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Topics covered by this lecture:

Dictionary

Hashtable

Binary Search Tree (BST)

AVL Tree

Self-organising BST
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Dictionary

Dictionary is an abstract data structure that supports the
following operations:

search(K key)
(returns the value associated with the given key)1

insert(K key, V value)

delete(K key)

Each element stored in a dictionary is identi�ed by a key of type
K. Dictionary represents a mapping from keys to values.

Dictionaries have numerous applications

1Search can return a special value if key is absent in dictionary
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Examples

contact book
key: name of person; value: telephone number

table of program variable identi�ers
key: identi�er; value: address in memory

property-value collection
key: property name; value: associated value

natural language dictionary
key: word in language X; value: word in language Y

etc.



Algorithms
and Data
Structures

Marcin
Sydow

Dictionary

Hashtables

Dynamic
Ordered Set

BST

AVL

Self-
organising
BST

Summary

Implementations

simple implementations: sorted or unsorted sequences,
direct addressing

hash tables

binary search trees (BST)

AVL trees

self-organising BST

red-black trees

(a,b)-trees (in particular: 2-3-trees)

B-trees

and other ...
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Simple implementations of Dictionary

Elements of a dictionary can be kept in a sequence (linked list
or array):

(data size: number of elements (n); dom. op.: key comparison)

unordered:
search: O(n); insert: O(1); delete: O(n)

ordered array:
search: O(log n); insert O(n); delete O(n)

ordered linked list:
search: O(n); insert O(n); delete: O(n)

(keeping the sequence sorted does not help in this case!)

Space complexity: Θ(n)
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Direct Addressing

Assume potential keys are numbers from some universe U ⊆ N.

An element with key k ∈ U can be kept under index k in a
|U|-element array:

search: O(1); insert: O(1); delete: O(1)

This is extremely fast! What is the price?

n - number of elements currently kept. What is space
complexity?

space complexity: O(|U|) (|U| can be very high, even if we keep
a small number of elements!)

Direct addressing is fast but waists a lot of memory (when
|U| >> n)
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Hashtables

The idea is simple.

Elements are kept in an m-element array [0, ...,m − 1], where
m << |U|

The index of key is computed by fast hash function:

hashing function: h : U → [0..m − 1]

For a given key k its position is computed by h(k) before each
dictionary operation.
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Hashing Non-integer Keys

What if the type of key is not integer?

Additional step is needed: before computing the hash function,
the key should be transformed to integer.

For example: key is a string of characters, the transformation
should depend on all characters.

This transforming function should have similar properties to
hashing function.
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Hash Function

Important properties of an ideal hash function
h→ [0, ...,m − 1]:

uniform load on each index 0 ≤ i < m (i.e. each of m
possible values is equally likely for a random key)

fast (constant time) computation

di�erent values even for very similar keys

Example:

h(k) = k mod m (usually m is a prime number)

Hashing always has to deal with collisions (when h(k) == h(j)
for two keys k 6= j)
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Collisions

Assume a new key k comes on position h(k) that is not free.

Two common ways of dealing with collisions in hash tables are:

k is added to a list l(h(k)) kept at position h(k):
(chaining method)

other indexes are scanned (in a repeatable way) until a free
index is found: (�open hashing�)
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Chain Method

n - number of elements kept
compute h(k): O(1)

insert: compute h(k) and add new element to the list at
h(k): O(1)

�nd: compute h(k) and scan the list l(h(k)) to return the
element: O(1 + |l(h(k))|)
delete: compute h(k), scan l(h(k)) to remove the element:
O(1 + |l(h(k))|)

Complexity depends on the length of list l(h(k)).

Note: worst case (for |l(h(k))| == n) needs Θ(n) comparisons
(worst case is not better than in naive implementation!)



Algorithms
and Data
Structures

Marcin
Sydow

Dictionary

Hashtables

Dynamic
Ordered Set

BST

AVL

Self-
organising
BST

Summary

Average Case Analysis of Chain Method

If hash function satis�es uniform load assumption, chain
method guarantees average of O(1 + α) comparisons for all
dictionary operations, where α = n/m (load factor). Thus, if
m = O(n) chain methods results in average O(1) time for all
dictionary operations.

