Algorithms and Data
Structures
(c) Marcin

Sydow

Introduction

Algorithms and Data Structures

Recursion

Linear

2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

(c) Marcin Sydow

Topics covered by this lecture:

Algorithms and Data
Structures
(c) Marcin Sydow

- Recursion: Introduction

■ Fibonacci numbers, Hanoi Towers, ...

- Linear 2nd-order Equations
- Important 3 cases of recursive equations (with proofs)
■ QuickSort Average Complexity (Proof)
- Master Theorem

Recursion

Algorithms
and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary
e.g.: $n!=(n-1)!n$

■ Mathematics: recurrent formula or definition

- Programming: function that calls itself
- Algorithms: reduction of an instance of a problem to a smaller instance of the same problem ("divide and conquer")

Warning: should be well founded on the trivial case:
e.g.: $0!=1$

Example

Algorithms
and Data
Structures
(c) Marcin
Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary
base:
Fibonacci(0) $=0$
Fibonacci(1) $=1$
step:
Fibonacci(n+1) $=$ Fibonacci(n) + Fibonacci($n-1$)
$0,1,1,2,3,5,8,13,21,34, \ldots$

Note: some elder definitions define the Fibonacci sequence as starting with 1 (i.e. $1,1,2,3,5, \ldots$) omitting the leading 0 term, but in this course we use the more common definition starting with 0 .

Recursion as an Algorithmic Tool

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity

A powerful method for algorithm design
It has positive and negative aspects, though:

- (positive) very compact representation of an algorithm
- (negative) recursion implicitly costs additional memory for keeping the recursion stack

Example

Algorithms and Data Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

What happens on your machine when you call the following function for $n=100000$?

```
triangleNumber(n){
    if (n > 0) return triangleNumber(n-1) + n
    else return 0
}
```

Iterative version of the above algorithm would not cause any problems on any reasonable machine.

In final implementation, recursion should be avoided or translated to iterations whenever possible (not always possible), due to the additional memory cost for keeping the recursion stack (that could be fatal...)

Hanoi Towers

Algorithms and Data
Structures
(c) Marcin
Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

A riddle:
Three vertical sticks A, B and C. On stick A, stack of n rings, each of different size, always smaller one lies on a bigger one. Move all rings one by one from A to C, respecting the following rule "bigger ring cannot lie on a smaller one" (it is possible to use the helper stick B)

Hanoi Towers - number of moves

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

How many moves are needed for moving n rings?
(hanoi(n) $=$?)
This task can be easily solved with recurrent approach.

Hanoi Towers - number of moves

Algorithms
and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

How many moves are needed for moving n rings?
(hanoi(n) $=$?)
This task can be easily solved with recurrent approach.
If we have 1 ring, we need only 1 move ($\mathrm{A}->\mathrm{C}$). For more rings, if we know how to move $n-1$ top rings to B, then we need to move the largest ring to C, and finally all rings from B to C.

Hanoi Towers - number of moves

Algorithms
and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average Complexity

Master

Theorem
Summary

How many moves are needed for moving n rings?
(hanoi(n) = ?)
This task can be easily solved with recurrent approach.
If we have 1 ring, we need only 1 move ($\mathrm{A}->\mathrm{C}$). For more rings, if we know how to move $n-1$ top rings to B, then we need to move the largest ring to C, and finally all rings from B to C.

Thus, we obtain the following recurrent equations: base:
hanoi(1) $=1$
step:
hanoi $(\mathrm{n})=$ hanoi $(\mathrm{n}-1)+1+$ hanoi $(\mathrm{n}-1)=2$ *hanoi($\mathrm{n}-1)+1$

Solving Recurrent Equations

Algorithms and Data
Structures
(c) Marcin

Sydow

Introduction
Linear
2nd-order Equations

Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

2 general methods:
1 expanding to sum
2 generating functions
illustration of the method 1 :
hanoi $(n)=2 *$ hanoi $(n-1)+1=$
$2 *(2 * \operatorname{hanoi}(n-2)+1)+1=\ldots=\sum_{i}^{n-1} 2^{i}=2^{n}-1$
(method 2 is outside of the scope of this course)

A general method for solving

2nd order linear recurrent equations

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order Equations

Important 3 Cases

Quicksort
Average
Complexity

Assume the following recurrent equation:
$s_{n}=a s_{n-1}+b s_{n-2}$
Then, solve the following characteristic equation: $x^{2}-a x-b=0$.

11 single solution r : $s_{n}=c_{1} r^{n}+c_{2} n r^{n}$
2 two solutions $r_{1}, r_{2}: s_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$
for some constants c_{1}, c_{2} (that can be found by substituting $n=0$ and $n=1$)

Illustration of the Theorem

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

Finonacci $(\mathrm{n}+1)=$ Fibonacci $(\mathrm{n})+$ Fibonacci $(\mathrm{n}-1)$ Fibonacci(0) $=\operatorname{Fibonacci}(1)=1$

Fibonacci(50) $=$?

