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Topics covered by this lecture:

Recursion: Introduction

Fibonacci numbers, Hanoi Towers, ...

Linear 2nd-order Equations

Important 3 cases of recursive equations
(with proofs)

QuickSort Average Complexity (Proof)

Master Theorem
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Recursion

e.g.: n! = (n − 1)!n

Mathematics: recurrent formula or de�nition

Programming: function that calls itself

Algorithms: reduction of an instance of a problem to a
smaller instance of the same problem (�divide and
conquer�)

Warning: should be well founded on the trivial case:

e.g.: 0! = 1
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Example

base:

Fibonacci(0) = 0
Fibonacci(1) = 1

step:

Fibonacci(n+1) = Fibonacci(n) + Fibonacci(n-1)

0,1,1,2,3,5,8,13,21,34,...

Note: some elder de�nitions de�ne the Fibonacci sequence as starting with 1 (i.e.

1,1,2,3,5,...) omitting the leading 0 term, but in this course we use the more

common de�nition starting with 0.
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Recursion as an Algorithmic Tool

A powerful method for algorithm design

It has positive and negative aspects, though:

(positive) very compact representation of an algorithm

(negative) recursion implicitly costs additional memory for
keeping the recursion stack
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Example

What happens on your machine when you call the following
function for n=100000?

triangleNumber(n){

if (n > 0) return triangleNumber(n-1) + n

else return 0

}

Iterative version of the above algorithm would not cause any
problems on any reasonable machine.

In �nal implementation, recursion should be avoided or
translated to iterations whenever possible (not always possible),
due to the additional memory cost for keeping the recursion
stack (that could be fatal...)
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Hanoi Towers

A riddle:

Three vertical sticks A, B and C. On stick A, stack of n rings,
each of di�erent size, always smaller one lies on a bigger one.
Move all rings one by one from A to C, respecting the following
rule �bigger ring cannot lie on a smaller one� (it is possible to
use the helper stick B)
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Hanoi Towers - number of moves

How many moves are needed for moving n rings?
(hanoi(n) = ?)

This task can be easily solved with recurrent approach.

If we have 1 ring, we need only 1 move (A -> C). For more
rings, if we know how to move n-1 top rings to B, then we need
to move the largest ring to C, and �nally all rings from B to C.

Thus, we obtain the following recurrent equations:
base:
hanoi(1) = 1

step:
hanoi(n) = hanoi(n-1) + 1 + hanoi(n-1) = 2*hanoi(n-1) + 1



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Hanoi Towers - number of moves

How many moves are needed for moving n rings?
(hanoi(n) = ?)

This task can be easily solved with recurrent approach.

If we have 1 ring, we need only 1 move (A -> C). For more
rings, if we know how to move n-1 top rings to B, then we need
to move the largest ring to C, and �nally all rings from B to C.

Thus, we obtain the following recurrent equations:
base:
hanoi(1) = 1

step:
hanoi(n) = hanoi(n-1) + 1 + hanoi(n-1) = 2*hanoi(n-1) + 1



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Hanoi Towers - number of moves

How many moves are needed for moving n rings?
(hanoi(n) = ?)

This task can be easily solved with recurrent approach.

If we have 1 ring, we need only 1 move (A -> C). For more
rings, if we know how to move n-1 top rings to B, then we need
to move the largest ring to C, and �nally all rings from B to C.

Thus, we obtain the following recurrent equations:
base:
hanoi(1) = 1

step:
hanoi(n) = hanoi(n-1) + 1 + hanoi(n-1) = 2*hanoi(n-1) + 1



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Solving Recurrent Equations

2 general methods:

1 expanding to sum

2 generating functions

illustration of the method 1:

hanoi(n) = 2 ∗ hanoi(n − 1) + 1 =
2 ∗ (2 ∗ hanoi(n − 2) + 1) + 1 = ... =

∑n−1
i 2i = 2n − 1

(method 2 is outside of the scope of this course)
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A general method for solving
2nd order linear recurrent equations

Assume the following recurrent equation:

sn = asn−1 + bsn−2

Then, solve the following characteristic equation:
x2 − ax − b = 0.

