
Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Algorithms and Data Structures
Shortest Paths

Marcin Sydow

Web Mining Lab
PJWSTK

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Topics covered by this lecture:

Shortest Path Problem

Variants

Relaxation

DAG

Nonnegative Weights (Dijkstra)

Arbitrary Weights (Bellman-Ford)

(*)All-pairs algorithm

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Example: Fire Brigade

Consider the following example. There is a navigating system
for the �re brigade. The task of the system is as follows. When
there is a �re at some point f in the city, the system has to
quickly compute the shortest way from the �re brigade base to
the point f . The system has access to full information about
the current topology of the city (the map includes all the streets
and crossings in the city) and the estimated latencies on all
sections of streets between all crossings.

(notice that some streets can be unidirectional. Assume that
the system is aware of this)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

The Shortest Paths Problem

INPUT: a graph G = (V ,E) with weights on edges given by a
function w : E → R , a starting node s ∈ V

OUTPUT: for each node v ∈ V

the shortest-path distance µ(s, v) from s to v , if it exists

the parent in a shortest-path tree (if it exists), to
reconstruct the shortest path

The shortest path may not exist for some reasons:

there may be no path from s to v in the graph

there may be a negative cycle in the graph (there may be
no lower bound on the length in such case)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Variants

When we design the best algorithm for the shortest paths
problem, we can exploit some special properties of the graph,
for example:

the graph G is directed or undirected

the weights are non-negative or integer, etc. (each case
can be approached di�erently to obtain the most e�cient
algorithm)

the graph is acyclic, etc.

We will see di�erent algorithms for di�erent variants

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Shortest Paths - properties

If G = (V ,E) is an arbitrary graph and s, v ∈ V , we consider
the following convention for the value of µ(s, v), the
shortest-path distance from s to v in G :

µ(s, v) = +∞ (when there is no path from s to v)

µ(s, v) = −∞ (when there exists a path from s to v that
contains a negative cycle)

µ(s, v) = d ∈ R (else)

(we will use the denotation µ(v) instead of µ(s, v) if s is clear
from the context)

Notice the following important property of shortest paths. A subpath
of a shortest path is itself a shortest path (i.e. if (v1, ..., vk−1, vk) is a
shortest path from v1 to vk then (v1, ..., vk−1) must be a shortest
path from v1 to vk−1 � simple proof by contradiction)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

The idea of computing shortest paths

The general idea is similar to BFS from a source node s. We
keep two attributes with each node v :

v.distance: that keeps the shortest (currently known)
distance from s to v

v.parent: that keeps the predecessor of v on the shortest
(currently known) path from s

Initialisation: s.distance = 0, s.parent = s, and all other
nodes have distance set to in�nity and parent to null.

The attributes are updated by �propagation� via edges: it is
called a relaxation of an edge.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

The Concept of Edge Relaxation

relax((u,v)) # (u,v) is an edge in E

if u.distance + w(u,v) < v.distance

v.distance = u.distance + w(u,v)

v.parent = u

The algorithms relax edges until the shortest paths have been
found or a negative cycle has been discovered.

Relaxation has some important properties, eg:
(assuming the prior initialisation as described before)
- after any sequence of relaxations, ∀v ∈ V v.distance ≥ µ(v)
(simple proof by induction on the number of edge relaxations) (the
distance discovered by relaxations never drops below the shortest
distance)

It can be proven (by induction) that the relaxations indeed are
the right tool to compute the shortest paths.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Correctness of Relaxation

Lemma

After doing a sequence R of edge relaxations that contains (as

a subsequence) a shortest path p = (e1, ..., ek) from s to v,

v .distance = µ(s, v).

Proof: Because p is a shortest path, we have µ(v) =
∑

1≤j≤k w(ej).

