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Abstract Structured knowledge bases are an increasingly important way for storing and
retrieving information. Within such knowledge bases, an important search task is find-
ing similar entities based on one or more example entities. We present QBEES, a novel
framework for defining entity similarity based on structural features, so-called aspects and
maximal aspects of the entities, that naturally model potential interest profiles of a user
submitting an ambiguous query. Our approach based on maximal aspects provides natu-
ral diversity awareness and includes query-dependent and query-independent entity ranking
components. We present evaluation results with a number of existing entity list completion
benchmarks, comparing to several state-of-the-art baselines.
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1 Introduction

Nowadays, more and more data becomes available in semantic form, be it, e.g., within the
Linked Open Data (LOD) cloud (Heath and Bizer 2011), product databases (as used e.g. in
shops like Amazon etc.) or huge common knowledge bases (ontologies) like DBpedia (Auer
et al. 2007) or YAGO (Hoffart et al. 2013). In consequence, semantic data can be applied
for an increasing number of information retrieval (IR) problems, e.g. to support and amend
traditional IR methods in document retrieval (Metzger et al. 2011). However, with increas-
ing amounts of information available, automatic IR methods also become more important to
navigate the semantic data itself (Tunkelang 2009). One typical information retrieval task is
the search for similar data given an example. While explicit search interfaces allow a fine-
tuned control, many use cases rather suggest implicit query interfaces. Whenever a retrieval
task is too complicated to be expressed explicitly by average users, is vague in nature or
unclear to the user herself, an implicit search interface is the natural, user-friendly choice.

Consider, for instance, the task to search for possible replacements of a particular part
in your production process, e.g. to optimize the overall costs. Instead of specifying all the
properties of the part, the natural choice would be to provide a system with the pointer
to an (already existing) semantic description. Other applications include recommendation
systems and general purpose entity search engines that provide similar entities given one or
several examples. With such an engine, a user might look (interactively) for movie directors
that also are actors, thus, providing Quentin Tarantino and Clint Eastwood the user might
expect to find Sylvester Stallone and Peter Jackson. Or she might identify powerful female
politicians by providing Angela Merkel and Margaret Thatcher as examples. Note that in all
cases we assume that the user expects similar entities to have similar type as the examples,
i.e. providing a person like Arnold Schwarzenegger we assume returned entities should be
persons as well and not a dog named Arnold.

A central problem in the general underlying setting is the inherent ambiguity of exam-
ples. For instance, assume that a user provides Arnold Schwarzenegger as an example
inquiring for more persons similar to him. The central question given such a query is
the actual interest of the user (or external system) asking the query. A user might, for
instance, be interested in other Austrian (ex-)bodybuilders, governors of California, actors
that appeared in The Expendables or men who cheated on their wife. Our approach tries to
capture these different branches of similar entities and to provide the most similar entities
along each such possible query interpretation.

An approach that becomes a standard tool in dealing with unknown user intent behind an
ambiguous query is diversity awareness. The general idea is to avoid redundancy among the
returned results. Diversity awareness has been successfully applied in various application
domains such as web search (e.g. (Agrawal et al. 2009)), relational database querying (e.g.
(Vee et al. )) or recently in entity summarization in semantic knowledge graphs (Sydow
et al. 2013).

The aspect-based approach described in this paper models different potential user inter-
ests of an ambiguous query. Moreover, the concept of maximal aspects, introduced in Sec-
tion 4.4, naturally incorporates diversity awareness as it automatically avoids redundancy in
the corresponding entity sets (see the theorem and explanation in Section 5.2).

