Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

Algorithms and Data Structures Graphs: basic concepts and algorithms

(c) Marcin Sydow

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Topics covered by this lecture:

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

- Graphs Reminder
- Trees
- Visiting Trees (in-order, post-order, pre-order)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Graph Traversals (BFS, DFS)

Graph Definitions: Reminder

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

- Directed graph (digraph): G = (V, E), V vertex (node) set, $E \subseteq V \times V$ - arc set (each arc is an ordered pair (u, v), where $u, v \in V$. (u - source, v - target of the arc)
- Undirected graph the only difference is that edge (undirected arc) (u, v) is an un-ordered pair, u, v ∈ V.
- Another variant: bidirected graphs.
- Self-loops usually not allowed. If multiple arcs(edges) possible - multi-graph. Generalisation: arc are not pairs, but n-tuples - hypergraph.
- e = (u, v) is incident to u, v, and u, v are adjacent.
- In-degree, out-degree of a node (directed); degree (undirected)
- sum of degrees is always even

Graph Definitions: Reminder (2)

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

- Subgraph $G' \subseteq G$.
- Subgraph G' induced by a subset of nodes $V' \subset V$: $G' = (V', E \cap (V' \times V'))$
- Weights on arcs/edges ($w: E \rightarrow R$)
- Path (v₀,..., v_k) of length k. Simple path: nodes do not repeat.
- Cycle (path: $v_0 == v_k$). Hamiltonian cycle, Euler Cycle.
- Connected graph (there is a path between any pair of nodes), weakly connected: path can ignore the arc direction
- strongly connected component (SCC): a maximum strongly connected subgraph

ション ふゆ く 山 マ チャット しょうくしゃ

SCCs partition V (no intersections)

Number of edges

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

- if |V| == n and |E| = m then $m = O(n^2)$
- by graph size we usually mean m + n
- if $m = o(n^2)$ the graph is called **sparse**
- full graph (has all possible edges): maximum number of edges
- Undirected full graph has exactly (n-1)n/2 edges
- empty graph no edges (only nodes)
- how many edges a connected graph must have at least?

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Number of edges

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

- if |V| == n and |E| = m then $m = O(n^2)$
- by graph size we usually mean m + n
- if $m = o(n^2)$ the graph is called **sparse**
- full graph (has all possible edges): maximum number of edges
- Undirected full graph has exactly (n-1)n/2 edges
- empty graph no edges (only nodes)
- how many edges a connected graph must have at least? n-1

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Trees: Reminder

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

- Undirected tree: a connected graph without cycles (acyclic)
- lacksquare undirected tree \Leftrightarrow connected and has exactly (n-1) edges
- leaf, interior node
- Forest: an acyclic graph (not necessarily connected)
- rooted tree: ancestor, descendant, child, sibling, subtree,
- height (of tree or node): maximum distance to a leaf, depth (of node) distance to the root
- ordered tree (rooted tree with order on children)
- binary tree (ordered tree with max of 2 children of each node)
- DAG: Directed Acyclic Graph

How to represent graphs in computer?

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Tree:

Graph Traversal

Summary

Various graph representations are possible. The choice depends on which *operations* should be fast and how much memory is available.

The most important operations on graphs:

node/edge information access (weights, existence, etc.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- navigation (typically: list of all outgoing arcs/edges)
- update (adding/removing nodes or edges/arcs)
- input/construction/conversion/output

Computer Representations of Graphs

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

- unordered sequence of edges (fast update, good as input/output format)
- adjacency matrices (extremely fast access, much memory, very slow extension; can be adapted to sparse graphs)
- adjacency arrays (good for static graphs)
- adjacency lists (least memory, easy update, relatively easy navigation)

Except few cases (which?), translation from one representation to another is linear (fast).

Algebraic Graph Theory

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversa

Summary

Many interesting connections between linear algebra and graphs, for example:

A - adjacency matrix: $A_{i,j}^k ==$ how many paths from i to j of length exactly k

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Algebraic Graph Theory: studies such connections between matrices and graphs, etc.

Binary Tree

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

A rooted tree - some node is distinguished and is called root.

(On picture, the root is at the top). Case: complete tree.

A binary tree is a rooted tree, and each node has maximum of 2 nodes, which are distinguishable (left and right).

A binary tree can be represented as a linked structure:

- each node has links to its children
- the only access to the whole tree is a pointer to the root

Traversing Trees

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

A general scheme:

```
traverse(v):
  previsit(v)
  for each child w of v: traverse(w)
  postvisit(v)
```

If postvisit is empty we call it pre-order, if previsit is empty – post-order.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Post-order can be used to compute height, pre-order for computing depth in trees.

Visiting Binary Trees Algorithms and Data Structures In a special case of binary tree we have 3 important variants: ■ in-order Visiting pre-order Binary Trees post-order

in-order order Algorithms and Data Structures inorderVisit(BinTree currentNode){ if currentNode == null return inorderVisit(currentNode.left) Visiting visit(currentNode) Binary Trees inorderVisit(currentNode.right) }

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

	pre-order order
Algorithms and Data Structures (c) Marcin Sydow Reminder: Graphs Graph Repre- sentation Visiting Binary Trees Graph Traversal Summary	<pre>preorderVisit(BinTree currentNode){ if currentNode == null return visit(currentNode) preorderVisit(currentNode.left) preorderVisit(currentNode.right) }</pre>

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

	post-order order
Algorithms and Data Structures (c) Marcin Sydow Reminder: Graphs Graph Repre- sentation Visiting Binary Trees Graph Traversal Summary	<pre>postorderVisit(BinTree currentNode){ if currentNode == null return postorderVisit(currentNode.left) postorderVisit(currentNode.right) visit(currentNode) }</pre>

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

Example: expression trees

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

Evaluate an expression: 2, +, 3, /, 6

A *parser* first transforms it to an **expression tree**. The root is the "last" operator, numbers are in leaves, interior nodes are the other operators.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Now, the evaluation is very easy:

```
eval(r):
    if isLeaf(r) return number(r)
    a = eval(leftChild(r))
    b = eval(rightChild(r))
    return a operator(r) b
```

Example: how to avoid recursion with a stack?

