Algorithms and Data Structures

Priority Queue

(c) Marcin Sydow
Topics covered by this lecture:

- Priority Queue
- Naive Implementations
- Binary Heap
- HeapSort and other examples
- Extended Priority Queues
- (*) Binomial Heap
Priority Queue Definition

Priority Queue (PQ) is an abstract data structure supporting the following operations:

- `insert(T e)` // add to PQ a new element with assigned priority
- `T findMin()` // return the element with minimum priority
- `T delMin()` // return and delete the elt. with min. prior.

(optional operation: `construct(sequence<T> s)` // create a PQ given set of elements)

Each element has associated “priority”.

One can also consider a “max”-type priority queue, defined analogously

Note: priority queue is not a “specialised” queue
(why? hint: remember the definition of queue)
The implementations evolve, for example:

- “naive” (as an array or list)
- Binary Heap (1964 Williams; Floyd 1964)
- Binomial Heap (1978 Vuillemin)
- Pairing Heap* (1986 Fredman, Sedgewick, Sleator, Tarjan; 2000 Iacono; Pettie 2005)
- Fibonacci Heap* (1987 Fredman, Tarjan)
- “Thin” Heaps and “Fat” Heaps* (1999 Kaplan, Tarjan)

* - not in this lecture
Naive implementations

- unsorted sequence:
 - insert: $O(1)$, deleteMin: $O(n)$, construct: $O(n)$

- sorted sequence:
 - insert: $O(n)$, deleteMin: $O(1)$, construct: $O(n \log(n))$

(sequence can be an array or linked list)
Binary Heap

Binary Heap is a complete\(^1\) binary tree satisfying the following “heap-order condition” (for each (non-root) node \(x\)):

\[
\text{(priority of parent}[x]) \leq \text{(priority of } x)\n\]

Observations:

- minimum priority is at root
- priorities on each path from the root to a leaf form a non-decreasing sequence
- height of \(n\)-element binary heap is \(\Theta(log(n))\) (due to completeness)

(there is also a “max” variant of the above definition)

\(^1\)Leaves (except may be the right-most ones, that can be 1 level higher), have equal depths
Due to the fact that it is a complete binary tree, Binary Heap can be compactly represented as an array:

Navigation:
(assume the root is under index 1)

- \(\text{parent}[i] = \lfloor i/2 \rfloor \) (for non-root \(i \))
- \(i.\text{left} = 2i, \ i.\text{right} = 2i + 1 \) (for non-leaf \(i \))
Restoring the Heap Order

Two helper, internal operations. Both assume the heap order is correct except the position i:

- `upheap(i)` (call when (key of parent[i] > key of i), assert: heap ok below i): the key under i goes up until ok
- `downheap(i)` (call when one of children of i has lower key than i, assert: heap ok above i and for both its subtrees): the key under i goes down until ok

Both operations use $O(\log(n))$ key comparisons (n - number of elements)
Example of `upheap(i)` implementation:

```plaintext
upheap(i)     // i > 0, heap ok under i
    key = heap[i]
    parent = i/2
    while((parent > 0) && (heap[parent] > key))
        heap[i] = heap[parent]
        i = parent
        parent /= 2
    heap[i] = key
```
Example of downheap(i) implementation:

downheap(i)
 l = 2i // left son
 r = 2i + 1 // right son
 if l <= n and heap[l] < heap[i]:
 min = l
 else:
 min = i
 if r <= n and heap[r] < heap[min]: // n is the size of heap
 min = r
 if min != i:
 swap(i,min) // swap the elements under indexes (not indexes themselves)
 downheap(min) // go down

Remarks: recursion used here only for keeping the code short, swapping too. Both can be avoided to make the implementation more efficient.
Priority Queue implemented on Binary Heap

(data size: number of elements (n), dom. oper.: comparison of priorities)

- insert(x): add x to the bottom and upheap(bottom) \((O(log(n))) \)
- findMin(): return root \((O(1)) \)
- delMin(): move the bottom element to the root and downheap(root) \((O(log(n))) \)

What is the complexity of construct?
Priority Queue implemented on Binary Heap

(data size: number of elements (n), dom. oper.: comparison of priorities)

- **insert(x):** add x to the bottom and upheap(bottom) \(O(\log(n))\)
- **findMin():** return root \(O(1)\)
- **delMin():** move the bottom element to the root and downheap(root) \(O(\log(n))\)

What is the complexity of construct?

Interestingly, construct has fast, \(\Theta(n)\) implementation.
Complexity of construct

(naive: \(n \times \text{insert} \) (which gives \(\Theta(n\log(n)) \)))

faster way:

\[
\text{for}(i = n/2; i > 0; i--) \text{downHeap}(i)
\]

Analysis: downHeap is called at most \(2^d \) times for nodes of depth \(d \), each such call costs \(O(h - d) \) (where \(h \) is the height of heap). Thus, the total cost is:

\[
O(\sum_{0 \leq d < h} 2^d(h-d)) = O(2^h \sum_{0 \leq d < h} \frac{h-d}{2^{h-d}}) = O(2^h \sum_{j \geq 1} \frac{j}{2^j}) = O(n)
\]

(the last equation holds because: \(\sum_{i \geq 1} i2^{-i} = 2 \))
\[\sum_{i \geq 1} i2^{-i} = 2: \text{ a proof} \]

finite geometric series: \[\sum_{i=0}^{n-1} q^i = \frac{1-q^n}{1-q} \] for \(q \neq 1 \)

infinite geometric series: \[\sum_{i \geq 0} q^i = \lim_{n \to \infty} \frac{1-q^n}{1-q} = \frac{1}{1-q} \] for \(0 \leq q < 1 \)