Let vi denote the target node of ei , for 0 < i ≤ k (v0 = s). We show,

by induction, that after the i-th relaxation

vi .distance ≤
∑

1≤j≤i w(ej). It is true at the beginning (s.distance

== 0). Then, after the i-th relaxation,

vi .distance ≤ vi−1.distance + w(ei) ≤
∑

1≤j≤i w(ej) (by relaxation

de�nition and induction). Thus, after k-th relaxation

v .distance ≤ µ(v). But v .distance cannot be lower than µ(v)

(previous slide), so that v .distance == µ(v) holds.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Shortest Paths in a Directed Acyclic Graph (case 1)

A directed acyclic graph (DAG) G = (V ,E) is a simple case for
computing shortest paths from a source s.

First, any DAG can be topologically sorted (e.g. by DFS) in
O(m + n) time (where m = |E | and n = |V |, and edge
traversing is the dominating operation), resulting in a sequence
of vertices (v1, ..., vn).
Then, assuming s = vj , for some 0 < j ≤ n, we can relax all
edges outgoing of vj , then all edges outgoing from vj+1, etc.

Thus, each edge is relaxed at most once. Since each relaxation
has constant time, the total time complexity is O(m + n).

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Dijkstra's Algorithm:
only non-negative weights (case 2)

Another case is when there are no negative weights on edges
(thus, there are no negative cycles, but a cycle can exist so that
topological sorting is not possible).

The idea is as follows. If we relax edges in the order of
non-decreasing shortest-path distance from the source s, then
each edge is relaxed exactly once.

high-level pseudo-code of Dijkstra's algorithm:

initialise

while(there is an unscanned node with finite distance)

u = minimum-distance unscanned node

relax all edges (u,v)

u becomes scanned

In the following proof of correctness, for any node v we will denote

v .distance as d(v), for short.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Correctness of the Dijkstra's Algorithm

It is quite easy to observe that each node v reachable from s will be
scanned by the Dijkstra's algorithm (e.g. by induction on the unweighted
length of the shortest path from s to v)

To complete, we prove that when any node v is scanned, d(v) = µ(v). By

condtradiction, let t be the �rst moment in time when any node v is

scanned with d(v) > µ(v) (i.e. v contradicts what we want to prove). Let

(s = v1, ..., vk = v) be the shortest path from s to this node and let i be

the smallest index on this path such that vi was not scanned before the

time t. Since v1 = s and d(s) = 0 = µ(s), it must be that i > 1. By the

de�nition of i , vi−1 was scanned before the time t and d(vi−1) = µ(vi−1)

when it is scanned (due to the de�nition of t). Thus, when vi−1 is

scanned, d(vi) is set to d(vi−1) + w(vi−1, vi) = µ(vi−1) + w(vi−1, vi)

(because the path is a shortest one). To summarise, at time t we have:

d(vi) = µ(vi) ≤ µ(vk) < d(vk) so that vi should be scanned instead of vk

(and they are di�erent due to the sharp inequality) � a contradiction.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Algorithm (Dijkstra)

(pq - a priority queue with decreaseKey operation, priority is the value of
distance attribute)

s.distance = 0

pq.insert(s)

s.parent = s

for-each v in V except s:

v.distance = INFINITY

v.parent = null

while(!pq.isEmpty())

scannedNode = pq.delMin()

for-each v in scannedNode.adjList:

if (v.distance > scannedNode.distance + w(scannedNode, v))

v.distance = scannedNode.distance + w(scannedNode, v)

v.parent = scannedNode

if (pq.contains(v)) pq.decreaseKey(v)

else pq.insert(v)

(to e�ciently implement contains and decreaseKey operations of priority queue,

an additional dictionary can be kept for mapping from nodes to their positions

(pointers) in priority queue)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Dijkstra - analysis

data size: n = |V|, m = |E|

dominating operation: comparison of priorities (inside priority
queue), attribute update

initialisation: O(n)

loop: O(n × (delMin + insert) + m × decreaseKey)

O(nlogn) + O(mlogn) = O((n + m)logn) (if binary Heap is
used)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

(*)Faster implementations of Dijkstra's algorithm

If we use Fibonacci Heap we can accelerate O((n +m)logn)
complexity to:

O(m + nlogn)

Fibonacci Heap is a fast implementation of priority queue that
guarantees amortised O(1) time of decreaseKey operation.1

