
Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Algorithms and Data Structures
Minimum Spanning Tree

Marcin Sydow

Web Mining Lab
PJWSTK

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Topics covered by this lecture:

Minimum Spanning Tree (MST) Problem

Cut Property and Cycle Property of MST

Prim's Algorithm

Kruskal's Algorithm

Union-Find Abstract Data Structure

(*) Fast Implementation of Union-Find

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Minimum Spanning Tree (MST)

Given graph G = (V ,E) with weights on edges

Find a tree T = (V ,E ′) (spanned on the vertices of G where
E ′ ⊆ E) such that the sum of weights on E' is minimum possible.

����

INPUT: an undirected connected graph G = (V ,E) with positive
weights on edges, given by a weight-function: w : E → R+

OUTPUT: a graph G ′ such that:

1 G ′ = (V ,E ′) is a connected subgraph of G
(it connects all the nodes of the original graph G)

2 the sum of weights of its edges
∑

e∈E ′ w(e) is minimum possible

Exercise: Is the MST the same thing as the tree of shortest paths

from a source vertex to other vertices?

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

The �Cut Property� of MST

De�nition

For a connected graph G = (V ,E) and a subset S of V , a cut is a
set E ′ ⊆ E of all edges having one end in S and another in V \ S .

Lemma

(cut property) Assume E ′ is a cut and e is a minimum-cost edge in
E ′. Then, there exists a MST of G that contains e. In addition, if
T ′ is a set of edges contained in some MST and T ′ does not contain
any edge from E ′ then T ′ ∪ {e} is also contained in some MST.

Proof1 (of a second claim): Let T be a MST of G with T ′ ⊆ T and e = (u, v).
T is a spanning tree, so it contains a path p from u to v . E ′ separates u and v ,
since it is a cut, and p must contain an edge e ′ from E ′. Thus,
T ′′ = (T \ {e ′}) ∪ {e} is also a spanning tree since deleting e ′ partitions T into
two subtrees, which are subsequently joined back by e. But c(e) ≤ c(e ′) implies
that c(T ′′) ≤ c(T) so that T ′′ is also a MST.

The �rst claim is implied by taking T ′ = ∅.
1
After K.Mehlhorn et al., �Algorithms and Data Structures�

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

The �Cycle Property� of MST

Lemma

Assume S is a subset of edges of some MST of G and C ⊆ E is

a cycle in a connected graph G = (V ,E). If e = (u, v) ∈ C is

an edge with maximum cost in C such that u is incident with S,

and v not, there exists a MST T ′ of G that contains S and that

does not contain e (i.e. e is �not needed� in any MST of G).

Proof: (�reductio ad absurdum�) Assume every extension T of
S to MST must contain e. e partitions T into two subtrees
Tu,Tv . There must exist another edge e ′ = (u ′, v ′) from C

with u ′ ∈ Tu and v ′ ∈ Tv . Now, T
′ = (T \ {e}) ∪ {e ′} is a

spanning tree that does not contain e. But T ′ is a MST since
c(e ′) ≤ c(e). Contradiction.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

From Cut Property to General MST Solution

The cut property can be exploited to design a simple greedy
algorithm for �nding MST.
The general scheme of such algorithm is as follows:

1 set T = ∅
2 until T is not a spanning tree, add a minimum-cost edge e

from any cut E ′ disjoint with T

(the cut property guarantees the correctness of the above
general approach)

Di�erent choices of the selection of the cut E ′ in each iteration
lead to di�erent algorithms for �nding MST.
We will now discuss two di�erent algorithms: Prim's and
Kruskal's

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Prim's Algorithm - the idea

(similar to Dijkstra Algorithm for �nding shortest paths)

Start with any �source� node s and grow the tree as follows. S
(initially containing only s) denotes the set of nodes in each
iteration. The cut E ′ is the set of edges having exactly one end
in S . In each iteration a minimum-cost edge from E ′ is added
to S .

To e�ciently �nd such a minimum-cost e a priority queue is
used, that, for each node outside of S , keeps its current shortest
connection to S (actually, such a shortest connection is via the
edge e that is sought). After selecting e, all the edges incident
to it are relaxed similarly as in the algorithm of Dijkstra.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Prim's Algorithm

(G = (V ,E) in a form of adjLists, w(u, v) denotes the weight of the edge (u, v)
and s denotes the (arbitrary) starting node):

MSTPrim(V,w,s){

PriorityQueue pq

s.dist = 0

s.parent = null

pq.insert(s)

for each u in V\{s}:

u.dist = INFINITY

while(!pq.isEmpty()):

u = pq.deleteMin()

u.dist = 0

for each v in u.adjList:

if (w(u,v) < v.dist):

v.dist = w(u,v)

v.parent = u

if (pq.contains(v)): pq.decreaseKey(v)

else pq.insert(v)

}

(the resulting MST is encoded in the parent attributes)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Analysis

data size: n=|V|, m=|E|

dominating operation: assignment (initialisation) and
comparison (both explicit and hidden inside deleteMin,

decreaseKey operations)

initialisation: O(n), loop: (n times delMin() + m times
decreaseKey())

If we implement the priority queue on a binary heap:
loop: O(nlog(n)) + O(mlog(n)) = O((n+m)log(n))

If we use Fibonacci heap (amortised constant cost of
decreaseKey()):
O(nlog(n) +m)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Kruskal's Algorithm - the idea

1 initially T = ∅
2 add a minimum-cost edge e that does not form a cycle in

T until T is a spanning tree

Thus, the edges are considered in the order of non-decreasing weight
and each edge is considered only once and is either:

rejected: due to the cycle property, it is a maximum-cost,
cycle-making edge in T in the moment of rejection

accepted: due to the cut property, it is a minimum-cost member
of a cut

The main issue in the algorithm is to e�ciently check whether a
considered edge is forming a cycle.