In principle, a search by example in a semantic dataset can be considered a faceted
search (Tunkelang 2009) with no direct control over the facets. A holistic approach to entity
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similarity, like using a random walk or vector model to compute pairwise similarity values
is by definition agnostic of the different possible facets of a query by example. In this paper
we propose a model that captures all possible facets in so called aspects of the query. Basic
aspects represent single facets while our model explores the combinatorial facet space gen-
erating compound aspects to find the most similar entities under different points of view by
identifying all entities that share a maximal set of semantic properties with the query. Thus,
in the example from above, our system might identify the property combination of “being
an Austrian bodybuilder who won the Mr. Olympics title” as a maximal compound aspect
if no other entity shares a larger property combination that includes these properties with
the query. There can of course be multiple such maximal aspects, e.g. another one might
represent “being an actor and governor of California”. Entities that satisfy any such maxi-
mal aspect will be considered as very similar to the query by our system. In principle, our
approach to this point is very similar to a skyline search (Hose and Vlachou 2012). However,
in addition, we can extend the search-space ad-hoc by relaxing aspect constraints, if more
candidate entities are needed, e.g. in offline applications or when user interactivity is low.
Our model guides this relaxation by ranking the maximal aspects. By relaxing, we may not
only look at “Austrian bodybuilders that won Mr. Olympics”, but also in general for Aus-
trian bodybuilders or, for instance, Austrian sportsmen or bodybuilders of any nationality
as well.

While our model is general enough to be applied to the family of “Query by Entity
ExampleS” (QBEES) use cases, we focus on list completion, since this is a well-defined IR
task with standard evaluation test-data available.

Contributions The main contributions of this paper are 1) the discussion in detail of our
aspect-based entity model with its natural potential for modeling user interests and diversity
awareness, 2) its extension by ad-hoc aspect relaxation, and 3) an evaluation of the approach.

The core idea of aspect-based similar entity retrieval has been published previously (Met-
zger et al. 2013, 2014). In this extended journal version, we provide additional material
including:

– an extended discussion of the aspect model,
– an extended presentation of the algorithm including additional details regarding entity

popularity,
– a detailed discussion how to deal with incomplete knowledge bases and inconsistent

example entities,
– a completely novel and detailed model analysis section,
– a presentation of new evaluation data sets QALD3 and QALD4,
– additional evaluation experiments on QALD3 and QALD4 data sets, and
– an extended related work section.

Outline In Section 2 related work is discussed and in Section 3 basic assumptions and
notation are provided. Section 4 introduces entity aspects, the basis of our model. Our main
model to compute similar entities is discussed in Section 5. Section 6 presents the ad-hoc
relaxation, and Section 7 discusses a solution for dealing with incomplete knowledge bases
and inconsistent example entities. The evaluation results are discussed in Section 8, and
Section 9 concludes the paper.
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2 Related work

Entity search has been considered extensively in the literature, often with a focus on unstruc-
tured or semi-structured data. The entity tracks at TREC (Balog et al. 2011) and INEX
(Demartini et al. 2009) introduced two different retrieval tasks: finding related entities (with
a textual description of the relationship and a target category), and entity list completion
(with a list of example entities and a textual description). While the majority of test col-
lections has been built based on unstructured text and semi-structured XML documents,
with the rise of larger general entity ontologies, like YAGO (Hoffart et al. 2013), Freebase
(Bollacker et al. 2007), and DBpedia (Auer et al. 2007), and the Linked Open Data (LOD)
cloud, the Semantic Search Challenge1 has extended this to semantic (RDF) data graphs
with entities as nodes. The same scenario is considered in this paper.

Core ingredients of many entity search systems are similarity measures. A large body of
existing work exploits the graph structure to determine entity similarity. One of the earliest
approaches was SimRank (Jeh and Widom 2002) which considers two entities as similar
if their context is similar. Tversky (Tversky 1977) provided one of the early set-theoretic
approaches to feature based similarity. A more recent line of work uses random walks with
restart to compute similarities of one entity or a group of entities to all other entities, such as
Personalized Pagerank (Haveliwala 2003), with a focus on relational data graphs (Agarwal
et al. 2006; Minkov and Cohen 2010).

Albertoni and De Marino suggest a pair-wise asymmetric entity similarity (Albertoni
and Martino 2008) based on the overlap of a candidate resource’s features with selected
features of the query resource that is combined with typical ontology concept similarity
methods based on entity types. Our system is in so far similar, as we consider similarity
also in an asymmetric way and our model shares the containment approach to some degree
based on the aspects we identify. However, their system expects domain experts to explic-
itly determine the features that are mostly responsible for entity similarity (optionally in an
interactive way). Our approach always considers all features, but users can guide it towards
the intended set of entities by choosing additional entities of the target group and thus
interactively refine the query without particular knowledge about the underlying system
or features. (Rodrı́guez and Egenhofer 2004) proposes an asymmetric similarity measure
called Matching-Distance Similarity Measure (MDSM) tailored for geospatial entity classes
and their particular features. Similarity is computed by taking the generalization level of a
geospatial reference into account and applying a context-based weighing of an entity’s fea-
tures. Also with a focus on the geospatial domain, Janowicz et al. (Janowicz et al. 2007)
introduce a description logic (DL) based theory called SIM-DL to model similarity in OWL
ontologies and extended the DIG standard with a matching language extension.