1 single solution r: sn = c1r
n + c2nr

n

2 two solutions r1, r2: sn = c1r
n
1 + c2r

n
2

for some constants c1, c2
(that can be found by substituting n = 0 and n = 1)
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Illustration of the Theorem

Finonacci(n+1) = Fibonacci(n) + Fibonacci(n-1)
Fibonacci(0) = Fibonacci(1) = 1

Fibonacci(50) = ?

From the last theorem it can be shown that:

Fibonacci(n) = 1√
5

((1+
√
5

2 )n − (1−
√
5

2 )n)

(the �Binet`s� formula)
(BTW: it is incredible, but this is always a natural number!)

Lets compute Fibonacci(50)... over 12 billion!
more precisely: 12 586 269 025
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Other Important Special Cases

Some types of recurrent equations are quite frequently
encountered in algorithmics.

I.e. time complexity function of some important algorithms is in
the form of a recurrent equation of such type

We show 3 of them with simple solutions (on rank of
complexity)
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Case 1

t(1) = 0
t(n) = t(n/2) + c; n>0, c ∈ N is a constant
(n/2 means b(n/2)c or d(n/2)e)

example of algorithm?

proof: (substitute n = 2k)

t(2k) = t(2k−1) + c = t(2k−2) + c + c = t(20) + kc = kc =
clog(n)

solution: t(n) = c(log(n)) = Θ(log(n)) (logarithmic)

example of algorithm:
binSearch (a version that assumes that the sequence contains the key, since

t(1) = 0)
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Case 2

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + c; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c = 2(2t(2k−2) + c) + c =
22(t(2k−2)) + 21c + 20c =
2kt(20) + c(2k−1 + 2k−2 + ...+ 20) = 0+ c(2k − 1) = c(n− 1)

solution: t(n) = c(n − 1) = Θ(n) (linear)

example: maximum in sequence



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Case 2

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + c; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c = 2(2t(2k−2) + c) + c =
22(t(2k−2)) + 21c + 20c =
2kt(20) + c(2k−1 + 2k−2 + ...+ 20) = 0+ c(2k − 1) = c(n− 1)

solution: t(n) = c(n − 1) = Θ(n) (linear)

example: maximum in sequence



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Case 3

t(1) = 0
t(n) = t(b(n/2)c) + t(d(n/2)e) + cn; n>0, c ∈ N is a constant

example of algorithm?

proof: (substitute n = 2k)

t(2k) = 2t(2k−1) + c2k = 2(2t(2k−2) + c2k−1) + c2k =
22t(2k−2) + c2k + c2k = 2kt(20) + kc2k = 0 + cnlog(n)
solution: cn(log(n)) = Θ(nlog(n)) (linear-logarithmic)

example of algorithm: mergeSort
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solution: cn(log(n)) = Θ(nlog(n)) (linear-logarithmic)
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Completing the Proofs

We solved the equations only for exact powers of 2, i.e. n = 2k .
The asymptotic bounds, however, will hold in general, due to
the following lemma:

If non-decreasing functions: t(n) : N → N and f (x) : R → R

satisfy:

t(2k) = Θ(f (2k)), for k ∈ N

∃x0>0∃c>0∀x≥x0 f (2x) ≤ cf (x)

Then t(n) = Θ(f (n)).

What functions satisfy the second condition?
(x , logx , xlogx , x2, 2x)?

Simple proofs presented on the last few slides are based on: Banachowski, Diks,

Rytter �Introduction to Algorithms�, Polish 3rd Edition, WNT, 2001, pp.20-21

and p.43; (BDR)



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Example - the Average Quicksort's Complexity

Lets solve the following recurrent equation:
A(0) = A(1) = 0
A(n) = (n + 1) + 1

n (
∑n

s=1(A(s − 1) + A(n − s))); n > 1

(The equation represents the average time complexity of some

version of quickSort, that can be found e.g. in BDR, with assumption

that input data is uniformly distributed among all permutations of n

elements)

A(n) = 2
n

∑n
s=1 A(s − 1) + (n + 1)

Transform the above to the two following equations:
nA(n) = 2

∑n
s=1 A(s − 1) + n(n + 1)

(n − 1)A(n − 1) = 2
∑n−1

s=1 A(s − 1) + (n − 1)n
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Average QuickSort's Complexity, cont.