Proof: Assume a random key k to be hashed. Let X denote random variable
representing the length of a list l(h(k)). Any operation needs constant time for
computing h(k) and then linearly scans the list l(h(k)), and thus costs
O(1 + E [X ]). Let S be the set of elements kept in hashtable, and for e ∈ S let
Xe denote indicator random variable such that Xe == 1 i� h(k) == h(e) and 0
otherwise2. We have X =

P
e∈S Xe . Now,

E [X ] = E [
X
e∈S

Xe ] =
X
e∈S

E [Xe ] =
X
e∈S

P(Xe == 1) = |S |
1

m
=

n

m

Thus O(1 + E [X ]) = O(1 + α).

2Can be denoted shortly as: Xe = bh(k) == h(e)e
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Universal Hashing

Family H of hash functions into range 0, ...,m − 1 is called
c-universal, for c > 0, if for randomly chosen hash function
h ∈ H any two distinct keys i , j collide with probability:

P(h(i) == h(j)) ≤ c/m

Family H is called universal if c == 1

To avoid �malicious� data, hash function can be �rst randomly
picked from a c-universal hashing family.

If c-universal hashing family is used in chain method, average
time of dictionary operations is O(1 + cn/m)
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Open Hashing

In open hashing, there is exactly one element on each position.
Consider insert operation: if, for a new k , h(k) is already in
use, the entries are scanned in a speci�ed (and repeatable)
order π(k) = (h(k , 0), h(k , 1), ..., h(k ,m − 1)) until a free plase
is found. find is analogous, delete additionally needs to
restore the hash table after removing the element.

linear: h(k , i) = (h(k) + i)mod m

(problem: elements tend to group (�primary� clustering)

quadratic: h(k , i) = (h(k) + c1i + c2i
2)mod m

(problem: �secondary� clustering: if the �rst positions are
equal, all the other are still the same)

re-hashing: h(k , i) = (h1(k) + ih2(k))mod m (h1, h2 should

di�er, e.g.: h1(k) = k mod m, h2(k) = 1 + (k mod m′),m′ = m − 1

(here, the order permutations are �more random�)
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Average Case Analysis of Open Hashing

In open hashing, under assumption that all scan orders are
equally probable, �nd have guaranteed average number of
comparisons:

1
1−α if the key to be found is absent

1
α ln

1
1−α + 1

α if the key to be found is present

( α = n/m < 1 (load factor))

In open hashing, the worst-case number of comparisons is
linear. In addition it is necessary that n < m. When n

approaches m open hashing becomes as slow as on unordered
linear sequence (naive implementation of dictionary).



Algorithms
and Data
Structures

Marcin
Sydow

Dictionary

Hashtables

Dynamic
Ordered Set

BST

AVL

Self-
organising
BST

Summary

(*) Perfect Hashing

Previous methods guarantee expected constant time of
dicitionary operations.

Perfect hashing is a scheme that guarantees worst case constant
time.

It is possible to construct a perfect hashing function, for a given
set of n elements to be hashed, in expected (i.e. average) linear
time: O(n)
(the construction can be based on some family of 2− universal hash

functions (Fredman, Komlos, Szemeredi 1984))



Algorithms
and Data
Structures

Marcin
Sydow

Dictionary

Hashtables

Dynamic
Ordered Set

BST

AVL

Self-
organising
BST

Summary

Dynamic Ordered Set

Abstract data structure that is an extension of the dictionary:
(and we assume that type K is linearly ordered)

search(K key)

insert(K key, V value)

delete(K key)

minimum()

maximum()

predecessor(K key)

successor(K key)

Hash table is a very good implementation of the �rst three
operations (dictionary operations) however does not e�ciently
support the new four operations concerning the order of the
keys.
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Binary Search Tree

BST is a binary tree, where keys (contained in the tree nodes)
satisfy the following condition (so called �BST order�):

For each node, the key contained in this node is higher or equal
than all the keys contained in the left subtree of this node and
lower or equal than all keys in its right subtree

