
Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Algorithms and Data Structures
Sorting 1

Marcin Sydow



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Topics covered by this lecture:

The Problem of Sorting and its importance

Selection-sort

Insertion-sort

Merge-sort

Linked Lists



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Sorting

Input: S - sequence of elements that can be ordered (according

to some binary total-order relation R ⊆ S × S); len - the length

of sequence (natural number)

Output: S' - non-decreasingly sorted sequence consisting of

elements of multi-set of the input sequence S (e.g.

∀0<i<len(S [i − 1], S [i ]) ∈ R)

In this course, for simplicity, we assume sorting natural numbers,

but all the discussed algorithms which use comparisons can be

easily adapted to sort any other ordered universe.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

The Importance of Sorting

Sorting is one of the most important and basic operations in

any real-life data processing in computer science. For this

reason it was very intensively studied since the half of the 20th

century, and currently is regarded as a well studied problem in

computer science.

Examples of very important applications of sorting:

acceleration of searching

acceleration of operations on relations �by key�, etc. (e.g.

in databases)

data visualisation

computing many important statistical characteristics

And many others.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Selection Sort

The idea is simple. Identify the minimum (len times) excluding
it from the further processing and putting on the next position
in the output sequence:

selectionSort(S, len){

i = 0

while(i < len){

mini = indexOfMin(S, i, len)

swap(S, i, mini)

i++

}

}

where:
indexOfMin(S, i, len) - return index of minimum among the
elements S [j ], where i ≤ j < len

swap(S, i, mini) - swap the positions of S[i] and S[mini]

What is the invariant of the above loop?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Selection Sort - Analysis

Dominating Operation: comparing 2 elements in array

Data Size: length of sequence (len)

The external loop is iterated len − 1 times, and in each i-th

iteration of this loop we seek for minimum in a sequence of

(len-i) elements (len − i comparisons)

W (len) =
∑len−1

i=1
i = len(len−1)

2
= Θ((len)2)

Thus, the algorithm has square complexity.

Notice, that the average complexity A(len) is the same as

W (len) - for a �xed length of the sequence the algorithm

always executes the same number of operations. Even for

already sorted sequence!



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Insertion Sort

insertionSort(arr, len){

for(next = 1; next < len; next++){

curr = next;

temp = arr[next];

while((curr > 0) && (temp < arr[curr - 1])){

arr[curr] = arr[curr - 1];

curr--;

}

arr[curr] = temp;

}

}

What is the invariant of the external loop?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Insertion Sort - Analysis

(dominating operation and data size n is the same for all the

algorithms discussed in this lecture)

What is the pessimistic case?

When the data is invertedly sorted. Then the complexity is:

W (n) = n(n−1)
2

= 1

2
n2 + Θ(n) = Θ(n2)

This algorithm is much more �intelligent� than the previous,

because it adapts the amount of work to the degree of

sortedness of the input data - the more sorted input the less

number of comparisons (and swaps). In particular, for already

sorted data it needs only n-1 comparisons (is linear in this case

- very fast!).



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Insertion Sort - Analysis

(dominating operation and data size n is the same for all the

algorithms discussed in this lecture)

What is the pessimistic case?

When the data is invertedly sorted. Then the complexity is:

W (n) = n(n−1)
2

= 1

2
n2 + Θ(n) = Θ(n2)

This algorithm is much more �intelligent� than the previous,

because it adapts the amount of work to the degree of

sortedness of the input data - the more sorted input the less

number of comparisons (and swaps). In particular, for already

sorted data it needs only n-1 comparisons (is linear in this case

- very fast!).



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Average Time Complexity Analysis

Let's assume a simple model of input data - each permutation

of input elements is equally likely. Then, for i-th iteration of the

external loop the algorithm will need (on average):

1

i

∑i
j=1

j = 1

i
(i+1)i

2
= i+1

2

comparisons. Thus, we obtain:

A(n) =
∑n−1

i=1

i+1

2
= 1

2

∑n
k=2

k = 1

4
n2 + Θ(n) = Θ(n2)



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Analysis, cont.

