Algorithms and Data
Structures
(c) Marcin

Sydow

Algorithms and Data Structures

(1) Correctness of Algorithms
(c) Marcin Sydow

Contact Info

Algorithms and Data
Structures
(c) Marcin Sydow
dr hab. Marcin Sydow,
SIAM Department, PJATK
room: 311 (main building)
tel.: +48 225844571

Organisation

Algorithms and Data Structures
(c) Marcin Sydow

15 lectures +15 tutorials
tutorials: total of 60 points (max)
111 small entry tests 11×2 points $=22$ points
22 tests 2×14 points $=28$ points
3 activity, etc. $=\max$ of 10 points
Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2,5]$)
examples: $36 p \rightarrow 3+, 18 p \rightarrow 2,52 p \rightarrow 5$, etc.

Organisation

Algorithms and Data Structures
(c) Marcin Sydow

15 lectures +15 tutorials
tutorials: total of 60 points (max)
111 small entry tests 11×2 points $=22$ points
22 tests 2×14 points $=28$ points
3 activity, etc. $=\max$ of 10 points
Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2,5]$)
examples: $36 p \rightarrow 3+, 18 p \rightarrow 2,52 p \rightarrow 5$, etc.
exact math formula: grade $=\min \left(5, \max \left(4,\left\lfloor\frac{\text { score }}{5}\right\rfloor\right) / 2\right)$

Organisation

Algorithms and Data Structures
(c) Marcin Sydow

15 lectures +15 tutorials
tutorials: total of 60 points (max)
111 small entry tests 11×2 points $=22$ points
$\boxed{2}$ tests 2×14 points $=28$ points
3 activity, etc. $=\max$ of 10 points
Final mark (tutorials): score divided by 10
(rounded down to the closest mark, but in the range $[2,5]$)
examples: $36 p \rightarrow 3+, 18 p \rightarrow 2,52 p \rightarrow 5$, etc.
exact math formula: grade $=\min \left(5, \max \left(4,\left\lfloor\frac{\text { score }}{5}\right\rfloor\right) / 2\right)$
after passing tutorials: Exam
(must pass tutorials to take the exam)

Books:

General:

- T.Cormen, C.Leiserson, R.Rivest et al. "Introduction to Algorithms", MIT Press an excellent textbook for beginners and practitioners (also available in Polish: "Wprowadzenie do Algorytmów, WNT 2000")
■ "Algorithms and Datastructures. The Basic Toolbox" (MS), K.Mehlhorn P.Sanders, Springer 2008
■ (in Polish) L.Banachowski, K.Diks, W.Rytter "Algorytmy i Struktury Danych", WNT 2001, (290 stron), zwięzła książeczka, trudniejsza dla początkujących
■ (Exercises in Polish) G.Mirkowska et al. "Algorytmy i Struktury Danych - Zadania", wydawnictwo PJWSTK, 2005 (zbiór zadań i ćwiczeń, częściowo z rozwiązaniami)

Additional Examples of Books

Algorithms and Data Structures
(c) Marcin Sydow

■ N.Wirth "Algorithms + Data Structures = Programs" (also in Polish)
■ A.Aho, J.Hopcroft, J.Ullman "Algorithms and Data Structures" (also in Polish)
■ (in Polish) W.Lipski "Kombinatoryka dla Programistów", WNT 2004

For deeper studies:
■ D.Knuth "The Art of Computer Programming" 3 volumes, detailed analyses (also in Polish)
■ Ch.Papadimitriou "Computational Complexity" more mathematical (also in Polish)

Algorithm

Algorithms and Data
Structures
(c) Marcin Sydow

What does "algorithm" mean?

Algorithm

Algorithms and Data
Structures
(c) Marcin Sydow

What does "algorithm" mean?
A recipe (how to do something, list of actions, etc.)
According to historians the word is derived from the (arabic version of the) name "al-Khwarizmi" of a Persian mathematician (A.D. 780-850)

Algorithmics is the heart of computer science The role of algorithms becomes even more important nowadays (growing data, Internet, search engines, etc.)