Pirró et al. (Pirrò and Euzenat 2010) combine the main ideas from an ontology oriented
concept similarity with a feature model from the information theory domain resulting in
a feature and information theoretic measure (FaITH) based on the ratio of intrinsic infor-
mation content from two concepts’ closest common ancestor to the sum of their unique
information content.

Another group of approaches uses features extracted from the context of entities to
determine their similarity. Keßler et al. (Keßler et al. 2007) examine the impact of context
on semantic similarity measures. More recently, entity similarity measures were proposed
that include textual features (such as terms in the entity’s URI or labels) and/or structural

1https://km.aifb.kit.edu/ws/semsearch11/

https://km.aifb.kit.edu/ws/semsearch11/
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features (categories or types of the entity). Balog et al. (Balog et al. 2011) propose to use
language models that include terms and categories. Bron et al. (Bron et al. 2013), which
is closest to our work, exploit additional textual descriptions of the target group of enti-
ties in addition to example entities. They combine a term-based language model with a
structural model constructed from types of and facts about the entity. The term-based lan-
guage model for an entity is constructed from terms appearing in facts about that entity
and in descriptions of types and other entities connected to it. In the structural model, enti-
ties are represented by their facts, similar to our type and factual aspects, with a uniform
weight. Given a set of example entities, types and facts that appear in many examples have
higher weight when retrieving results. In contrast, our query model does not include a term
component and in particular does not assume a textual description of the target entities;
our set of structural features in the aspects is more general; our model includes priors for
entity importance; and our model allows to give different weights to different features. We
experimentally compare our model to their model in Section 8. A very recent work by
Zhiltsov et al. (Zhiltsov et al. 2015) represents textual and structural features of an entity
as a multi-fielded document and applies fielded sequential dependance models for ranking.
However, as that work focuses on keyword-based ad-hoc retrieval of entities, it cannot be
directly applied to our problem. Yu et al. (Yu et al. 2012) solve a slightly different problem
where entities similar to a single query entity are computed, exploiting a small number of
example results. Focusing on heterogeneous similarity aspects, they propose to use features
based on so-called meta paths between entities and several path-based similarity measures,
and apply learning-to-rank methods for which they require labeled test data. Wang and
Cohen (Wang and Cohen 2007) present a set completion system retrieving candidate doc-
uments via keyword queries based on the entity examples. Using an extraction system
additional entities are then extracted from semi-structured elements, like HTML-formatted
lists.

Mottin et al. (2014a, b) introduced the concept of exemplar queries, which is similar
to the problem considered in this paper in the sense that an example result is used instead
of a query. However, the setting in their XQ system is strictly different since it considers
examples in the form of a connected subgraph of entities, not single entities, and determines
result subgraphs based on their similarity to the query graph. The problem is therefore in
some sense easier, as more information can be exploited for identifying query results. All
methods require that the query is a connected graph, not a single entity, since similarity is
defined based on edge-level isomorphisms; this solution therefore cannot be applied to our
setting.

The GQBE system by Jayaram et al. (Jayaram et al. 2014) is similar to XQ, but does not
use connected subgraphs, but just entities that form a query result as input; the meaningful
connections between those entities are explored by the system. Again, the main difference
to our system is that we consider only single entities as inputs and results, not combinations,
and hence have fewer information for identifying relevant results. Since the scoring used in
GQBE relies on weighted edges in subgraphs isomorphic to the query graph, this solution
cannot be applied to our setting.

