Algorithms and Data Structures

Dictionaries

Marcin Sydow

Web Mining Lab
PJWSTK
Topics covered by this lecture:

- Dictionary
- Hashtable
- Binary Search Tree (BST)
- AVL Tree
- Self-organising BST
Dictionary is an abstract data structure that supports the following operations:

- search(K key)
 (returns the value associated with the given key)
- insert(K key, V value)
- delete(K key)

Each element stored in a dictionary is identified by a key of type K. Dictionary represents a mapping from keys to values.

Dictionaries have numerous applications.

1 Search can return a special value if key is absent in dictionary.
Examples

- contact book
 key: name of person; value: telephone number

- table of program variable identifiers
 key: identifier; value: address in memory

- property-value collection
 key: property name; value: associated value

- natural language dictionary
 key: word in language X; value: word in language Y

- etc.
Implementations

- simple implementations: sorted or unsorted sequences, direct addressing
- hash tables
- binary search trees (BST)
- AVL trees
- self-organising BST
- red-black trees
- (a,b)-trees (in particular: 2-3-trees)
- B-trees
- and other ...
Simple implementations of Dictionary

Elements of a dictionary can be kept in a sequence (linked list or array):

(data size: number of elements (n); dom. op.: key comparison)

- unordered:
 search: $O(n)$; insert: $O(1)$; delete: $O(n)$

- ordered array:
 search: $O(\log n)$; insert $O(n)$; delete $O(n)$

- ordered linked list:
 search: $O(n)$; insert $O(n)$; delete: $O(n)$

(keeping the sequence sorted does not help in this case!)

Space complexity: $\Theta(n)$
Direct Addressing

Assume potential keys are numbers from some universe $U \subseteq \mathbb{N}$.

An element with key $k \in U$ can be kept under index k in a $|U|$-element array:

search: $O(1)$; insert: $O(1)$; delete: $O(1)$

This is extremely fast! What is the price?
Direct Addressing

Assume potential keys are numbers from some universe $U \subseteq \mathbb{N}$.

An element with key $k \in U$ can be kept under index k in a $|U|$-element array:

search: $O(1)$; insert: $O(1)$; delete: $O(1)$

This is extremely fast! What is the price?

n - number of elements currently kept. What is space complexity?
Direct Addressing

Assume potential keys are numbers from some universe $U \subseteq N$.

An element with key $k \in U$ can be kept under index k in a $|U|$-element array:

- search: $O(1)$; insert: $O(1)$; delete: $O(1)$

This is extremely fast! What is the price?

n - number of elements currently kept. What is space complexity?

space complexity: $O(|U|)$ ($|U|$ can be very high, even if we keep a small number of elements!)

Direct addressing is fast but waists a lot of memory (when $|U| >> n$)
The idea is simple.

Elements are kept in an m-element array $[0, ..., m - 1]$, where $m << |U|$

The index of key is computed by fast hash function:

hashing function: $h : U \rightarrow [0..m - 1]$

For a given key k its position is computed by $h(k)$ before each dictionary operation.
Hashing Non-integer Keys

What if the type of key is not integer?

Additional step is needed: before computing the hash function, the key should be transformed to integer.

For example: key is a string of characters, the transformation should depend on all characters.

This transforming function should have similar properties to hashing function.
Important properties of an ideal hash function $h \rightarrow [0, ..., m - 1]$:

- **uniform load** on each index $0 \leq i < m$ (i.e. each of m possible values is equally likely for a random key)
- fast (constant time) computation
- different values even for very similar keys

Example:

- $h(k) = k \mod m$ (usually m is a prime number)

Hashing always has to deal with collisions (when $h(k) = h(j)$ for two keys $k \neq j$)
Collisions

Assume a new key k comes on position $h(k)$ that is not free.

Two common ways of dealing with collisions in hash tables are:

- k is added to a list $l(h(k))$ kept at position $h(k)$: (chaining method)
- other indexes are scanned (in a repeatable way) until a free index is found: ("open hashing")
Chain Method

- number of elements kept

compute $h(k)$: $O(1)$

- insert: compute $h(k)$ and add new element to the list at $h(k)$: $O(1)$

- find: compute $h(k)$ and scan the list $l(h(k))$ to return the element: $O(1 + |l(h(k))|)$

- delete: compute $h(k)$, scan $l(h(k))$ to remove the element: $O(1 + |l(h(k))|)$

Complexity depends on the length of list $l(h(k))$.