A helper union-�nd data structure can be used here. Notice that after

each iteration T forms a forest. Thus, forming a cycle for an edge

(u, v) is equivalent to u and v belonging to the same subtree of T .

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Union-Find (Abstract Data Structure)

Union-Find is an abstract data structure for representing a
family of disjoint subsets of some set U, that supports the
following operations:

�nd(element)

union(set1,set2)

The �rst operation answers which set of a family an element
belongs to. The second operation joins two (disjoint) sets of
the family into one set. The data structure invariant: the
subsets are always disjoint.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Kruskal's Algorithm Implemented with Union-Find

A union-�nd data structure can be applied to implement the
Kruskal's algorithm as follows:

kruskalMST(V,E,w){

T = 0

UnionFind uf

foreach edge (u,v) in non-decreasing order of weight:

if (uf.find(u) != uf.find(v)):

T = T + (u,v)

uf.union(uf.find(u),uf.find(v))

return T

}

There exists an extremely fast implementation of union-�nd
that has constant complexity of the union operation and
�almost�2 constant amortised complexity. With this
implementation, the Kruskal's algorithm will have O(mlog(m))
complexity (since sorting m edges will dominate the work).

2The word �almost� will be explained soon

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Simple Implementation of Union-Find

Assume, the universe set U = {1, ..,m} and assume that, for
each subset of the family, its label is some of its elements.
Initially, each element of U forms a separate subset (i.e.
�nd(e) == e for any e ∈ U)

(simple implementation) Union-Find can be simply implemented
as an array uf, where uf [e] is just the label of the set S
containing it (e.g. the minimum element in S). find will have
constant time complexity, but union will have Θ(m) complexity
(as the whole array uf needs to be scanned to update the labels
of the joined sets)

There is a much faster implementation.

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Fast Implementation of Union-Find - idea

Each subset of a family is represented as a rooted tree
(with elements in nodes).

The root of each tree contains the representative (label) of
each subset.

Each element keeps a pointer to its parent in the tree.

�nd(e): follow a path from e to the root and return the
root's element

union(set1,set2): make a root of one tree a parent of the
root of the other one

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Fast Implementation of Union-Find - Re�nements

There are two possible improvements possible:

(�union by rank�) to keep the height of each tree small,
each root contains an integer (called �rank�) that is an
upper-bound of the height. The tree with the higher rank
is made the root while joining two trees.

(�path compression�) to accelerate the �nd operation.
During any �nd operation, any examined parent attribute
is set directly to the root

Lemma

The height of any tree with union by rank is O(log(n))

(Proof draft: by induction, each tree of rank k contains at least 2k

nodes.)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

(*) Time Complexity of Fast Implementation of
Union-Find (The proof is is not simple and is omitted here)

Theorem

The tree-based implementation of Union-Find data structure with �union

by rank� and �path compression� achieves O(mα(m, n)) time complexity

for any sequence of m �nd and n − 1 union operations, where:

α(m, n) = min{i ≥ 1 : A(i , dm/ne) ≥ log(n)}
and A is de�ned as follows3:

A(1, j) = 2j for j ≥ 1

A(i , 1) = A(i − 1, 2) for i ≥ 2

A(i , j) = A(i − 1,A(i , j − 1) for i , j ≥ 2

The Ackermann's function grows so extremely fast that α(m, n) is
usually less than 5 for any values of m, n found in any current
practical applications.

Thus, the amortised time complexity is �almost� constant.

3A is called Ackermann's function

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Summary of Prim's and Kruskal's Algorithms

Prim's algorithm is quite similar to the Dijkstra's algorithm for
shortest paths (edge weights are used as priorities instead
distances to source). The partial solution is always connected (it
is a tree)

the idea of the Kruskal's algorithm is very simple. The partial
solution is not necessarily connected (it is a forest not a tree)

Prim's Algorithm is a good choice in general case

However, Kruskal's Algorithm (with fast implementation of
union-�nd) can be faster on sparse graphs, where m = O(n)

Kruskal's Algorithm can be used in a �streaming mode�: i.e. the
edges come on-line through a network connection, etc. Even if
they are not sorted by weight it is possible to device a quite fast
version of the algorithm. (e.g. with O(mlog(n) time complexity
and O(n) space complexity)

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Summary

Minimum Spanning Tree (MST) Problem

Cut Property and Cycle Property of MST

Prim's Algorithm

Kruskal's Algorithm

Union-Find Abstract Data Structure

(*) Fast Implementation of Union-Find

Algorithms
and Data
Structures

Marcin
Sydow

Introduction

Cut and
Cycle
Property

Prim's
Algorithm

Kruskal's
Algorithm

Union-Find

Thank you for attention

	Introduction
	Cut and Cycle Property
	Prim's Algorithm
	Kruskal's Algorithm
	Union-Find

