
Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Algorithms and Data Structures
Searching

Marcin Sydow



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Topics covered by this lecture:

�Divide and Conquer� Rule

Searching

Binary Search Algorithm

Positional Statistics

The second smallest element (The �Tournament� algorithm
- idea)

Hoare's Algorithm (idea)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

�Divide and Conquer�

One of the most important methods for algorithm design.
Divide the problem into a couple of smaller sub-problems such
that it is easy to reconstruct the solution from the sub-solutions

It is quite often implemented as a recursion - a programming
technique in which a function calls itself (for a sub-problem)

�Divide and Conquer� has origins in politics, and its name (originaly in

Latin: �Divide et Impera�) is traditionally assigned to Philip II, the king of

Macedonia (382-336 BC) in the context of his rules over Greeks (source:

Wikipedia)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

The Searching Problem

search(S, len, key)

Input: S - a sequence of integers (indexed from 0 to len-1); len
- length of the sequence; key - integer number (to be found)

Output: index - a natural number less than len, meaning (any)
index in the sequence S under which the key is present (i.e.
S[index]==key) or -1 if the key is not present in the sequence

E.g. for S = (3,5,8,2,1,8,4,2,9), and the above speci�cation,
search should behave as follows:

search(S, 9, 2) stops and returns: 3

search(S, 9, 7) stops and returns: -1



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Searching, cont.

A natural candidate for dominating operation in standard
algorithms solving the searching problem is comparison

operation and the data size is usually the length of the
sequence (len)

One can apply the sequential search algorithm to solve this
problem (it was discussed on the previous lectures). It has
linear time complexity W (len) = Θ(len). The multiplicative

factor is 1 (W(len) = len). and it cannot be improved, because
of the speci�city of the problem.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

More E�ective Searching?

What additional property of the input sequence would help to
search more e�ciently?

Sorting the input sequence



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

More E�ective Searching?

What additional property of the input sequence would help to
search more e�ciently?

Sorting the input sequence



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Searching in Sorted Sequence

It is a di�erent problem (because of a di�erent speci�cation -
the input condition is di�erent)

Input: S - a sequence of non-decreasingly sorted1 integers
(indexed from 0 to len-1); len - a natural number - length of the
sequence; key - integer number

Output: index - a natural number less than len meaning (any)
index in the sequence S such that S[index]==key or -1 if key is
not present in S.

With such an additional assumption on the input data it is
possible to solve the problem more e�ciently (faster) than
previously

1if the sequence is non-increasingly sorted it also helps (in similar way) -
but this would be even another problem speci�cation



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

�Skipping� Algorithm

If input sequence is sorted it is possible to check each k-th cell
(skipping k-1 elements on each jump) and, in case of �nding
the �rst number which is higher than the key, check only the
last k-1 elements (or if the sequence ended return -1)

Notice that such an algorithm is asymptotically (i.e. for
len→∞) k times faster (on average) than �normal� sequential
search2 (for unordered input sequence): W (len) = 1

k
·Θ(len),

but is is still linear - thus the rank of complexity was not
improved with this version of the algorithm

Is it possible to improve the complexity rank of searching for
sorted input sequence?

2it is possible to prove that the optimal choice for k, in terms of
pessimistic complexity, is k =

√
len



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

�Divide and Conquer� and Searching

search(S, len, key)

(input sequence is sorted)

The Binary Search Algorithm (the �Divide and Conquer�
approach)

1 while the length of sequence is positive:

2 check the middle element of the current sequence

3 if it is equal to key - return the result

4 if it is higher than key - restrict searching to the �left�
sub-sequence (from the current position)

5 if it is less than key - restrict searching to the �right�
sub-sequence (from the current position)

6 back to the point 1

7 there is no key in the sequence (if you are here)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Binary Search Algorithm

search(S, len, key){

l = 0

r = len - 1

while(l <= r){

m = (l + r)/2

if(S[m] == key) return m

else

if(S[m] > key) r = m - 1

else l = m + 1

}

return -1

}

Notice that the operation of random access (direct access) to
the m-th element S[m] of the sequence demands that the
sequence is kept in RAM (to make the operation e�cient)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Analysis of the Binary Search Algorithm

Data size: length of the sequence - len
Dominating operation: comparison - (S[m] == key)

(assume the sequence is kept in RAM)

With each iteration the sequence becomes 2 times shorter. The
algorithm stops when the length of sequence becomes 1

W (len) = Θ(log2(len))

A(len) = Θ(log2(len))

S(len) = O(1)
(Notice: the assumption about data in RAM is important)

Observation: if data is sorted but it does not �t into RAM,
this analysis is inadequate (because comparison S[m] == key

cannot be considered as an �atomic� operation)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Positional Statistics

The k-th positional statistic in a sequence of elements (which
can be ordered) is the k-th smallest (largest) element in the
sequence

E.g. the task of �nding minimum is nothing di�erent than
searching the 1-st positional statistic in this sequence

In the case of sorted sequence this task is trivial - k-th statistic
is just the k-th element in the sequence.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Searching the 2nd Smallest Element in Sequence

second(S, len)

(no assumption that the sequence is sorted)

Input: S - sequence of elements that can be ordered (e.g.
integers, symbols of alphabet, etc.); len - the length of
sequence

Output: the second smallest element s of the sequence S

Data size, for algorithm solving this problem, is usually the
length of sequence and the dominating operation (usually)
comparison.