Thus: \[\sum_{i \geq 0} 2^{-i} = 1 + 1/2 + 1/4 + \ldots = 2 \] (a geometric series with \(q = 1/2 \))

Now: \[^2\]

\[\sum_{i \geq 1} i2^{-i} = \sum_{i \geq 1} 2^{-i} + \sum_{i \geq 2} 2^{-i} + \sum_{i \geq 3} 2^{-i} + \ldots = (1+1/2+1/4+\ldots) = 2 \]

(the first equality is due to the re-grouping of terms (\(2^{-i} \) occurs in exactly \(i \) first sums))

\[^2 \text{More generally, } \sum_{k \geq 0} kx^k = \frac{x}{(1-x)^2}, \text{ for any } |x| < 1 \text{ (take derivative of infinite geometric series to obtain it)} \]
How to sort a sequence s with a Priority Queue?

```java
while(s.hasNext())
pq.insert(s.next())

while(!pq.isEmpty())
result.add(pq.delMin())
```

data size: # elements (n), dom. op.: comparison
time complexity: $\Theta(n\log(n))$, space complexity: $\Theta(n)$

Notice: if we put the min element to the last released place in the array, we obtain $O(1)$ space complexity!
How to sort a sequence s with a Priority Queue? (pq is an object representing priority queue)

```java
while(s.hasNext())
    pq.insert(s.next())

while(!pq.isEmpty())
    result.add(pq.delMin())
```

data size: # elements (n), dom. op.: comparison
time complexity: $\Theta(n\log(n))$, space complexity: $\Theta(n)$

Notice: if we put the min element to the last released place in the array, we obtain $O(1)$ space complexity!
Other examples of applications of priority queues

Priority queues are typically used in **greedy** algorithms (for selecting a next element in the solution in the efficient way), for example:

- Huffman Code computation
- Dijkstra’s shortest-path algorithm (on other lecture)
- Prim’s minimum spanning tree algorithm (on other lecture)
- etc.
Extensions of Priority Queue

Addressable Priority Queue

- `construct(sequence<T> s)`
- `H insert(T e)` // as before but returns a *handle* to the inserted element
- `T findMin()`
- `T delMin()`
- `decreaseKey(H pointer, T newPriority)`
- `delete (H pointer)`

In addition: Mergeable Priority Queue:

- `merge(PQ priorityQueue1, PQ priorityQueue2)`
Complexities of Priority Queue Operations

<table>
<thead>
<tr>
<th>operation</th>
<th>unsort.</th>
<th>sort.</th>
<th>binary heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>1</td>
<td>n</td>
<td>lg n</td>
<td>lg n</td>
</tr>
<tr>
<td>findMin</td>
<td>n</td>
<td>1</td>
<td>1</td>
<td>lg n</td>
</tr>
<tr>
<td>delMin</td>
<td>n</td>
<td>1</td>
<td>lg n</td>
<td>lg n</td>
</tr>
<tr>
<td>decreaseKey</td>
<td>1</td>
<td>n</td>
<td>lg n</td>
<td>lg n</td>
</tr>
<tr>
<td>delete</td>
<td>1</td>
<td>n</td>
<td>lg n</td>
<td>lg n</td>
</tr>
<tr>
<td>merge</td>
<td>1</td>
<td>n</td>
<td>n</td>
<td>lg n</td>
</tr>
</tbody>
</table>

(the entries have implicit $O(.)$ around them)

Binomial Heap: a bit more advanced implementation of priority queue that supports fast merge (and keeps other operations fast)
Binomial Trees

A *binomial tree* B_i of degree i is a rooted tree defined recursively as follows:

- B_0 consists of a single node
- B_i: the root has i sons: $B_{i-1}, B_{i-2}, \ldots, B_0$ (in such order)

Properties of B_i:

- height: i
- has exactly $\binom{i}{j}$ (binomial coefficient) nodes at level j
- has exactly 2^i nodes in total
- can be obtained by adding a B_{i-1} as a left-most son of a root of a B_{i-1}

(Notice the analogies with the properties of binomial coefficients!)
Binomial Heap

Binomial Heap is a list of binomial trees sorted decreasingly by
degrees (from left to right), where each binomial tree satisfies
the heap order.

Properties of a n-element binomial heap:

- it consists of $O(\log n)$ binomial trees
- B_i is its part only if the i–th bit in the binary
 representation of n is set to 1

(both properties are implied by the fact that $|B_i| = 2^i$ and
properties of binary representation of numbers)
Operations on Binomial Heap

- **findMin**: min is among the $O(\log n)$ roots
- **merge**: similar to adding two binary numbers. Summing two 'ones' on position i: merging two binomial trees B_i to obtain one B_{i+1} (remind the last property of binomial trees). The tree with lower key becomes the root, the other becomes its right-most son. The summing goes through both lists of binomial trees from left to right (thus it has $O(\log n)$ complexity)
- **insert**: merge with a 1-element binomial heap ($O(\log n)$)
- **delMin**: find the root with the lowest key ($O(\log n)$), cut it out, merge the list of its sons (being a correct binomial heap itself!) with the rest of the remaining part ($O(\log n)$)
- **decreaseKey**: similarly as in binary heap ($O(\log n)$)
- **delete**: move it to the root, cut, then as in delMin ($O(\log n)$)
Questions/Problems:

- Definition of Priority Queue
- Complexities on naive implementation (list, array)
- Binary Heap definition
- Binary Heap represented as Array
- Priority Queue operations on Binary Heap (+ complexities)
- HeapSort and other examples of applications
- Extended Priority Queues (operations)
- (*) Binomial Trees and Binomial Heap
- (*) Priority Queue implemented on Binomial Heap (operations + complexities)
Thank you for your attention