Recently, the issue of diversity awareness concerning entity-related computations on
semantic knowledge graphs was studied in the context of diversity aware entity summariza-
tion in (Sydow et al. 2013) and (Kosiński et al. 2013). In entity summarization, an entity
q and a numerical limit k ∈ N is given and the task is to return a summary of the entity
q in the form of a small knowledge subgraph containing at most k facts concerning q. In
(Sydow et al. 2013) it is demonstrated that diversity awareness is appreciated by users. In
(Kosiński et al. 2013) diversity awareness is considered as an optimization problem and
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a heuristic algorithm is presented. While we focus on entity similarity search, our aspect
model might be useful for modeling user interests in other (than similar entity search) appli-
cation domains, including the entity summarization problem. To the best of our knowledge
such an approach has not been considered in this setting, yet.

3 Knowledge graph

A Knowledge Graph KG is a directed multigraph that consists of three basic components,
a Fact Graph FG, an Ontology Tree O, and a set of type assignment arcs T A connecting
the two. The set of vertices V of KG is partitioned into the set of entities E (e.g. Warsaw,
Poland) and a set of classes C (e.g. person or city) such that V = E ∪ C.

Existing knowledge bases represented in RDF(S) (Hitzler et al. 2010) can easily be rep-
resented as a knowledge graph, by converting factual RDF statements into edges in FG,
RDFS subclass relations into edges in O, and rdf:type statements that assign entities to
classes into edges in T A. More advanced features of RDF(S), including data types, property
hierarchies, and domain and ranges of properties are not represented in the KG.

3.1 Fact graph FG

The fact graph FG = (E, F ) is a directed multigraph where nodes in E represent entities
(e.g. Warsaw, Poland). A pair of nodes connected by a labeled arc in f ∈ F represents
an instance of a binary relation between them and f ′s label represents its semantic kind
(meaning) (e.g. isCapitalOf).

An arc, together with its ends thus represents a fact about the entities (e.g. “Warsaw is
the capital of Poland”).

The fact graph is a multigraph, since there are possibly multiple parallel arcs between
the same pair of entities (e.g. “Warsaw is capital of Poland” and “Warsaw is the largest city
in Poland”). We will use the notation relation(arg1,arg2) for any directed arc with
label relation in FG, O, or T A that points from node arg1 to arg2. In this notation
the fact “Warsaw is the capital of Poland” is represented by an arc that can be denoted as
isCapitalOf(Warsaw,Poland).

Note that for simplicity we do not distinguish between named entities and literals, i.e.
the target of a labeled arc in F can also be a literal value, e.g. a date.

3.2 Ontology tree O and type assignment T A

Each class c ∈ C represents some type of entities (e.g. person). Thus, each arc of the form
hasType(anEntity,aClass) in KG means that the entity anEntity is an instance
of the class aClass.

The class nodes are connected by directed arcs labeled as subClassOf, such that
subClassOf(classA,classB) indicates that classB is a concept that contains the
more specific concept classA. For instance, subClassOf(composer,musician)
indicates that every composer is also a musician. These arcs form a tree
where the root represents the most general class of entities (e.g., owl:Thing
or wordnet entity). Note that this type hierarchy is transitive, i.e. given
in addition subClassOf(musician,person) then it automatically also holds
subClassOf(composer,person). In other words, we assume the ontology to con-
tain the transitive closure for the subClassOf relation. Due to transitive inheritance, each
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entity is implicitly also an instance of all classes that are more general than an explic-
itly mentioned class. As an example, the explicit arc hasType(Chopin,composer)
implies also an implicit arc hasType(Chopin,person). Notice that an entity may be
an instance of several different classes so that none of them is more general than another
(e.g. hasType(Chopin,composer), hasType(Chopin,pianist)).

Given two classes A and B, we say that A is more specific than B (or B is more general
than A) if subclassOf(A,B) holds. We abbreviate this by A < B.

Table 1 summarizes the notations introduced in this section.

4 Aspect-based entity model

In this section, we introduce the notion of a maximal aspect of an entity, a natural concept
that is key to our approach and, in addition, provides a natural diversity awareness of the
results.

We first describe a 3-level aspect-based entity characterization model and define basic,
compound and maximal aspects that are later used to precisely model the concept of entity
similarity in our approach. The model is flexible and has many potential applications. It is
derived purely from the structure of the knowledge graph and thus is orthogonal to other
approaches to characterize entities in knowledge graphs (e.g. text-based).