1 level above programming languages

Algorithms and Data
Structures
(c) Marcin Sydow

Pseudocode

- an abstract notation of algorithm
- looks similar to popular programming languages (Java, C/C++, Pascal)
- plays rather informative role than formal (relaxed syntax formalism)
- literals (numbers, strings, null)
- variables (no declarations, but must be initialized)

■ arrays ([] operator) - we assume that arrays are indexed from 0
■ operators (assignment $=$, comparison (e.g. $==$), arithmetic (e.g.,+++ , $+=$), logic (e.g. !)

- functions (including recursion), the return instruction
- conditional statement (IF), loops (FOR, WHILE).

An example of pseudocode usage:

Algorithms and Data Structures
(c) Marcin Sydow

Task: compute sum of numbers in an array of length len:

```
sum(array, len){
```

 sum \(=0\)
 \(\mathrm{i}=0\)
 while(i < len) \(\{\)
 sum += array[i]
 i++
 \}
 return sum
 \}
(it is not any particular programming language but precisely expresses the algorithm
For conveniece, sometimes the '.' (dot) operator will be used (object access operator - the same as in Java, C++, etc.)
For example:
if ((node.left $!=$ null) \&\& (node.value == 5)) node. updateLeft ()

What is this course about?

Algorithms

Topics:
1 Algorithm Design
2 Algorithm Analysis
3 Data Structures

Algorithm Design

Algorithms and Data
Structures
(c) Marcin

Sydow

There is a computational task to be performed on computer.
First, the algorithm should be designed
Then, the algorithm should be implemented (with some programming language)

Algorithm design (and analysis) is
a necessary step before programming

Algorithm Specification

Algorithms and Data
Structures
(c) Marcin Sydow

How to express the task "to be done" in algorithmics?
Specification expresses the task. Specification consists of:

- (optional) name of algorithm and list of its arguments

■ initial condition (it specifies what is "correct" input data to the problem)

- final condition (it specifies what is the desired result of the algorithm)

The conditions could be expressed in words, assuming it is precise

Example of a task and its specification

Algorithms and Data Structures
(c) Marcin Sydow

Assuming the task: "given the array and its length compute the sum of numbers in this array"
the corresponding Specification could be:
name: sum(Arr, len)
input: (initial condition)
Algorithm gets 2 following arguments (input data):
1 Arr - array of integer numbers
2 len - length of Arr (natural number)
output:(final condition)
Algorithm must return:

- sum - sum of the first len numbers in the array Arr (integer number)
(any algorithm satisfying the above will be regarded as "correct")

Total Correctness of Algorithm

Algorithms
correct input data is the data which satisfies the initial condition of the specification
correct output data is the data which satisfies the final condition of the specification

Definition

An algorithm Is called totally correct for the given specification if and only if for any correct input data it:
1 stops and
2 returns correct output

Notice the split into 2 sub-properties in the definition above.

Partial Correctness of Algorithm

Usually, while checking the correctness of an algorithm it is easier to separately:

1 first check whether the algorithm stops
2 then checking the "remaining part". This "remaining part" of correctness is called Partial Correctness of algorithm

Definition

An algorithm is partially correct if satisfies the following condition: If the algorithm receiving correct input data stops then its result is correct

Note: Partial correctness does not make the algorithm stop.

An example of partially correct algorithm

Algorithms and Data
Structures
(c) Marcin Sydow
(computing the sum of array of numbers)
sum(array, len) \{ sum $=0$
$i=0$ while(i < len)
sum $+=$ array[i]
return sum
\}
Is this algorithm partially correct?
Is it also totally correct?

The "Stop Property"

Algorithms and Data
Structures
(c) Marcin
Sydow

A proof of total correctness of an algorithm usually assumes
2 separate steps:
1 (to prove that) the algorithm always stops for correct input data (stop property)
2 (to prove that) the algorithm is partially correct (Stop property is usually easier to prove)

Stop property - an example

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
sum(array, len){
```

sum(array, len){
sum = 0
sum = 0
i = 0
i = 0
while(i < len){
while(i < len){
sum += array[i]
sum += array[i]
i++
i++
}
}
return sum
return sum
}

