
Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Algorithms and Data Structures

Lists and Arrays

(c) Marcin Sydow

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Topics covered by this lecture:

Linked Lists

Singly Linked Lists
Doubly Linked Lists

The Concept of Abstract Data Structure

Stack
Queue
Deque

The Concept of Amortised Analysis of Complexity

�Potential function� method
�total cost� and �accounting� methods
Examples on Stack with multiPop

Unbounded Arrays

Comparison of Various Representations of Sequences

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Sequences

Sequences of elements are the most common data structures.

Two kinds of basic operations on sequences:

absolute access (place indenti�ed by index), fast on arrays

relative access (place indenti�ed as a successor,
predecessor of a given element.), slow on arrays

The simplest implementation of sequences: arrays, support fast
(constant time) absolute access, however relative access is very
slow on arrays (time Θ(n)) (Assume a sequence has n elements, and

assignment and value check are dominating operations)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Operations on ends of sequence

It is important to realise that in many practical applications, the
operations on sequence concern only the ends of the
sequence (e.g. removeFirst, addLast, etc.).

Any �insert� operation on array has pessimistic linear time
(slow).

Thus, some other than arrays data structures can be more
e�cient for implementing them.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Linked Lists

Alternative implementation that supports fast relative access

operations like:

return/remove �rst/last element

insert/remove an element after/before given element

insert a list after/before an element

isEmpty, size, etc.

Linked list consists of nodes that are linked.

singly linked lists

doubly linked lists

cyclic lists (singly or doubly linked), etc.

Nodes contain:

one element of sequence

link(s) to other node(s) (implemented as pointers).

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Singly Linked Lists

Class SLNode<Type>{

Type element

SLNode<Type> next //pointer to the next node or NULL if last

}

Class SList<Type>{

SLNode<Type> head //points to the first element, the only access to list

}

head-> (2)-> (3)-> (5)-> (8)-> null

Last element points to null (in empty list head points to
null)

Example: printing the contents of a list:

print(SList l){

node = l.head

while(node not null)

print node.element

node = node.next

}

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Double-Linked Lists

Class DLNode<Type>{

Type element

DLNode<Type> next

DLNode<Type> prev

}

Class DLList<Type>{

DLNode<Type> head //points to the first element, the only access to list

}

Double links cost twice memory compared to singly-linked, but
are useful when navigation in both directions is needed (e.g.
insertionSort)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Cyclic Lists and Cyclic Arrays

In cyclic list variant the last node is linked to the �rst one

It can concern singly or doubly linked lists

In doubly linked case the following �invariant� holds for each
node:
(next.prev) == (prev.next) == this

In some cases cyclic arrays are also useful. (an array of size n,
first and last are kept to point to the ends of the sequence
and they move �modulo n�)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Operations on lists

Examples:

isEmpty

�rst

last

insertAfter (insertBefore)

moveAfter (moveBefore)

removeAfter (removeBefore)

pushBack (pushFront)

popBack (popFront)

concat

splice

size

�ndNext

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Implementation of operations on linked lists

Most modi�er list operations can be implemented with a �technical�
general operation splice.

INPUT: a,b,t - pointers to nodes into list; a anb b are in the same
list, t is not between a and b

OUTPUT: cut out sublist (a,...,b) and insert it after t

Example implementation of splice in doubly linked lists:

(notice its constant time complexity, even if it concerns arbitrarily large

subsequences!)

Splice(a,b,t){

// cut out (a,...,b):

a' = a.prev; b' = b.next; a'.next = b'; b'.prev = a'

// insert (a,...,b) after t:

t'= t.next; b.next = t'; a.prev = t; t.next = a; t'.prev = b

}

Example: moveAfter(a,b){ splice(a,a,b)}

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Extensions

Examples of additional cheap and useful attributes to the linked
list structures:

size (updated in constant time after each operation (except
inter-list splice)

last (useful in singly-linked lists, e.g. for fast pushBack)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Linked lists vs arrays

Linked Lists (compared with arrays):

positive: fast �relative� operations, like �insert after�, etc.
(most of them in constant time!)

positive: unbounded size

negative: additional memory for pointers

negative: slow (linear time) absolute access (vs fast
(constant) in arrays)

Remarks:
Pointer size can be small compared to the element size, though.
Arrays have bounded size.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Abstract Data Structures

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Abstract Data Structure

A very general and important concept ADS is de�ned by
operations which can be executed on it
(or, in other words, by its interface).

ADS is not de�ned by the implementation (however,
implementation matters in terms of time and space complexity
of the operations).