Illustration of the Theorem

Algorithms and Data
Structures
(c) Marcin

Sydow

Introduction
Linear
2nd-order Equations

Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

Finonacci $(\mathrm{n}+1)=$ Fibonacci $(\mathrm{n})+$ Fibonacci $(\mathrm{n}-1)$
$\operatorname{Fibonacci}(0)=\operatorname{Fibonacci}(1)=1$
Fibonacci(50) = ?
From the last theorem it can be shown that:
Fibonacci $(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$
(the "Binet's" formula)
(BTW: it is incredible, but this is always a natural number!)

Illustration of the Theorem

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order Equations

Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

Finonacci $(\mathrm{n}+1)=$ Fibonacci $(\mathrm{n})+$ Fibonacci $(\mathrm{n}-1)$
$\operatorname{Fibonacci}(0)=\operatorname{Fibonacci}(1)=1$
Fibonacci(50) $=$?
From the last theorem it can be shown that:
Fibonacci $(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$
(the "Binet's" formula)
(BTW: it is incredible, but this is always a natural number!)
Lets compute Fibonacci(50)...

Illustration of the Theorem

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order Equations

Important 3 Cases

Quicksort
Average
Complexity

Master

Theorem
Summary

Finonacci $(\mathrm{n}+1)=$ Fibonacci $(\mathrm{n})+$ Fibonacci $(\mathrm{n}-1)$
$\operatorname{Fibonacci}(0)=\operatorname{Fibonacci}(1)=1$
Fibonacci(50) $=$?
From the last theorem it can be shown that:
Fibonacci $(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$
(the "Binet's" formula)
(BTW: it is incredible, but this is always a natural number!)
Lets compute Fibonacci(50)... over 12 billion!

Illustration of the Theorem

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order Equations

Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

Finonacci $(\mathrm{n}+1)=$ Fibonacci $(\mathrm{n})+$ Fibonacci $(\mathrm{n}-1)$
$\operatorname{Fibonacci}(0)=\operatorname{Fibonacci}(1)=1$
Fibonacci(50) $=$?
From the last theorem it can be shown that:
Fibonacci $(n)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$
(the "Binet's" formula)
(BTW: it is incredible, but this is always a natural number!)
Lets compute Fibonacci(50)... over 12 billion! more precisely: 12586269025

Other Important Special Cases

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

Some types of recurrent equations are quite frequently encountered in algorithmics.
I.e. time complexity function of some important algorithms is in the form of a recurrent equation of such type

We show 3 of them with simple solutions (on rank of complexity)

Case 1

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity

Master

Theorem
Summary
$\mathrm{t}(1)=0$
$\mathrm{t}(\mathrm{n})=\mathrm{t}(\mathrm{n} / 2)+\mathrm{c} ; \mathrm{n}>0, \mathrm{c} \in N$ is a constant ($n / 2$ means $\lfloor(n / 2)\rfloor$ or $\lceil(n / 2)\rceil)$
example of algorithm?

Case 1

Algorithms
and Data
Structures
(c) Marcin
Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average Complexity

Master

Theorem
Summary
$\mathrm{t}(1)=0$
$\mathrm{t}(\mathrm{n})=\mathrm{t}(\mathrm{n} / 2)+\mathrm{c} ; \mathrm{n}>0, \mathrm{c} \in N$ is a constant
($n / 2$ means $\lfloor(n / 2)\rfloor$ or $\lceil(n / 2)\rceil)$
example of algorithm?
proof: (substitute $n=2^{k}$)
$t\left(2^{k}\right)=t\left(2^{k-1}\right)+c=t\left(2^{k-2}\right)+c+c=t\left(2^{0}\right)+k c=k c=$ clog(n)
solution: $t(n)=c(\log (n))=\Theta(\log (n))$ (logarithmic)
example of algorithm:
binSearch (a version that assumes that the sequence contains the key, since $t(1)=0)$

Case 2

Algorithms and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3
Cases
Quicksort
Average
Complexity

Master

Theorem
Summary
$t(1)=0$
$\mathrm{t}(\mathrm{n})=\mathrm{t}(\lfloor(n / 2)\rfloor)+\mathrm{t}(\lceil(n / 2)\rceil)+\mathrm{c} ; \mathrm{n}>0, c \in N$ is a constant
example of algorithm?