Note: worst case (for $|l(h(k))| = n$) needs $\Theta(n)$ comparisons (worst case is not better than in naive implementation!)
Average Case Analysis of Chain Method

If hash function satisfies *uniform load* assumption, chain method guarantees **average** of $O(1 + \alpha)$ comparisons for all dictionary operations, where $\alpha = n/m$ (load factor). Thus, if $m = O(n)$ chain methods results in average $O(1)$ time for all dictionary operations.

Proof: Assume a random key k to be hashed. Let X denote random variable representing the length of a list $l(h(k))$. Any operation needs constant time for computing $h(k)$ and then linearly scans the list $l(h(k))$, and thus costs $O(1 + E[X])$. Let S be the set of elements kept in hashtable, and for $e \in S$ let X_e denote *indicator* random variable such that $X_e = 1$ iff $h(k) = h(e)$ and 0 otherwise2. We have $X = \sum_{e \in S} X_e$. Now,

$$E[X] = E[\sum_{e \in S} X_e] = \sum_{e \in S} E[X_e] = \sum_{e \in S} P(X_e = 1) = |S| \frac{1}{m} = \frac{n}{m}$$

Thus $O(1 + E[X]) = O(1 + \alpha)$.

2Can be denoted shortly as: $X_e = \lfloor h(k) = h(e) \rfloor$
Family H of hash functions into range $0, ..., m - 1$ is called \textit{c-universal}, for $c > 0$, if for randomly chosen hash function $h \in H$ any two distinct keys i, j collide with probability:

$$P(h(i) == h(j)) \leq c/m$$

Family H is called \textit{universal} if $c == 1$

To avoid “malicious” data, hash function can be first randomly picked from a c-universal hashing family.

If c-universal hashing family is used in chain method, average time of dictionary operations is $O(1 + cn/m)$
Open Hashing

In open hashing, there is exactly one element on each position. Consider the insert operation: if, for a new \(k \), \(h(k) \) is already in use, the entries are scanned in a specified (and repeatable) order \(\pi(k) = (h(k, 0), h(k, 1), ..., h(k, m - 1)) \) until a free place is found. \texttt{find} is analogous, delete additionally needs to restore the hash table after removing the element.

- **linear**: \(h(k, i) = (h(k) + i) \mod m \)

 (problem: elements tend to group (“primary” clustering))

- **quadratic**: \(h(k, i) = (h(k) + c_1 i + c_2 i^2) \mod m \)

 (problem: “secondary” clustering: if the first positions are equal, all the other are still the same)

- **re-hashing**: \(h(k, i) = (h_1(k) + ih_2(k)) \mod m \) (\(h_1, h_2 \) should differ, e.g.: \(h_1(k) = k \mod m, h_2(k) = 1 + (k \mod m'), m' = m - 1 \))

 (here, the order permutations are “more random”)

```
Average Case Analysis of Open Hashing

In open hashing, under assumption that all scan orders are equally probable, \textit{find} have guaranteed average number of comparisons:

- \( \frac{1}{1-\alpha} \) if the key to be found is absent

- \( \frac{1}{\alpha} \ln \frac{1}{1-\alpha} + \frac{1}{\alpha} \) if the key to be found is present

\( (\alpha = n/m < 1 \text{ (load factor)}) \)

In open hashing, the \textbf{worst-case} number of comparisons is linear. In addition it is necessary that \( n < m \). When \( n \) approaches \( m \) open hashing becomes as slow as on unordered linear sequence (naive implementation of dictionary).
(*) Perfect Hashing

Previous methods guarantee *expected* constant time of dictionary operations.

*Perfect hashing* is a scheme that guarantees *worst case* constant time.

It is possible to construct a perfect hashing function, for a given set of $n$ elements to be hashed, in expected (i.e. average) linear time: $O(n)$

(the construction can be based on some family of $2 – universal$ hash functions (Fredman, Komlos, Szemeredi 1984))
Dynamic Ordered Set

Abstract data structure that is an extension of the dictionary: (and we assume that type K is linearly ordered)

- search(K key)
- insert(K key, V value)
- delete(K key)
- minimum()
- maximum()
- predecessor(K key)
- successor(K key)

Hash table is a very good implementation of the first three operations (dictionary operations) however does not efficiently support the new four operations concerning the order of the keys.
BST is a binary tree, where keys (contained in the tree nodes) satisfy the following condition (so called “BST order”):

For each node, the key contained in this node is higher or equal than all the keys contained in the left subtree of this node and lower or equal than all keys in its right subtree

Where is the minimum key? Where is the maximum key?
Search Operation

searchRecursive(node, key): \n  if ((node == null) or (node.key == key)) return node
  if (key < node.key) return search(node.left, key)
  else return search(node.right, key)

searchIterative(node, key): \n  while ((node != null) and (node.key != key))
    if (key < node.key) node = node.left
    else node = node.right
  return node
Minimum and Maximum

minimum(node): \ \ called with node == root
    while (node.left != null) node = node.left
    return node

maximum(node): \ \ called with node == root
    while (node.right != null) node = node.right
    return node

successor(node):
    if (node.right != null) return minimum(node.right)
    p = node.parent
    while ((p != null) and (node == p.right)
        node = p
    p = p.parent
    return p

(predecessor is analogous to successor)
Example insert Implementation