On average, the algorithm is twice faster than Selection-sort,

but still has square time complexity.

Anyway, square complexity for sorting is considered too high for

large data (imagine sorting 1 million records in this way)

Is it possible to accelerate sorting?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Insertion-sort with Binary Search

It seems possible to take advantage of the invariant of the

external loop in the Insertion-sort algorithm. It assures that in

each i − th iteration of the external loop subsequence between

the �rst and i − th element is already sorted.

Thus, if the sequence is kept in a random-access structure

(RAM) - e.g. in an array, it is possible to apply the binary

search algorithm to �nd the �correct� position (the external

loop) instead of sequential search.

Notice, that in this case the algorithm needs the same number

of comparisons for each input data.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Analysis of the �modi�ed� Insertion-sort

Let's compute the time complexity for the modi�ed (with binary

searching) algorithm (dominating operation: comparing 2

elements in the sequence, data size: the lenght of the input

sequence - n). The analysis is as follows:

A(n) = W (n) =
∑n−1

i=1
log2i = log2(Πn−1

i=1
i) = Θ(log2(n!)) =

Θ(n · log(n))

Thus, we seemingly improved the complexity of this algorithm.

Notice, however, that we count only comparisons (this was a

good choice for the original algorithm). However, the

dominating operation set should be now extended by the

insert operation which costs linear number of assigns (each)

in case of array implementation - �nally we did not improve the

rank which is still square.

But we can improve it. In di�erent way...



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Divide and conquer sorting (1) - Merge Sort

Let's apply the �divide and conquer� approach to the sorting

problem.

1 divide the sequence into 2 halves

2 sort each half separately

3 merge the sorted halves

This approach is successful because sorted subsequences can be

merged very quickly (i.e. with merely linear complexity)

Moreover, let's observe that sorting in point 2 can be

recursively done with the same method (until the �halves� have

zero lengths)

Thus, we have a working recursive sorting scheme (by merging).



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Merge Sort - Scheme

mergeSort(S, len){

if(len <= 1) return S[0:len]

m = len/2

return merge(mergeSort(S[0:m], m), m

mergeSort(S[m:len], len-m), len-m)

}

where:

denotation S[a:b] means the subsequence of elements S[i] such
that a ≤ i < b

the function merge(S1, len1, S2, len2) merges 2 (sorted)
sequences S1 and S2 (of lengths len1 and len2) and returns the
merged (and sorted) sequence.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Merge Function

input: a1, a2 - sorted sequences of numbers (of lengths len1,

len2)

output: return merged (and sorted) sequences a1 and a2

merge(a1, len1, a2, len2){

i = j = k = 0;

result[len1 + len2] // memory allocation

while((i < len1) && (j < len2))

if(a1[i] < a2[j]) result[k++] = a1[i++];

else result[k++] = a2[j++];

while(i < len1) result[k++] = a1[i++];

while(j < len2) result[k++] = a2[j++];

return result;

}



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Analysis

Because the sequence is always divided into halves, the depth of

recursion is log2(len) (similarly as in binary search).

Furthermore, on each level of recursion the merge(s1, len1,

s2, len2) function is called for a pair of arrays of the total

length being len (independently on the recurion level).

Thus, the complexity of the Merge-sort algorithm depends on

the complexity of the merge function which merges 2 sorted

subsequences.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Merge Function - analysis

merge(a1, len1, a2, len2)

Dominating operation: comparing 2 elements or indexes

Data size: the total length of 2 subsequences to be merged

n = len1 + len2

Time complexity: W(n) = A(n) =

Θ(n)

Unfortunately, if the sequences are represented as arrays the

space complexity is high:

S(n) = Θ(n)

(this problem can be avoided by representing sequences as

linked lists)



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Merge Function - analysis

merge(a1, len1, a2, len2)