Case 2

Algorithms
and Data
Structures
(c) Marcin

Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary
$t(1)=0$
$\mathrm{t}(\mathrm{n})=\mathrm{t}(\lfloor(n / 2)\rfloor)+\mathrm{t}(\lceil(n / 2)\rceil)+\mathrm{c} ; \mathrm{n}>0, \mathrm{c} \in N$ is a constant
example of algorithm?
proof: (substitute $n=2^{k}$)
$t\left(2^{k}\right)=2 t\left(2^{k-1}\right)+c=2\left(2 t\left(2^{k-2}\right)+c\right)+c=$
$2^{2}\left(t\left(2^{k-2}\right)\right)+2^{1} c+2^{0} c=$
$2^{k} t\left(2^{0}\right)+c\left(2^{k-1}+2^{k-2}+\ldots+2^{0}\right)=0+c\left(2^{k}-1\right)=c(n-1)$
solution: $t(n)=c(n-1)=\Theta(n)$ (linear)
example: maximum in sequence

Case 3

Algorithms and Data
Structures
(c) Marcin Sydow

$$
\begin{aligned}
& \mathrm{t}(1)=0 \\
& \mathrm{t}(\mathrm{n})=\mathrm{t}(\lfloor(n / 2)\rfloor)+\mathrm{t}(\lceil(n / 2)\rceil)+\mathrm{cn} ; \mathrm{n}>0, c \in N \text { is a constant }
\end{aligned}
$$

example of algorithm?

Case 3

Algorithms
and Data
Structures
(c) Marcin

Sydow

$$
\begin{aligned}
& \mathrm{t}(1)=0 \\
& \mathrm{t}(\mathrm{n})=\mathrm{t}(\lfloor(n / 2)\rfloor)+\mathrm{t}(\lceil(n / 2)\rceil)+\mathrm{cn} ; \mathrm{n}>0, c \in N \text { is a constant }
\end{aligned}
$$

example of algorithm? proof: (substitute $n=2^{k}$)
$t\left(2^{k}\right)=2 t\left(2^{k-1}\right)+c 2^{k}=2\left(2 t\left(2^{k-2}\right)+c 2^{k-1}\right)+c 2^{k}=$ $2^{2} t\left(2^{k-2}\right)+c 2^{k}+c 2^{k}=2^{k} t\left(2^{0}\right)+k c 2^{k}=0+c n \log (n)$ solution: $c n(\log (n))=\Theta(n \log (n))$ (linear-logarithmic)
example of algorithm: mergeSort

Completing the Proofs

Algorithms and Data Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average Complexity

We solved the equations only for exact powers of 2 , i.e. $n=2^{k}$. The asymptotic bounds, however, will hold in general, due to the following lemma:

If non-decreasing functions: $t(n): N \rightarrow N$ and $f(x): R \rightarrow R$ satisfy:

- $t\left(2^{k}\right)=\Theta\left(f\left(2^{k}\right)\right)$, for $k \in N$
- $\exists_{x_{0}>0} \exists_{c>0} \forall_{x \geq x_{0}} f(2 x) \leq c f(x)$

Then $t(n)=\Theta(f(n))$.
What functions satisfy the second condition? $\left(x, \log x, x \log x, x^{2}, 2^{x}\right)$?

Simple proofs presented on the last few slides are based on: Banachowski, Diks, Rytter "Introduction to Algorithms", Polish 3rd Edition, WNT, 2001, pp.20-21 and p.43; (BDR)

Example - the Average Quicksort's Complexity

Algorithms and Data
Structures
(c) Marcin Sydow

Lets solve the following recurrent equation:

$$
A(0)=A(1)=0
$$

$$
A(n)=(n+1)+\frac{1}{n}\left(\sum_{s=1}^{n}(A(s-1)+A(n-s))\right) ; n>1
$$

(The equation represents the average time complexity of some version of quickSort, that can be found e.g. in BDR, with assumption that input data is uniformly distributed among all permutations of n elements)

$$
A(n)=\frac{2}{n} \sum_{s=1}^{n} A(s-1)+(n+1)
$$

Transform the above to the two following equations:

$$
\begin{aligned}
& n A(n)=2 \sum_{s=1}^{n} A(s-1)+n(n+1) \\
& (n-1) A(n-1)=2 \sum_{s=1}^{n-1} A(s-1)+(n-1) n
\end{aligned}
$$

Average QuickSort's Complexity, cont.