Where is the minimum key? Where is the maximum key?
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Search Operation

searchRecursive(node, key): \\ called with node == root

if ((node == null) or (node.key == key)) return node

if (key < node.key) return search(node.left, key)

else return search(node.right, key)

searchIterative(node, key): \\ called with node == root

while ((node != null) and (node.key != key))

if (key < node.key) node = node.left

else node = node.right

return node
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Minimum and Maximum

minimum(node): \\ called with node == root

while (node.left != null) node = node.left

return node

maximum(node): \\ called with node == root

while (node.right != null) node = node.right

return node

successor(node):

if (node.right != null) return minimum(node.right)

p = node.parent

while ((p != null) and (node == p.right)

node = p

p = p.parent

return p

(predecessor is analogous to successor)
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Example insert Implementation

insert(node, key):

if (key < node.key) then

if node.left == null:

n = create new node with key

node.left = n

else: insert(node.left, key)

else: // (key >= node.key)

if node.right == null:

n = create new node with key

node.right = n

else: insert(node.right, key)
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Example delete Implementation

procedure delete(node, key)

if (key < node.key) then

delete(node.left, key)

else if (key > node.key) then

delete(node.right, key)

else begin { key = node.key

if node is a leaf then

deletesimple(node)

else

if (node.left != null) then

find x = the rightmost node in node.left

node.key:=x.key;

delete1(x);

else

proceed analogously for node.right

(we are looking for the leftmost node now)
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Example of a helper delete1 Implementation

// delete1: for nodes having only 1 son

procedure delete1(node)

begin

subtree = null

parent = node.parent

if (node.left != null)

subtree = node.left

else

subtree = node.right

if (parent == null)

root = subtree

else if (parent.left == node) // node is a left son

parent.left = subtree

else // node is a right son

parent.right = subtree
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BST: Average Case Analysis

For simplicity assume that keys are unique.

Assume that every permutation of n elements inserted to BST
is equally likely3 it can be proved that average height of BST is
O(logn).

Two cases for operations concerning a key k :

k is not present in BST: in this case the complexities are
bounded by average height of a BST
k is present in BST: in this case the complexities of
operations are bounded by average depth of a node in
BST

An expected height of a random-permutation model BST can
be proved to be O(logn) by analogy to QuickSort (the proof is
omitted in this lecture)

3If we assume other model: i.e. that every n-element BST is equally

likely, the average height is Θ(
√
n). This model seems to be less natural,

though.
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(*)Average Depth of a Node in BST
(random permutation model)

We will explain that the average depth is O(logn) (formal proof is
omitted but it can be easily derived from the explanation)
For a sequence of keys 〈ki 〉 inserted to a BST de�ne:
Gj = {ki : 1 ≤ i < j and kl > ki > kj for all l < i such that kl > kj}
Lj = {ki : 1 ≤ i < j and kl < ki < kj for all l < i such that kl < kj}
Observe, that the path from root to kj consists exactly from Gj ∪ Lj

so that the depth of kj will be d(kj) = |Gj |+ |Lj |
Gj consists of the keys that arrived before kj and are its direct
successors (in current subsequence). The i − th element in a random
permutation is a current minimum with probability 1/i . So that the
expected number of updating minimum in n − element random
permutation is

∑n

i=1
1/i = Hn = O(logn). Being a current minimum

is necessary for being a direct successor. Analogous explanations hold
for Lj . So that the upper bound holds: d(kj) = O(logn).
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BST: Complexities of Operations

data size: number of elements in dictionary (n)
dominating operation: comparison of keys

Average time complexities on BST are:

search Θ(logn)

insert Θ(logn)

delete Θ(logn)

minimum/maximum Θ(logn)

successor/predecessor Θ(logn)

The worst-case complexities of operations on BST is O(n).
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AVL tree (Adelson-Velskij, Landis)

AVL is the simplest tree data structure for ordered dynamic
dictionary to guarantee O(logn) worst-case height.

AVL is de�ned as follows:

AVL is a BST with the additional condition: for each node the
di�erence of height of its left and right sub-tree is not greater
than 1.
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Maximum Height of an AVL Tree

Let Th be a minimum number of nodes in an AVL tree that has
height h.

