What is the recursion depth in such case?

linear (Θ(n))

Thus, the pessimistic complexity of the presented version of the

QuickSort algorithm is, unfortunately square

W (n) = Θ(n2)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - pessimistic complexity

The pessimistic case is when the recursion depth is maximum

possible. What input data causes this?

Input data which is already sorted (or invertedly sorted).

What is the recursion depth in such case? linear (Θ(n))

Thus, the pessimistic complexity of the presented version of the

QuickSort algorithm is, unfortunately square

W (n) = Θ(n2)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

QuickSort - pessimistic complexity

The pessimistic case is when the recursion depth is maximum

possible. What input data causes this?

Input data which is already sorted (or invertedly sorted).

What is the recursion depth in such case? linear (Θ(n))

Thus, the pessimistic complexity of the presented version of the

QuickSort algorithm is, unfortunately square

W (n) = Θ(n2)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Properties of Quick Sort

The algorithm is fast in average case, however its pessimistic time
complexity is a serious drawback.

To overcome this problem many �corrected� variants of quick sort
were invented. Those variants have linear-logarithmic pessimistic

time complexity (e.g. special, dedicated sub-procedures for sorting
very short sequences are applied)

Ensuring stability is another issue in quicksort. Adapting partition

procedure to be stable is less natural compared to the algorithms
discussed before.

Space complexity Finally, notice that quicksort sorts in place but it

does not yet mean: S(n)=O(1). Recursion implementation has its

implicit memory cost, the algorithm has pessimistic O(n) (linear!)

pessimistic space complexity. It is possible to re-write one of the two

recursive calls (the one that concerns the longer sequence) as

iterative one, what results in Θ(log(n)) pessimistic space complexity.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Is it possible to sort faster?

Among the algorithms discussed up to now, the best average

time complexity order is linear-logarithmic1 (merge sort, quick

sort).

Is there comparison-based sorting algorithm which has better

rank of time complexity?

It can be mathematically proven that the answer is negative:

i.e. linear-logarithmic average time complexity is the best

possible for comparison-based sorting algorithms!

1Assuming comparison as the dominating operation and sequence

length as the data size



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Is it possible to sort faster?

Among the algorithms discussed up to now, the best average

time complexity order is linear-logarithmic1 (merge sort, quick

sort).

Is there comparison-based sorting algorithm which has better

rank of time complexity?

It can be mathematically proven that the answer is negative:

i.e. linear-logarithmic average time complexity is the best

possible for comparison-based sorting algorithms!

1Assuming comparison as the dominating operation and sequence

length as the data size



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Linear-logarithmic bound - explanation

The problem of sorting n-element sequence by means of

comparisons can be viewed as follows. The task is to discover

the permutation of the �original� (sorted) sequence by asking

binary �questions� (comparisons).

Thus any comparison-based sorting algorithm can be

represented as a binary decision tree, where each node is a

comparison and each leaf is the �discovered permutation�.

Notice that the number of leaves is n! (factorial)

Thus, the number of necessary comparisons (time complexity)

is the length of path from root to a leaf (height of tree). It

can be shown that for any binary tree with n! leaves its average
height is of rank Θ(log(n!)) = Θ(n · log(n)) (n is lenght of

sequence)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Beyond comparisons...

To conclude:

is it possible to sort faster than with linear-logarithmic time

complexity?

yes

how is it possible?

It is possible to beat the limit if we do not use comparisons.

In practice, it means achieving lower time complexity with

higher space complexity.

It is the most typical �deal� in algorithmics: �time vs space�.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Beyond comparisons...

To conclude:

is it possible to sort faster than with linear-logarithmic time

complexity?

yes

how is it possible?

It is possible to beat the limit if we do not use comparisons.

In practice, it means achieving lower time complexity with

higher space complexity.

It is the most typical �deal� in algorithmics: �time vs space�.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Beyond comparisons...

To conclude:

is it possible to sort faster than with linear-logarithmic time

complexity?

yes

how is it possible?

It is possible to beat the limit if we do not use comparisons.

In practice, it means achieving lower time complexity with

higher space complexity.

It is the most typical �deal� in algorithmics: �time vs space�.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Beyond comparisons...

To conclude:

is it possible to sort faster than with linear-logarithmic time

complexity?

yes

how is it possible?

It is possible to beat the limit if we do not use comparisons.

In practice, it means achieving lower time complexity with

higher space complexity.

It is the most typical �deal� in algorithmics: �time vs space�.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

CountSort algorithm

The idea of the algorithm is based on application of direct

addressing to place the sorted elements on their �nal positions.

The necessary technical assumption here is that the input data

�ts in Random Access Memory (RAM). The algorithm does

not use comparisons.

The algorithm has lower time complexity than quick sort, but

the price is very high space complexity (2 helper arrays).



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

CountSort - code

input: a - array of non-negative integers; l - its length

countSort(a, l){

max = maxValue(a, l);

l1 = max + 1;

counts[l1];

result[l];

for(i = 0; i < l1; i++) counts[i] = 0;

for(i = 0; i < l; i++) counts[a[i]]++;

for(i = 1; i < l1; i++) counts[i] += counts[i - 1];

for(i = l - 1; i >= 0; i--)

result[--counts[a[i]]] = a[i];

}

(in the last line, notice pre-decrementation to avoid shi�ng all the elements by 1

to the right)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

CountSort - analysis

dominating operation: put value into array

data size (2 arguments): length of sequence n, maximum value

in the sequence

The algorithm needs 2 sequential scans through the arrays

(n-element one and m-element one). Its time complexity is

linear (!).

A(n,m) = W (n,m) = 2n + m = Θ(n,m)

Unfortunately, the space complexity is also linear (very high):

S(n,m) = n + m = Θ(n,m)



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

RadixSort

The Radix Sort algorithm is a scheme of sorting rather than a

proper sorting algorithm. It applies another, inernal sorting

algorithm.

It is ideal for lexicographic sort of object sequences having

�xed length (e.g. strings, multi-digit numbers, etc.)

Radix sort applies any stable sorting algorithm to all

consecutive positions of the sorted objects starting from the

last position to the �rst one.

If the universe of symbols (digits, alphabet, etc. ) is �xed and

small, the count sort algorithm is a very good choice for the

internal algorithm.



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Questions/Problems:

Stability

Partition

QuickSort

Lower bound for sorting by comparisons

CountSort

Comparative analysis of (strong and weak) properties of all

sorting algorithms discussed

RadixSort



Algorithms
and Data
Structures

Marcin
Sydow

Introduction

QuickSort

Partition

Limit

CountSort

RadixSort

Summary

Thank you for your attention!


	Introduction
	QuickSort
	Partition

	Limit
	CountSort
	RadixSort
	Summary