```python
insert(node, key):
 if (key < node.key) then
 if node.left == null:
 n = create new node with key
 node.left = n
 else: insert(node.left, key)
 else: // (key >= node.key)
 if node.right == null:
 n = create new node with key
 node.right = n
 else: insert(node.right, key)
```
procedure delete(node, key)
  if (key < node.key) then
    delete(node.left, key)
  else if (key > node.key) then
    delete(node.right, key)
  else begin { key = node.key
    if node is a leaf then
      deletesimple(node)
    else
      if (node.left != null) then
        find x = the rightmost node in node.left
        node.key:=x.key;
        delete1(x);
      else
        proceed analogously for node.right
        (we are looking for the leftmost node now)
Example of a helper delete1 Implementation

// delete1: for nodes having only 1 son

procedure delete1(node)
begin
    subtree = null
    parent = node.parent
    if (node.left != null)
        subtree = node.left
    else
        subtree = node.right
    if (parent == null)
        root = subtree
    else if (parent.left == node) // node is a left son
        parent.left = subtree
    else // node is a right son
        parent.right = subtree
BST: Average Case Analysis

For simplicity assume that keys are unique.

Assume that every permutation of $n$ elements inserted to BST is equally likely\(^3\) it can be proved that average height of BST is $O(\log n)$.

Two cases for operations concerning a key $k$:

- $k$ is not present in BST: in this case the complexities are bounded by average height of a BST
- $k$ is present in BST: in this case the complexities of operations are bounded by average depth of a node in BST

An expected height of a random-permutation model BST can be proved to be $O(\log n)$ by analogy to QuickSort (the proof is omitted in this lecture).

\(^3\)If we assume other model: i.e. that every $n$-element BST is equally likely, the average height is $\Theta(\sqrt{n})$. This model seems to be less natural, though.
We will explain that the average depth is $O(\log n)$ (formal proof is omitted but it can be easily derived from the explanation). For a sequence of keys $\langle k_i \rangle$ inserted to a BST define:

$G_j = \{k_i : 1 \leq i < j \text{ and } k_i > k_j \text{ for all } l < i \text{ such that } k_l > k_j \}$

$L_j = \{k_i : 1 \leq i < j \text{ and } k_i < k_j \text{ for all } l < i \text{ such that } k_l < k_j \}$

Observe, that the path from root to $k_j$ consists exactly from $G_j \cup L_j$ so that the depth of $k_j$ will be $d(k_j) = |G_j| + |L_j|$

$G_j$ consists of the keys that arrived before $k_j$ and are its direct successors (in current subsequence). The $i-th$ element in a random permutation is a current minimum with probability $1/i$. So that the expected number of updating minimum in $n-element$ random permutation is $\sum_{i=1}^{n} 1/i = H_n = O(\log n)$. Being a current minimum is necessary for being a direct successor. Analogous explanations hold for $L_j$. So that the upper bound holds: $d(k_j) = O(\log n)$. 
BST: Complexities of Operations

data size: number of elements in dictionary (n)
dominating operation: comparison of keys

Average time complexities on BST are:

- search $\Theta(\log n)$
- insert $\Theta(\log n)$
- delete $\Theta(\log n)$
- minimum/maximum $\Theta(\log n)$
- successor/predecessor $\Theta(\log n)$

The worst-case complexities of operations on BST is $O(n)$. 
AVL tree (Adelson-Velskij, Landis)

AVL is the simplest tree data structure for ordered dynamic dictionary to guarantee $O(\log n)$ worst-case height.

AVL is defined as follows:

AVL is a BST with the **additional** condition: for each node the difference of height of its left and right sub-tree is not greater than 1.
Maximum Height of an AVL Tree

Let $T_h$ be a minimum number of nodes in an AVL tree that has height $h$.

Observe that:
- $T_0 = 1$, $T_1 = 2$
- $T_h = 1 + T_{h-1} + T_{h-2}$
  (consider left and right subtrees of the root)

Thus: $T_h \geq F_h$ (Fibonacci number). Remind: $h$-th Fibonacci number has exponential growth (in $h$). Since the minimum number of nodes in AVL has at least exponential growth in height of the tree ($h$), the height of AVL has at most logarithmic growth in the number of nodes.