A simple solution: �nd minimum, exclude it from the sequence,
and repeat this (needs 2 · len comparisons).

Can it be done more e�ectively?



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Searching the 2nd Smallest Element in Sequence

second(S, len)

(no assumption that the sequence is sorted)

Input: S - sequence of elements that can be ordered (e.g.
integers, symbols of alphabet, etc.); len - the length of
sequence

Output: the second smallest element s of the sequence S

Data size, for algorithm solving this problem, is usually the
length of sequence and the dominating operation (usually)
comparison.

A simple solution: �nd minimum, exclude it from the sequence,
and repeat this (needs 2 · len comparisons).

Can it be done more e�ectively?



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

The �Tournament� Algorithm - idea

Let's apply the �divide and conquer� method:
Imagine a �tournament� proceeding in turns.

In each turn the sequence is divided into pairs. Both elements
in each pair �compete� with each other - the winner is the
smaller one. Only the winners from the current turn survive to
the next turn.

We stop when the sequence consist of only 1 element - this is
the smallest element in the original sequence.

But where in the �tournament history� is the second smallest?

Among the direct competitors of the winner - the second
smallest could lose only with the smallest.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

The �Tournament� Algorithm - idea

Let's apply the �divide and conquer� method:
Imagine a �tournament� proceeding in turns.

In each turn the sequence is divided into pairs. Both elements
in each pair �compete� with each other - the winner is the
smaller one. Only the winners from the current turn survive to
the next turn.

We stop when the sequence consist of only 1 element - this is
the smallest element in the original sequence.

But where in the �tournament history� is the second smallest?

Among the direct competitors of the winner - the second
smallest could lose only with the smallest.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Analysis of the �Tournament� Algorith

The tournament could be naturally represented as a tree, where
the lowest level (the leaves) is the original sequence and the
root is the winner. The number of levels is O(log2(len))

Data size: length of the original sequence - len
Dominating operation: comparison between 2 elements

All the comparisons in the tournament need exactly len-1

comparison operations (why?)

In the �nal phase (seeking for the second smallest) the whole
path from the leaf (the �rst competitor of the subsequent
winner) to the root is scanned for the minimum - accounting for
another O(log2(len)) comparisons (explained later)

Thus, this algorithm has lower complexity than �repeated
minimum�, but the same rank (linear)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

K-th positional statistics - the Hoare's Algorithm
(idea)

kthSmallest(S, len, k)

(no assumption of order of the input sequence)

Input: S - sequence of elements that can be ordered (e.g.
integers, alphabet symbols, etc.); len - the length of the
sequence; k - positive natural number (�which positional
statistic are we searching for?�)

Output: the element s in the sequence S, being the k-th
smallest element

As previously, it is possible to repeat k times the minimum
search (excluding the minimum each time) - it needs to linearly
scan the sequence k times. However, the task can be solved
much more e�ciently with application of the �divide and
conquer� method.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

The Partition Procedure

partition(S, l, r)

input: S - sequence of elements that can be ordered; l - the left
(starting) index of the subsequence to be processed; r - the
right (ending) index
output: i - the �nal position of the �median� element M (see
below in the description)

For a given sequence S the partition procedure e�ectively
selects some element M and re-organises the sequence S such
that all the elements on the left of M are not greater than M
and all the elements on the right of M are not less than M. The
procedure �nally returns the index i of the element M.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Analysis of Partition

Notice the following property: if the index returned by partition
equals k the element under this index (M) is the k-th positional
statistic in S (due to the partition formulation) (assume
indexing from 1).

For the following assumptions:

Dominating operation: comparing 2 elements

Data size: length of the sequence n = (r − l + 1)

The partition procedure can be designed such that its
complexity W (n) = n + O(1) and S(n) = O(1)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

The Hoare's Algorithm - idea

The partition procedure and the �divide and conquer�
method can be applied to design a very e�cient algorithm for
searching the k-th positional statistics, as follows:

call partition on the sequence
if the returned index is equal to k - return S [k]
else, depending on the value returned by the partition,
continue (from point 1) on the �left� or �right�
sub-sequence from M (take into account the number of
�abandoned� elements to the left)

The time complexity of the above algorithm is linear
(independently on k) and, on average, it is much faster than
the �repeated minimum� algorithm. More detailed discussion of
this algorithm will be given later (with quickSort).

The above algorithm (together with the partition procedure)
was invented by J.R.Hoare.



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Questions/Problems:

The problem of searching (sequential algorithm)

Searching in a sorted sequence (skipping k elements)

Binary Search Algorithm (analysis + code)

Positional Statistics

The �Tournament� Algorithm

The Partition Procedure (only the speci�cation)

The Hoare's Algorithm (only the idea)



Algorithms
and Data
Structures

Marcin
Sydow

Divide and
Conquer

Searching

Sorted
Sequence

Skipping
algorithm

Binary Search

Positional
Statistics

Tournament

K-th element

Partition

The Hoare's
Algorithm

Summary

Thank you for your attention


	Divide and Conquer
	Searching
	Sorted Sequence
	Skipping algorithm
	Binary Search

	Positional Statistics
	Tournament
	K-th element
	Partition
	The Hoare's Algorithm

	Summary