Abstract Data Structure can be opposed to �concrete� data
structure (as array or linked list)

The most basic examples of ADS: stack and queue.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Stack

The most basic example of abstract data structure.
It is de�ned by the following interface:

Stack (of elements of type T):

push(T)

T pop() (modi�er)

T top() (non-modi�er)

(also called: �LIFO� data structure (last in - �rst out)

Applications of stack: undo, function calls, back button in web
browser, parsing, etc.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Queue

(of elements of type T):

inject(T)

T out() (modi�er)

T front() (non-modi�er)

FIFO (�rst in - �rst out)

Applications of queue: music �les on iTune list, shared printer,
network bu�er, etc.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Deque

Double Ended Queue (pronounced like �deck�). (of elements of
type T):

T �rst()

T last()

pushFront(T)

pushBack(T)

popFront()

popBack()

Can be viewed as a generalisation of both stack and queue

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Examples

Abstract Data Structure can be implemented in many ways
(and using various �concrete� data structures), for example:

ADS fast implementation∗ possible with:

Stack SList, Array (how?)
Queue SList, CArray (how?),(why not with Array?)
Deque DList, CArray (how?), (why not with SList?, why not with Array?)

∗ all the operations in constant time

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Amortised Complexity Analysis

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Amortised Complexity Analysis

Data structures are usually used in algorithms. A typical usage of a
data structure is a sequence of m operation calls

s = (o1, o2, ..., om) on it.

Denote the cost of the operation oi by ti (for 1 ≤ i ≤ m). Usually,
the total cost of the sequence of operations t =

∑
1≤i≤m

ti is
more important in analysis than the costs of separate operations.

Sometimes, it may be di�cult to exactly compute t (total cost), especially

if some operations are cheap and some expensive (we do not know the

sequence in advance)

In this case, an approach of amortised analysis may be useful.
Each operation oi is assigned an amortised cost ai so that:

t = O(
∑

1≤i≤m ai) (i.e. t is upper bounded by the sum of amortised

costs)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Methods for Amortised Analysis

The most general method for computing the amortised cost of
a sequence of operations on a datastructure is the method of

�potential function� (a non-negative function that has value
dependent on the current state of the data structure under
study).

Some less general (and possibly simpler) methods can be
derived from the �potential method�:

�total cost� method (we compute the total cost of m
operations)

�accounting� method (objects in data structure are
assigned �credits� to �pay� for further operations in the
sequence)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Potential Function Method

After each operation oi assign a potential function Φi to the
state i of the data structure, so that Φ0 == 0, and it is always
non-negative.

de�ne ai = ti + Φi − Φi−1

thus we have:∑
1≤i≤m ai =

∑
1≤i≤m(ti +Φi−Φi−1) =

∑
1≤i≤m ti +(Φm−Φ0)

thus, t =
∑

1≤i≤m ti ≤
∑

1≤i≤m ai

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example

Consider an abstract data structure StackM that supports
additional multiPop(int k) operation1. Assume it is
implemented in a standard way with a bounded array (of
su�ciently large size).

push(T e), pop(): real cost is O(1)

multiPop(int k): real cost is O(k)

Question:

What is the pessimistic cost of any sequence of m operations
from the above 2-element set of operations on initially empty

stack?

1multiPop(k) is equivalent to applying standard stack's pop operation
but k times in a row

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example: �potential� method on stackM

De�ne the potential function in our example as the current size
of the stack:

Φ(stackM) = sizeOf (stackM)

thus amortisedCost(push) = 1 + 1 = 2,
amortisedCost(pop) = 1− 1 = 0,
amortisedCost(multiPop(k)) = k + (−k) = 0

Thus, m operations of push, pop or multiPop on initially empty
stack, have total amortised cost ≤ 2m = O(m), so that
amortised cost of each operation is constant (O(m)/m).

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example, cont.: Total cost method

The problem is that the cost of multiPop(k) depends on the
number of elements currently on the stack.

The real cost of multiPop(k) is min(k,n), which is the number
of pop() operations executed.

Each element can be popped only once, so that the total
number of pop() operations (also those used inside multiPop)
cannot be higher than number of push() operations that is not
higher than m. Thus all the operations have constant amortised
time.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example, cont.: Accounting Method

We �pay� for some operations in advance.

Amortised cost of operation is ai = ti + crediti

Put a coin on each element pushed to the stack. (that is cost
of push is: 1 (real cost) + 1 (credit))

Then, because the real cost of any pop() is 1, we always have
enough �money� for paying any other sequence of operations

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Indexable growing sequences

Consider an abstract data structure that supports:

[.] (indexing)

push(T element) (add an element to the end of sequence)

And additionally does not have a limit on size.

How to implement it with amortised constant time complexity
of both operations?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Dynamically Growing Arrays

If full, allocate 2 times bigger and copy.

Now consider a sequence of n push operations (indexing has
constant cost)

What is the pessimistic cost of push?

What is amortised cost of push?(lets use the �global cost�
method)

ti == i if i − 1 is a power of 2 (else ti == 1)∑n
i=1 ti ≤ n +

∑blg(n)c
j=0 2j < n + 2n = 3n

Thus, the total cost of n operations is bounded by 3n so that
amoritsed cost is 3n/n = O(1)

Exercise: What happens if the array grows by constant number
k of cells instead of becoming twice bigger?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Dynamically Growing Arrays

If full, allocate 2 times bigger and copy.

Now consider a sequence of n push operations (indexing has
constant cost)

What is the pessimistic cost of push?