Lets subtract the 2nd equation from the �rst:
nA(n)− (n − 1)A(n − 1) = 2A(n − 1) + 2n
nA(n) = (n + 1)A(n − 1) + 2n

A(n)
n+1 = A(n−1)

n + 2
n+1

Now, lets expand the last equation:

A(n)
n+1 = A(n−1)

n + 2
n+1 = a(n−2)

n−1 + 2
n + 2

n+1 =

= A(1)
2 +2/3+2/4+...+ 2

n+1 = 2(1+1/2+1/3+...+1/n−3/2)

Thus,
A(n) = 2(n + 1)(1 + 1/2 + 1/3 + ...+ 1/n − 3/2)
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Harmonic Number (cont. of the proof)

A(n) = 2(n + 1)(1 + 1/2 + 1/3 + ...+ 1/n − 3/2)

The sum 1 + 1/2 + 1/3 + ...+ 1/n is called the
(n+1)-th harmonic number, denoted as Hn+1

It can be proved that asymptotically the following holds:

Hn = ln(n) + γ + O(n−1), where γ ≈ 0, 5772156... is called the
Euler's constant.

Thus, �nally we obtain:

A(n) = ( 2
log(e))(n + 1)log(n) + O(n) = 2

log(e)nlog(n) + O(n) =

Θ(nlog(n)) (the factor 2/log(e) ≈ 1.44)

This ends the proof of Θ(nlog(n)) average time complexity of
quickSort
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Master Theorem - Introduction

(Pol.: �twierdzenie o rekurencji uniwersalnej�)

A universal method for solving recurrent equations of the
following form:

T (n) = aT (n/b) + f (n)

where a ≥ 1, b > 1 : constants, f (n) is asymptotically positive

It can represent time complexity of a recurrent algorithm that
divides a problem to a sub-problems, each of size n/b and then
merges the sub-solutions with the additional complexity
described by f (n)

E.g. for mergeSort a = 2, b = 2, f (n) = Θ(n)
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Master Theorem (Pol.: �Twierdzenie o rekurencji uniwersalnej�)

Assume, T (n) : N → R is de�ned as follows:

T (n) = aT (n/b) + f (n)

where a ≥ 1, b > 1 : constants, n/b denotes b(n/b)c or d(n/b)e and
f (n) : R → R is asymptotically positive

Then T (n) can be asymptotically bounded as follows:

1 if f (n) = O(nlogba−ε) for some ε > 0, then
T (n) = Θ(nlogba)

2 if f (n) = Θ(nlogba), then T (n) = Θ(nlogbalgn)

3 if f (n) = Ω(nlogba+ε for some ε > 0, and if asymptotically

af (n/b) ≤ cf (n) for some c < 1 (�regularity� condition), then
T (n) = Θ(f (n))

(Proof in CLR 4.4)



Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linear
2nd-order
Equations

Important 3
Cases

Quicksort
Average
Complexity

Master
Theorem

Summary

Interpretation and "Gaps" in the Master Theorem

Lets interpret the Master Theorem. To put it simply, it
compares f (n) with nlogba and states that the function of the
higer rank of complexity determines the solution:

1 if f (n) is of polynomially lower rank than nlogba, the latter
dominates

2 if f (n) and nlogba are of the same rank, the lgn coe�cient
occurs

3 if f (n) is of polynomially higher rank than nlogba and
satis�es the �regularity� condition, the former function
represents the rank of complexity

Some cases are not covered by the Master Theorem, i.e. for
functions f (n) that fall into �gaps� between conditions 1-2 or
2-3 or that do not satisfy the �regulartity� condition. In such
cases the theorem cannot be applied.
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Questions/Problems:

Positive and negative aspects of recursion as an
algorithmic tool

Fibonacci numbers

Hanoi Towers

General methods for solving recursive equations

How to solve linear 2nd-order equations

Important 3 cases of recursive equations

How to solve recursive equations satisfying one of the cases
in Master Theorem
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Thank you for your attention
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