Algorithms and Data Structures
(c) Marcin Sydow

Introduction

Linear

2nd-order Equations
Important 3 Cases

Quicksort Average
Complexity

Master

Theorem
Summary

Lets subtract the 2 nd equation from the first:

$$
\begin{aligned}
& n A(n)-(n-1) A(n-1)=2 A(n-1)+2 n \\
& n A(n)=(n+1) A(n-1)+2 n
\end{aligned}
$$

$$
\frac{A(n)}{n+1}=\frac{A(n-1)}{n}+\frac{2}{n+1}
$$

Now, lets expand the last equation:

$$
\begin{aligned}
& \frac{A(n)}{n+1}=\frac{A(n-1)}{n}+\frac{2}{n+1}=\frac{a(n-2)}{n-1}+\frac{2}{n}+\frac{2}{n+1}= \\
& =\frac{A(1)}{2}+2 / 3+2 / 4+\ldots+\frac{2}{n+1}=2(1+1 / 2+1 / 3+\ldots+1 / n-3 / 2)
\end{aligned}
$$

Thus,

$$
A(n)=2(n+1)(1+1 / 2+1 / 3+\ldots+1 / n-3 / 2)
$$

Harmonic Number (cont. of the proof)

Algorithms
and Data
Structures
(c) Marcin Sydow
$A(n)=2(n+1)(1+1 / 2+1 / 3+\ldots+1 / n-3 / 2)$
The sum $1+1 / 2+1 / 3+\ldots+1 / n$ is called the ($\mathrm{n}+1$)-th harmonic number, denoted as H_{n+1}

It can be proved that asymptotically the following holds:
$H_{n}=\ln (n)+\gamma+O\left(n^{-1}\right)$, where $\gamma \approx 0,5772156 \ldots$ is called the Euler's constant.

Thus, finally we obtain:
$A(n)=\left(\frac{2}{\log (e)}\right)(n+1) \log (n)+O(n)=\frac{2}{\log (e)} n \log (n)+O(n)=$ $\Theta(n \log (n))($ the factor $2 / \log (e) \approx 1.44)$

This ends the proof of $\Theta(n \log (n))$ average time complexity of quickSort

Master Theorem - Introduction

Algorithms
and Data
Structures
(c) Marcin Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary
(Pol.: "twierdzenie o rekurencji uniwersalnej")
A universal method for solving recurrent equations of the following form:

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$: constants, $f(n)$ is asymptotically positive
It can represent time complexity of a recurrent algorithm that divides a problem to a sub-problems, each of size n / b and then merges the sub-solutions with the additional complexity described by $f(n)$
E.g. for mergeSort $a=2, b=2, f(n)=\Theta(n)$

Master Theorem (Pol.: "Twierdzenie o rekurencji uniwersalnej")

Algorithms and Data Structures
(c) Marcin Sydow

Introduction

Linear

2nd-order
Equations
Important 3 Cases

Quicksort Average Complexity

Master
Theorem
Summary

Assume, $T(n): N \rightarrow R$ is defined as follows:

$$
T(n)=a T(n / b)+f(n)
$$

where $a \geq 1, b>1$: constants, n / b denotes $\lfloor(n / b)\rfloor$ or $\lceil(n / b)\rceil$ and $f(n): R \rightarrow R$ is asymptotically positive

Then $T(n)$ can be asymptotically bounded as follows:
1 if $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2 if $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \operatorname{lgn}\right)$
3 if $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right.$ for some $\epsilon>0$, and if asymptotically $a f(n / b) \leq c f(n)$ for some $c<1$ ("regularity" condition), then $T(n)=\Theta(f(n))$
(Proof in CLR 4.4)

Interpretation and "Gaps" in the Master Theorem

Algorithms and Data Structures
(c) Marcin Sydow

Lets interpret the Master Theorem. To put it simply, it compares $f(n)$ with $n^{\log _{b} a}$ and states that the function of the higer rank of complexity determines the solution:

1 if $f(n)$ is of polynomially lower rank than $n^{\log _{b} a}$, the latter dominates
2 if $f(n)$ and $n^{\log _{b} a}$ are of the same rank, the lgn coefficient occurs
3 if $f(n)$ is of polynomially higher rank than $n^{\log _{b} a}$ and satisfies the "regularity" condition, the former function represents the rank of complexity

Some cases are not covered by the Master Theorem, i.e. for functions $f(n)$ that fall into "gaps" between conditions 1-2 or 2-3 or that do not satisfy the "regulartity" condition. In such cases the theorem cannot be applied.

Questions/Problems:

Algorithms and Data
Structures
(c) Marcin

Sydow

Introduction
Linear
2nd-order
Equations
Important 3 Cases

Quicksort
Average
Complexity
Master
Theorem
Summary

- Positive and negative aspects of recursion as an algorithmic tool
- Fibonacci numbers
- Hanoi Towers
- General methods for solving recursive equations

■ How to solve linear 2nd-order equations

- Important 3 cases of recursive equations
- How to solve recursive equations satisfying one of the cases in Master Theorem

```
Algorithms
    and Data
    Structures
    (c) Marcin
        Sydow
Introduction
Linear
2nd-order
Equations
```


Thank you for your attention

Important 3
Cases
Quicksort
Average
Complexity
Master
Theorem
Summary