```
}
```

How to easily prove that this algorithm has stop property?

Stop property - an example

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
sum(array, len){
```

sum(array, len){
sum = 0
sum = 0
i = 0
i = 0
while(i < len){
while(i < len){
sum += array[i]
sum += array[i]
i++
i++
}
}
return sum
return sum
}

```
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

Stop property - an example

Algorithms and Data
Structures

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1 the algorithm stops when the value of variable i is greater or equal than len

Stop property - an example

Algorithms and Data
Structures

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1 the algorithm stops when the value of variable i is greater or equal than len
2 value of len is a constant and finite natural number (according to the specification of this algorithm)

Stop property - an example

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1 the algorithm stops when the value of variable i is greater or equal than len
2 value of len is a constant and finite natural number (according to the specification of this algorithm)

3 value of i increases by 1 with each iteration of the loop

Stop property - an example

Algorithms and Data Structures
(c) Marcin Sydow

```
sum(array, len){
    sum = 0
    i = 0
    while(i < len){
        sum += array[i]
        i++
    }
    return sum
}
```

How to easily prove that this algorithm has stop property? It is enough to observe that:

1 the algorithm stops when the value of variable i is greater or equal than len
2 value of len is a constant and finite natural number (according to the specification of this algorithm)
3 value of i increases by 1 with each iteration of the loop
As the result, the algorithm will certainly stop after finite number of iterations for any input correct data

Proving Partial Correctness - Invariants

Algorithms
and Data
Structures
(c) Marcin Sydow

Proving the stop property of an algorithm is usually easy. Proving the "remaining part" of its total correctness (i.e. partial correctness) needs usually more work and sometimes invention, even for quite simple algorithms.

Observation: most of activity of algorithms can be expressed in the form of "WHILE loop". Thus, a tool for examining the correctness of loops would be highly useful.

Invariant of a loop is such a tool.

Definition

A loop invariant is a logical predicate such that:
IF it is satisfied before entering any single iteration of the loop THEN it is also satisfied after that iteration.

An example of a typical task in algorithmics:

Algorithms and Data
Structures
(c) Marcin Sydow

What does the following algorithm "do" (prove your answer): (the names of variables are purposely obscure :)) input: Arr - an array of integers, len >0 - length of array

```
algor1(Arr, len){
```

 i \(=1\)
 \(\mathrm{x}=\mathrm{Arr}[0]\)
 while(i < len)
 if (Arr[i] > x) \{
 \(\mathrm{x}=\operatorname{Arr}[\mathrm{i}]\)
 \}
 i++
 return x
 \}

An example of a typical task in algorithmics:

Algorithms and Data
Structures
(c) Marcin Sydow

What does the following algorithm "do" (prove your answer): (the names of variables are purposely obscure :)) input: Arr - an array of integers, len >0 - length of array

```
algor1(Arr, len){
```

 \(i=1\)
 \(\mathrm{x}=\operatorname{Arr}[0]\)
 while(i < len)
 if (Arr[i] > x) \{
 \(\mathrm{x}=\operatorname{Arr}[\mathrm{i}]\)
 \}
 i++
 return x
 \}

Easy? OK.

An example of a typical task in algorithmics:

Algorithms and Data Structures
(c) Marcin Sydow

What does the following algorithm "do" (prove your answer): (the names of variables are purposely obscure :)) input: Arr - an array of integers, len >0 - length of array
algor1(Arr, len)\{
$i=1$
$\mathrm{x}=\operatorname{Arr}[0]$
while(i < len)
if $(\operatorname{Arr}[i]>x)\{$
$\mathrm{x}=\mathrm{Arr}[\mathrm{i}]$
\}
i++
return x
\}

Easy? OK. But now it is also necessary to prove the answer. More precisely, the proof of total correctness is needed.

An example - proving total correctness, cont.

Algorithms and Data
Structures
(c) Marcin Sydow

2 steps are needed (what steps?)

An example - proving total correctness, cont.

Algorithms
and Data
Structures
(c) Marcin

Sydow

2 steps are needed (what steps?)
1 proving the stop property of algorithm

An example - proving total correctness, cont.

Algorithms

2 steps are needed (what steps?)
1 proving the stop property of algorithm
2 proving the partial correctness of algorithm

An example - proving total correctness, cont.

Algorithms

2 steps are needed (what steps?)
1 proving the stop property of algorithm
2 proving the partial correctness of algorithm Stop property?

An example - proving total correctness, cont.

Algorithms
and Data
Structures
(c) Marcin Sydow

2 steps are needed (what steps?)
1 proving the stop property of algorithm
2 proving the partial correctness of algorithm Stop property?