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Algorithms and Data Structures in-order in binary trees: stack = empty; v = root 1: if (v.left != null): stack.push(v) v = v.leftgoto 1 2: Visiting Bin ary Trees visit(v) if (v.right != null): v = v.right goto 1 if (!stack.empty()) v = stack.pop() goto 2

Graph Traversal: a General Scheme

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

Systematic traverse through the whole graph: start visiting from a single node and moving along edges from already visited nodes, visit each node and edge available from s exactly once

In each iteration: select next already visited node and visit all its outgoing, non-visited edges, and non-visited end-nodes

In the above general scheme, by specifying the way of selecting the next visited node we obtain various refinements of the algorithm

BFS and DFS - Important Variants of Graph Traversal

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

Two particularly important graph traversals:

- BFS (breadth-first search) (next nodes to visit are kept on queue)
- DFS (depth-first search) (next nodes to visit are kept on stack)

Both produce resulting forest and (as a side product) classify each edge into one of four categories:

- tree (T) edge (edge of the resulting forest)
- forward (F) edge (in the same branch of the forest)
- backward (B) (as above but counter-directed)
- cross (C) (between two different branches or trees)

Breadth-first search (BFS)

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Repressentation

Visiting Binary Trees

Graph Traversal

Summary

```
graph G<V,E>; s - start node; d - distance from s, p - parent
```

```
for-each node in V:
    node.color = white; u.d = infinity; u.p = null
```

```
s.color = gray; s.d = 0; queue.in(s)
```

```
while(!queue.empty()){
    currNode = queue.out()
```

```
process(currNode)
```

```
for-each node in currNode.adjList:
    if (node.color == white):
        queue.in(node)
        node.color = gray
        node.d = currNode.d + 1
        node.p = currNode
currNode.color = black
```

currNode.color = bl

}

Properties of BFS

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversal

Summary

- O(m + n) (dom. op.: set or update distance)
- the resulting tree (recorded in the parent array) specifies the shortest paths from s to other nodes

Depth-first search (DFS) – a Recursive Version

```
d – discovery time; f – finishing time
Algorithms
Structures
            DFS(){
               time = 0
               for-each v in V:
                  v.color = white; v.parent = null
               for-each v in V:
                  if (v.color == white):
                     recursiveDFS(v)
             }
            recursiveDFS(GraphNode v){
               v.d = time++
               v.color = gray
               process(v)
               for-each u in v.adjList:
                  if (u.color == white):
                     u.parent = v
                     recursiveDFS(u)
               v.color = black
               v.f = time++
            }
```

and Data

Graph

Traversal

white - before d is set; gray between d is set and f is set; black after f is set

Properties of DFS

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversal

Summary

- O(m + n) time complexity
- DFS can be obtained by modification of BFS Queue should be replaced by Stack
- for any u, v ∈ V either the intervals (u.d, u.f), (v.d, v.f) are disjoint or one is completely included in the other (so called: "parentheses" structure)
- when DFS first visits an edge (u, v): T if v white, B if v gray, F or C if v black
- undirected DFS: only T or B edges may happen (no C or F)
- DAG DFS: only T may happen (a good test for acyclicity)

Applications of DFS

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversal

Summary

DFS has many important applications, for example:

- directed: topological sort
- directed: finding SCCs
- undirected: finding BCC (*bi-connected* components: maximum subsets of edges, so that any 2 edges in BCC lie on a common simple cycle; *bridges* or *articulation* points connect different BCCs; bridge: an edge which removed increases the number of SCCs; articulation point - a node with such property)

Topological Sort

Algorithms and Data Structures

(c) Marcin Sydow

Reminder Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

- G a DAG. "Sort" the nodes so that all the edges point from left to right
- application in scheduling: (V set of tasks, (u, v) task u must be done before v)

Topological Sort:

- **1** compute finishing times $v.f, v \in V$ with DFS on G
- **2** sort decreasingly by v.f

Remark: If cycles are present ideal sorting impossible, but it minimises the "backward" edges

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Computing SCCs

Algorithms and Data Structures

(c) Marcin Sydow

Reminder: Graphs

Graph Representation

Visiting Binary Trees

Graph Traversal

Summary

Application of DFS to compute strongly connected components:

- **1** compute finishing times $v.f, v \in V$ with DFS on G
- 2 "reverse" the arcs in G (transposed adjacency matrix)
- In DFS on the reversed graph; apply decreasing order of v.f in the main loop of DFS

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

4 result: separate trees == separate SCCs

Questions/Problems:

Algorithms and Data Structures

- (c) Marcin Sydow
- Reminder: Graphs
- Graph Repre sentation
- Visiting Binary Trees
- Graph Traversal
- Summary

- all basic graph definitions
- trees (definitions)
- graph computer representations (differences/advantages, etc.)

- binary trees and visiting them: in-order, pre-order, post-order
- classification of edges in BFS and DFS
- BFS + properties
- DFS + properties
- compare DFS and BFS
- Topological Sort (high-level idea)
- (*) Other applications of DFS

AI	goı	riti	ıms
a	n d	D	ata
St	rin.	ctu	ires

(c) Marcin Sydow

Reminder Graphs

Graph Repre sentation

Visiting Binary Trees

Graph Traversa

Summary

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?