Dominating operation: comparing 2 elements or indexes

Data size: the total length of 2 subsequences to be merged

n = len1 + len2

Time complexity: W(n) = A(n) = Θ(n)

Unfortunately, if the sequences are represented as arrays the

space complexity is high:

S(n) =

Θ(n)

(this problem can be avoided by representing sequences as

linked lists)



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Merge Function - analysis

merge(a1, len1, a2, len2)

Dominating operation: comparing 2 elements or indexes

Data size: the total length of 2 subsequences to be merged

n = len1 + len2

Time complexity: W(n) = A(n) = Θ(n)

Unfortunately, if the sequences are represented as arrays the

space complexity is high:

S(n) = Θ(n)

(this problem can be avoided by representing sequences as

linked lists)



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Time Complexity Analysis of Merge-sort

mergeSort(S, len)

Dominating operation: comparing 2 elements or indexes

Data size: length of sequence (len)

Thus, we have Θ(log2(len)) levels of recursion and on each level

we have some calls of the merge function with total aggregate

complexity of Θ(len).

Thus, we obtain:

W (len) = A(len) = Θ(len · log(len))

- the complexity is linear-logarithmic.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Short Summary of SS, IS and MS

Selection and Insertion Sort:

quite simple algorithms of square (Θ(n2)) time complexity.

Merge sort is faster: linear-logarithmic (Θ(nlog2(n))), but
would need quite much memory if sequences are implemented

as arrays, and additional memory for recursion.

Is the di�erence in speed between Θ(nlog2(n))) and Θ(n2)
really signi�cant?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Example: square vs linear-logarithmic complexity

Consider 100 million logs of some server to be sorted

Assume a machine speed: billion comparisons in a second

How much time does it take for Insertion Sort?

How much for merge sort?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Example: square vs linear-logarithmic complexity

Consider 100 million logs of some server to be sorted

Assume a machine speed: billion comparisons in a second

How much time does it take for Insertion Sort?

How much for merge sort?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Example: square vs linear-logarithmic complexity

Consider 100 million logs of some server to be sorted

Assume a machine speed: billion comparisons in a second

How much time does it take for Insertion Sort?

How much for merge sort?



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Linked Lists

To save memory (avoid unnecessary array allocation and element

copying with each call of the merge function) a di�erent (than

arrays) representaion of sequences.

Linked List:

It consists of nodes

Each node contains some data (e.g. the element of
sequence) and link to the next node.

e.g.:
head-> (2)-> (3)-> (5)-> (8)-> null



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Linked Lists

Linked List is the simplest representant of the important

family of linked data structures. There are many variants of

linked lists:

uni-directional

bi-directional

cyclic

Also various graph-like data structures (e.g. trees) can be

conveniently represented as linked structures.



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Linked Lists vs Arrays

arrays:

advantages: very fast random access, less memory

consumption

disadvantages: inserting has a linear time complexity (in

terms of the array lengths)

linked lists:

disadvantages: slower access (only through the �list head�),

additional memory needed for storing links

advantages: very fast modi�cation operations - inserting,

deleting of subsequences, and other reorganization

operations



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Linked Lists in MergeSort

If uni-directional lists are applied in MergeSort, the code should

be slightly modi�ed, but the idea is the same.

The time complexity will not change.

However, the space complexity will be improved if the input

sequence is represented as a linked list. It will be constant in

such a case: S(n) = O(1) 1

1assuming the recursion implementation issue is neglected



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Questions/Problems:

The sorting problem

Selection Sort (idea, pseudo-code, analysis)

Insertion Sort (as above)

Merge Sort (as above)

Linked Lists and comparison with arrays



Algorithms
and Data
Structures

Marcin
Sydow

Sorting

Selection Sort

Insertion Sort

Merge Sort

Linked Lists

Summary

Thank you for your attention!


	Sorting
	Selection Sort
	Insertion Sort
	Merge Sort

	Linked Lists
	Summary