What is amortised cost of push?

(lets use the �global cost�
method)

ti == i if i − 1 is a power of 2 (else ti == 1)∑n
i=1 ti ≤ n +

∑blg(n)c
j=0 2j < n + 2n = 3n

Thus, the total cost of n operations is bounded by 3n so that
amoritsed cost is 3n/n = O(1)

Exercise: What happens if the array grows by constant number
k of cells instead of becoming twice bigger?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Dynamically Growing Arrays

If full, allocate 2 times bigger and copy.

Now consider a sequence of n push operations (indexing has
constant cost)

What is the pessimistic cost of push?

What is amortised cost of push?(lets use the �global cost�
method)

ti == i if i − 1 is a power of 2 (else ti == 1)∑n
i=1 ti ≤ n +

∑blg(n)c
j=0 2j < n + 2n = 3n

Thus, the total cost of n operations is bounded by 3n so that
amoritsed cost is 3n/n = O(1)

Exercise: What happens if the array grows by constant number
k of cells instead of becoming twice bigger?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Dynamically Growing Arrays

If full, allocate 2 times bigger and copy.

Now consider a sequence of n push operations (indexing has
constant cost)

What is the pessimistic cost of push?

What is amortised cost of push?(lets use the �global cost�
method)

ti == i if i − 1 is a power of 2 (else ti == 1)∑n
i=1 ti ≤ n +

∑blg(n)c
j=0 2j < n + 2n = 3n

Thus, the total cost of n operations is bounded by 3n so that
amoritsed cost is 3n/n = O(1)

Exercise: What happens if the array grows by constant number
k of cells instead of becoming twice bigger?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example: Analysis of Growing Arrays, cont.

We can also use �accounting� method.

Each push �pays� 3 units to account: 1 for putting it, 1 for
potential copying it in future, 1 for potential future copying of
one of the previous �half� of elements already in the array. After
each re-allocate, the credit is 0.

We can also use the potential method: Φi = 2n−w (where n is
the current number of elements and w is the current size)

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Dynamically Growing and Shrinking Arrays

Now, assume we want to extend the interface:

[.] (indexing)

push(T element) (add an element to the end of sequence)

popBack() (take the last element in the sequence)

And wish that if there is �too much� unused space in the array
it automatically shrinks

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Unbounded Arrays

An unbound array u containing currently n elements, is
emulated with w -element (w ≥ n) static bounded array b with
the following approach:

�rst n positions of b are used to keep the elements, last
w − n are not used

if n reaches w , a larger (say α = 2 times larger) bounded
array b′ is allocated and elements copied to b′

if n is to small (say β = 4 times smaller than w) a smaller
(say α = 2 smaller) array b′ is reallocated and elements
copied to b′

What is the (worst?,average?) time complexity of: index,
pushBack, popBack in such implementation?

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Example of Amortised Analysis on UArrays

pushBack and popBack on unbounded array with n elements
have either O(1) (constant) or O(n) (linear) cost, depending on
current size w of underlying bounded array b.

Lemma. Any sequence of m operations on (initially empty)
unbounded array (with α = 2 and β = 4) has O(m) total cost,
i.e. the amortised cost of operations of unbounded array is
constant (O(m)/m).

Corollary. pushBack and popBack operations on unbounded
array have amortised constant time complexity.

Exercise∗: Prove the Lemma. Hint: de�ne the potential
Φ(u) = max(3n − w ,w/2) and use the potential method

Exercise: Show that if β = α = 2, it is possible to construct a
sequence of m operations that have O(m2) total cost.

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Comparison of complexity of sequence operations

Operation SList DList UArray CArray meaning of '

[.] n n 1 1
size 1' 1' 1 1 without external splice
�rst 1 1 1 1
last 1 1 1 1
insert 1 1' n n only insertAfter
remove 1 1' n n only removeAfter
pushBack 1 1 1' 1' amortised
pushFront 1 1 n 1' amortised
popBack n 1 1' 1' amortised
popFront 1 1 n 1' amortised
concat 1 1 n n
splice 1 1 n n
�ndNext n n n' n' cache-e�cient

(all the values are surrounded by O(), n is the number of elements in the

sequence)

source: K.Mehlhorn, P.Sanders �Algorithms and Data Structures. The Basic Toolbox�, Springer

2008

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Summary

Linked Lists

Singly Linked Lists
Doubly Linked Lists

The Concept of Abstract Data Structure

Stack
Queue
Deque

The Concept of Amortised Complexity

�Potential function� method
�total cost� and �accounting� methods
Examples on Stack with multiPop

Unbounded Arrays

Comparison of Various Representations of Sequences

Algorithms
and Data
Structures

(c) Marcin
Sydow

Introduction

Linked Lists

Abstract
Data
Structure

Stack,
Queue,
Deque

Amortised
Analysis

Unbounded
Arrays

Summary

Thank you for your attention

	Introduction
	Linked Lists
	Abstract Data Structure
	Stack, Queue, Deque

	Amortised Analysis
	Unbounded Arrays
	Summary