Further, if the weights are integers bound by a constant C , we can
reduce time complexity of the Dijkstra's algorithm even to:

O(m + nC)

by applying so called bucket queue as a monotone integer priority

queue2

1Fibonacci Heap is not discussed in this lecture
2There are implementations of priority queue that exploit the fact that

new-coming priorities are non-decreasing integers to accelerate the
operations.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Bellman-Ford's Algorithm:
works for any weights (case 3)

If the input graph is acyclic (case 1) or has only non-negative weights
(case 2), there exist algorithms that compute shortest paths with at
most m edge relaxations (as was demonstrated). If the weights are
arbitrary, however, it su�ces to do O(nm) relaxations, anyway.

The idea is as follows (Bellman-Ford's algorithm):

In each of n − 1 iterations, all the m edges are relaxed. Since
any shortest path has at most n − 1 edges, it must be included
(as a subsequence) in any sequence of m(n − 1) such
relaxations. Afterwards, unreachable nodes will still have
v.d == ∞ .

The only remaining problem now is to detect the nodes v with

µ(v) == −∞. But we can easily detect such nodes v by testing whether

u.d + w(e) < v .d for any edge (u, v). Further, if any node v satis�es that

condition, also any node w reachable from it has µ(w) == −∞.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Bellman-Ford's Algorithm

(initialise as in Dijkstra)

for(i = 1; i <= (n-1); i++)

for each e in E

relax(e)

for each e=(u,v) in E

if (u.distance + w(u,v) < v.distance)

identifyNegativeCycle(v)

identifyNegativeCycle(v)

if (v.distance > -infinity)

v.distance = -infinity

for each w in v.adjList

identifyNegativeCycle(w)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

(*) All-Pairs Shortest Paths
(for graphs with no negative cycles)

If we need to compute the shortest paths for all the possible pairs of
nodes in a graph, it is possible to run any single-source-shortest-path
algorithm from each of the nodes (as a source) which results in
O(n2m) time complexity (n times Bellman-Ford's algorithm) if
nothing can be assumed about the weights or acyclicity of the graph.

However, for a graph without negative cycles, it is possible to save

some redundant work in such naive approach and reduce it to

O(nm + n2logn) time complexity by running one universal

single-source variant of algorithm plus n times non-negative variants

on a properly modi�ed graph. This is done by a notion of node

potential.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

(*) All-Pairs Shortest Paths (no negative cycles):
Using node potentials to avoid negative weights

Lemma

Let G = (V ,E) be a graph with an edge-weight function w : E → R
without negative cycles and pot : V → R be a function on vertices
(called potential). We call w ′ : E → R a reduced weight function if,
for any e = (u, v) ∈ E it is de�ned as
w ′(e) = w(e) + pot(v)− pot(w).

weight reduction preserves shortest paths

if all nodes can be reached from some node s, and potential is
de�ned as pot(v) = µ(s, v) (shortes path distance from s) for
all nodes v , the reduced weights are non-negative

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

(*) All-Pairs Shortest Paths (no negative cycles):
A pseudo-code of an algorithm

allPairsShortestPathsWithNoNegCycles(){

add an artificial node s with zero-weight edges (s,v) to all nodes v

use Bellman-Ford's algorithm to compute shortest paths from s

for each node v:

define pot(v) as the shortest path computed above

for each node v:

run Dijkstra's algorithm from v on reduced weights

(as the reduced weights are non-negative)

for each edge e=(u,v):

translate back from reduced distances (**)

(as the shortest paths are preserved)

}

(**)The translation is done as follows:

µ(v ,w) = µreduced (v ,w) + pot(w)− pot(v)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Summary

Shortest Path Problem

Variants

Relaxation

DAG

Nonnegative Weights (Dijkstra)

Arbitrary Weights (Bellman-Ford)

(*)All-pairs algorithm

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Shortest
Paths

Variants

Relaxation

DAG

Dijkstra
Algorithm

Bellman-
Ford

All Pairs

Thank you for attention

	Introduction
	Shortest Paths
	Variants

	Relaxation
	DAG
	Dijkstra Algorithm
	Bellman-Ford
	All Pairs