```
algor1(Arr, len){
```

 i \(=1\)
 \(\mathrm{x}=\mathrm{Arr}[0]\)
 while(i < len)
 if(Arr[i] > \(x)\{\)
 \(\mathrm{x}=\mathrm{Arr}[\mathrm{i}]\)
 \}
 i++
 return x
 \}

An example - proving total correctness, cont.

Algorithms
and Data
Structures
(c) Marcin Sydow

2 steps are needed (what steps?)
1 proving the stop property of algorithm
2 proving the partial correctness of algorithm Stop property?

```
algor1(Arr, len){
```

 i \(=1\)
 \(\mathrm{x}=\mathrm{Arr}[0]\)
 while(i < len)
 if(Arr[i] > \(x)\{\)
 \(\mathrm{x}=\mathrm{Arr}[\mathrm{i}]\)
 \}
 i++
 return x
 \}

It was easy.

An example - proving total correctness, cont.

Algorithms
and Data
Structures
(c) Marcin Sydow

2 steps are needed (what steps?)
1 proving the stop property of algorithm
2 proving the partial correctness of algorithm
Stop property?
algor1(Arr, len) \{
i $=1$
$\mathrm{x}=\mathrm{Arr}[0]$
while(i < len)
if $(A r r[i]>x)\{$
$\mathrm{x}=\mathrm{Arr}[\mathrm{i}]$
\}
i++
return x
\}
It was easy. Now, partial correctness...

Example continued - partial correctness

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
algor1(Arr, len){
```

algor1(Arr, len){
i = 1
i = 1
x = Arr[0]
x = Arr[0]
while(i < len)
while(i < len)
if(Arr[i] > x){
if(Arr[i] > x){
x = Arr[i]
x = Arr[i]
}
}
i++
i++
return x
return x
}

```
}
```

we would like to show that " x is a maximum in Arr"

Example continued - partial correctness

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
algor1(Arr, len){
```

algor1(Arr, len){
i = 1
i = 1
x = Arr[0]
x = Arr[0]
while(i < len)
while(i < len)
if(Arr[i] > x){
if(Arr[i] > x){
x = Arr[i]
x = Arr[i]
}
}
i++
i++
return x
return x
}

```
}
```

we would like to show that " x is a maximum in Arr" in mathematical notation it would look like:

Example continued - partial correctness

```
Algorithms
    and Data
Structures
(c) Marcin
    Sydow
```

```
algor1(Arr, len){
```

algor1(Arr, len){
i = 1
i = 1
x = Arr[0]
x = Arr[0]
while(i < len)
while(i < len)
if(Arr[i] > x){
if(Arr[i] > x){
x = Arr[i]
x = Arr[i]
}
}
i++
i++
return x
return x
}

```
}
```

we would like to show that " x is a maximum in Arr" in mathematical notation it would look like:
$\left(\forall_{0 \leq j<l e n} x \geq \operatorname{Arr}[j]\right) \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)$

Example continued - partial correctness

```
Algorithms
    and Data
Structures
(c) Marcin
    Sydow
```

```
algor1(Arr, len){
```

algor1(Arr, len){
i = 1
i = 1
x = Arr[0]
x = Arr[0]
while(i < len)
while(i < len)
if(Arr[i] > x){
if(Arr[i] > x){
x = Arr[i]
x = Arr[i]
}
}
i++
i++
return x
return x
}

```
}
```

we would like to show that " x is a maximum in Arr" in mathematical notation it would look like:
$\left(\forall_{0 \leq j<l e n} x \geq \operatorname{Arr}[j]\right) \wedge\left(\exists_{0 \leq j<\text { len }}(x==\operatorname{Arr}[j])\right)$
Ok, but how to show the partial correctness of this algorithm?

Example continued - partial correctness

```
Algorithms
and Data
Structures
(c) Marcin
    Sydow
```

```
algor1(Arr, len){
```

algor1(Arr, len){
i = 1
i = 1
x = Arr[0]
x = Arr[0]
while(i < len)
while(i < len)
if(Arr[i] > x){
if(Arr[i] > x){
x = Arr[i]
x = Arr[i]
}
}
i++
i++
return x
return x
}