Observe that:

T0 = 1, T1 = 2

Th = 1 + Th−1 + Th−2
(consider left and right subtrees of the root)

Thus: Th ≥ Fh (Fibonacci number). Remind: h-th Fibonacci number
has exponential growth (in h). Since the minimum number of nodes
in AVL has at least exponential growth in height of the tree (h), the
height of AVL has at most logarithmic growth in the number of
nodes.

Thus, the height of n-element AVL tree has worst-case guarantee of

O(logn).
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Implementation of operations on AVL

The same as on BST but:

with each node a balance factor (bf ) is kept (= the
di�erence in heights between left and right subtree of the
given node)

after each operation, bf is updated for each a�ected node

if, after a modifying operation, the value of bf is outside of
the set of values {-1, 0, 1} for some nodes - the rotation
operations are called (on these nodes) to re-balance the
tree.
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AVL Rotations

All the dictionary operations on AVL begin in the same way as
in the BST. However, after each modifying operation on this
tree the bf values are re-computed (bottom-up)

Moreover, if after any modifying operation any bf is 2 or -2, a
special additional operation called rotation is executed for the
node.

There are 2 kinds of AVL rotations: single and double and both
have 2 mirror variants: left and right.

Each rotation has O(1) time complexity.

The rotations are de�ned so that the height of the subtree
rooted at the �rotated� node is preserved. Why is it important?
(among others) due to this |bf| cannot exceed 2 after any
operation/rotation on a valid AVL tree.
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AVL: Worst-case Analysis of Operations

To summarise:

each rotation has O(1) complexity

(as in BST) the complexities of operations are bounded by
the height of the tree

an n-element AVL tree has at most logarithmic height

Thus: all dictionary operations have guaranteed O(logn)
worst-case complexities on AVL.

Note: the maximum number of rotations after a single delete
operation could be logarithmic on n, though. 4

4This may happen on a Fibonacci tree. To see example: Donald Knuth,

�The Art of Computer Programming�, vol. 3: �Sorting�
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Self-organising BST (or Splay-trees)

Guarantee amortised O(logn) complexity for all ordered dictionary
operations. More precisely, any sequence of m operations will have
total complexity of O(mlogn).

Idea: each operation is implemented with a helper splay(k)
operation, where k is a key:

splay(k): by a sequence of rotations bring to the root either k
(if it is present in the tree) or its direct successor or predecessor

insert(k): splay(k) (to bring successor (predecessor) k ′ of k to
the root), then make k ′ the right (left) son of k

delete(k): splay(k) (k becomes the root), remove k (to obtain
two separete subtrees), splay(k) again on the left (right) subtree
(to bring predecessor (successor) k ′ of k to the root), make k ′

of the right (left) orphaned subtree.

It can be proved that the insert and delete operations (described

above) have amortised logarithmic time complexities.
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Large on-disk dictionaries

There are special data structures designed for implementing
dictionary in case it does not �t to memory (mostly kept on
disk).

Example: B-trees (and variants). The key idea: minimize the
disk read/write activity (node should �t in a single disk block
size)

Used in DB implementations (among others).
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Dictionaries Implementations: Brief Summary of the
Lecture

Hashtables provide very fast operations but do not support
ordering-based operations (as successor, minimum, etc.)

BST is the simplest implementation of ordered dictionary
that guarantees average logarithmic complexities, but have
linear pessimistic complexities

AVL is an extension of BST that guarantees even
worst-case logarithmic complexities through rotations.
Additional memory is needed for bf

self-organising BST also guarantees worst-case logarithmic
complexities through splay operation (based on rotations),
without any additional memory (compared to BST).
Interesting property: automatic adaptation to non-uniform
access frequencies.

B-trees, AB-trees, B+-trees, etc. - large, on-disk structures
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Questions/Problems:

Dictionary

Hashing

Chain Method
Open Hashing
Universal Hashing
Perfect Hashing

Ordered Dynamic Set

BST

AVL

Self-organising BST

Comparison of di�erent implementations
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Thank you for attention
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