Thus, the height of $n$-element AVL tree has worst-case guarantee of $O(\log n)$. 
Implementation of operations on AVL

The same as on BST but:

- with each node a balance factor ($bf$) is kept (\(=\) the difference in heights between left and right subtree of the given node)
- after each operation, $bf$ is updated for each affected node
- if, after a modifying operation, the value of $bf$ is outside of the set of values \{-1, 0, 1\} for some nodes - the rotation operations are called (on these nodes) to re-balance the tree.
AVL Rotations

All the dictionary operations on AVL begin in the same way as in the BST. However, after each modifying operation on this tree the bf values are re-computed (bottom-up)

Moreover, if after any modifying operation any bf is 2 or -2, a special additional operation called rotation is executed for the node.

There are 2 kinds of AVL rotations: single and double and both have 2 mirror variants: left and right.

Each rotation has $O(1)$ time complexity.

The rotations are defined so that the height of the subtree rooted at the “rotated” node is preserved. Why is it important? (among others) due to this $|bf|$ cannot exceed 2 after any operation/rotation on a valid AVL tree.
AVL: Worst-case Analysis of Operations

To summarise:

- each rotation has $O(1)$ complexity
- (as in BST) the complexities of operations are bounded by the height of the tree
- an n-element AVL tree has at most logarithmic height

Thus: all dictionary operations have guaranteed $O(\log n)$ worst-case complexities on AVL.

Note: the maximum number of rotations after a single delete operation could be logarithmic on n, though. ⁴

---

⁴This may happen on a Fibonacci tree. To see example: Donald Knuth, “The Art of Computer Programming”, vol. 3: “Sorting”
Self-organising BST (or Splay-trees)

Guarantee amortised $O(\log n)$ complexity for all ordered dictionary operations. More precisely, any sequence of $m$ operations will have total complexity of $O(m\log n)$.

Idea: each operation is implemented with a helper $\text{splay}(k)$ operation, where $k$ is a key:

- $\text{splay}(k)$: by a sequence of rotations bring to the root either $k$ (if it is present in the tree) or its direct successor or predecessor
- $\text{insert}(k)$: $\text{splay}(k)$ (to bring successor (predecessor) $k'$ of $k$ to the root), then make $k'$ the right (left) son of $k$
- $\text{delete}(k)$: $\text{splay}(k)$ ($k$ becomes the root), remove $k$ (to obtain two separate subtrees), $\text{splay}(k)$ again on the left (right) subtree (to bring predecessor (successor) $k'$ of $k$ to the root), make $k'$ of the right (left) orphaned subtree.

It can be proved that the insert and delete operations (described above) have amortised logarithmic time complexities.
Large on-disk dictionaries

There are special data structures designed for implementing dictionary in case it does not fit to memory (mostly kept on disk).

Example: B-trees (and variants). The key idea: minimize the disk read/write activity (node should fit in a single disk block size)

Used in DB implementations (among others).
- Hashtables provide very fast operations but do not support ordering-based operations (as successor, minimum, etc.)
- BST is the simplest implementation of ordered dictionary that guarantees average logarithmic complexities, but have linear pessimistic complexities
- AVL is an extension of BST that guarantees even worst-case logarithmic complexities through rotations. Additional memory is needed for bf
- self-organising BST also guarantees worst-case logarithmic complexities through splay operation (based on rotations), without any additional memory (compared to BST). Interesting property: automatic adaptation to non-uniform access frequencies.
- B-trees, AB-trees, $B^+$-trees, etc. - large, on-disk structures
Questions/Problems:

- Dictionary
- Hashing
  - Chain Method
  - Open Hashing
  - Universal Hashing
  - Perfect Hashing
- Ordered Dynamic Set
- BST
- AVL
- Self-organising BST
- Comparison of different implementations
Thank you for attention