```
}
```

we would like to show that " x is a maximum in Arr" in mathematical notation it would look like:
$\left(\forall_{0 \leq j<l e n} x \geq \operatorname{Arr}[j]\right) \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)$
Ok, but how to show the partial correctness of this algorithm?
Answer: we can use a loop invariant.

Example continued - application of invariant

Algorithms and Data Structures
(c) Marcin Sydow

```
Target:}(\mp@subsup{\forall}{0\leqj<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```


Example continued - application of invariant

Algorithms and Data Structures
(c) Marcin Sydow

```
Target: \(\left(\forall_{0 \leq j<l e n} x \geq \operatorname{Arr}[j]\right) \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)\)
algor1(Arr, len)\{
    i \(=1\)
    \(\mathrm{x}=\operatorname{Arr}[0]\)
    while(i < len)
        if \((A r r[i]>x)\{\)
            \(\mathrm{x}=\operatorname{Arr}[\mathrm{i}]\)
        \}
        i++
    return x
\}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)$

Example continued - application of invariant

Algorithms and Data Structures
(c) Marcin Sydow

```
Target:}(\mp@subsup{\forall}{0\leqj<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<\operatorname{len}}(x==\operatorname{Arr}[j])\right)$ What do we get?

Example continued - application of invariant

Algorithms
and Data
Structures
(c) Marcin

Sydow

```
Target: }(\mp@subsup{\forall}{0<j<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)$
What do we get? In conjuction with the stop condition of the loop

Example continued - application of invariant

Algorithms
and Data
Structures
(c) Marcin

Sydow

```
Target:}(\mp@subsup{\forall}{0\leqj<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
        i = 1
        x = Arr[0]
        while(i < len)
            if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<l e n}(x==\operatorname{Arr}[j])\right)$
What do we get? In conjuction with the stop condition of the loop ($i==$ len)

Example continued - application of invariant

Algorithms
and Data
Structures
(c) Marcin

Sydow

```
Target: }(\mp@subsup{\forall}{0<j<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<\operatorname{len}}(x==\operatorname{Arr}[j])\right)$
What do we get? In conjuction with the stop condition of the loop ($i==$ len) we got the proof! $\left(\left(\forall_{0 \leq j<i x} \geq \operatorname{Arr}[j]\right) \wedge(i==\right.$ len $\left.)\right)$

Example continued - application of invariant

Algorithms and Data Structures
(c) Marcin Sydow

```
Target: }(\mp@subsup{\forall}{0<j<len}{}x\geq\operatorname{Arr}[j])\wedge(\mp@subsup{\exists}{0\leqj<len}{}(x==\operatorname{Arr}[j])
algor1(Arr, len){
    i = 1
    x = Arr[0]
    while(i < len)
        if(Arr[i] > x){
            x = Arr[i]
        }
        i++
    return x
}
```

Invariant: $\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j] \wedge\left(\exists_{0 \leq j<\operatorname{len}}(x==\operatorname{Arr}[j])\right)$
What do we get? In conjuction with the stop condition of the loop ($i==$ len) we got the proof!

$$
\left(\left(\forall_{0 \leq j<i} x \geq \operatorname{Arr}[j]\right) \wedge(i==\operatorname{len})\right) \Rightarrow\left(\forall_{0 \leq j<\operatorname{len}} x \geq \operatorname{Arr}[j]\right)
$$

What you should know after this lecture:

Algorithms
and Data
Structures
(c) Marcin Sydow

1 Organisation and Passing Rules of this course :)
2 What is specification
3 What does "correct input data" mean
4 Definition of Total Correctness of algorithm
5 Definition of Partial Correctness of algorithm
6 What is stop property of an algorithm
7 Be able to give example of a partially correct algorithm which is not totally correct

8 Be able to prove stop property of simple algorithms
9 Definition of invariant of a loop
10 Be able to invent good invariant for a given loop
11 Be able to prove total correctness for simple algorithms

Algorithms and Data
Structures
(c) Marcin Sydow

Thank you for your attention