4.1 Aspects of an entity

Let us now introduce the concept of an aspect with an example. Given an
entity q ∈ E such as Chopin (a famous Polish composer), consider all arcs
that are incident with q in KG. These arcs can either represent a type of
the entity q (e.g. hasType(Chopin,composer)) or facts concerning q (e.g.
bornIn(Chopin,Poland)). For any entity q, each such arc represents some “atomic
property” of this entity (e.g. birthplace, type, occupation); the entity is characterized by the
set of all “atomic properties”.

By replacing the particular entity q in such an arc with a variable represented
by ‘.’ we obtain a logical predicate with one free variable that represents a basic
aspect of that entity. For example, a factual arc bornIn(Chopin,Poland) and
a type arc hasType(Chopin,composer) naturally induce predicates of the form

Table 1 Denotations
FG = (E, F ) fact graph

E the set of entities (i.e. nodes in the fact graph FG)

F factual arcs (i.e. arcs in FG)

O = (C, S) ontology tree

C the set of classes (i.e. nodes in the ontology tree O)

S “subclass” arcs (i.e. arcs in O)

T A type assignment (“hastype”) arcs (connecting FG with O)

R the set of all relations (arc labels) in KG

V = E ∪ C, the set of nodes in KG

W = F ∪ S ∪ T A, the set of edges in KG

KG = FG + O + T A = (V ,W) the whole knowledge graph
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bornIn(.,Poland) and hasType(.,composer) that represent the “basic proper-
ties” of this entity of “being born in Poland” and “being a composer”, respectively. We call
such logical predicates factual aspect and type aspect of the entity, respectively. The aspects
of an entity includes all type aspects, even if some types of the entity are more general than
others. In the example, we would consider a type arc of the form hasTypeChopinperson
even though person is a more general type than composer .

In addition we also consider relational aspects that capture the information which rela-
tions an entity is involved with (e.g. whether a person appeared in a movie). We represent
this information by replacing the remaining argument of a factual aspect by a free vari-
able ? such that actedIn(.,?) indicates that an entity acted in at least one movie.
Precisely, we define relation(.,?) by ∃y∈E s.t. relation(.,y)∈ F holds. Thus,
bornIn(.,?) represents the aspect of “being born somewhere”. Notice that it could be
considered both as a relaxation of a factual aspect and restriction of a type aspect (since, for
example, only entities of type person can be born somewhere).

4.2 3-level aspect-based entity characterization model

For an entity e ∈ E we consider three types of aspects that form a 3-level entity
characterization model:

1. type aspects (level 1) of the form hasType(.,class) where the set of all type
aspects of an entity e reflects the set of all types types C(e) ⊆ C that e is an instance of:
C(e) = {c ∈ C|hasType(e, c) ∈ T A}.

2. relational aspects (level 2) of the form actedIn(.,?) reflecting the multi-set of
relations from R that appear in F with e.

3. factual aspects (level 3) of the form r(.,n) or r(n,.), where r ∈ R and n is
an entity s.t. r(e, n) ∈ F or r(n, e) ∈ F , representing the set F(e) ⊆ F of facts
involving e, i.e. F(e) = {r(arg1, arg2) ∈ F |arg1 = e∨arg2 = e} (e.g., for Chopin,
bornIn(.,Poland)).

Notice that these three levels of entity characterization form a natural hierarchy, for
two reasons. Firstly, each next level of characterization provides information concerning
the entity that is in some sense more specific than the previous. Thus, the type aspects
on level 1 provide the most general information and restrict the possible types of rela-
tions that may be incident to the entity (level 2) and the particular choice of incident
relations puts constraints on possible adjacent entities (level 3). E.g the level-2 information
actedIn(.,?) (“the entity acted in any movie”) can be further refined on the level 3 as
actedIn(.,Casablanca) (acted in the specific movie “Casablanca”).

Secondly, each next level concerns information that is topologically “further away” from
the entity in the knowledge graph, starting with the information that concerns directly the
entity itself (type) to incident relations to adjacent nodes.

Obviously, this model could be further extended for higher number of levels (including
arcs and nodes in KG that are increasingly more topologically distant from the entity under
study). However, we argue that the most important characteristics concerning the entity are
contained in these three levels.

We name the union of the three kinds of aspects for an entity q as the set of its basic
aspects and denote it as A(q).

A compound aspect A ⊆ A(q) of entity q is any set of basic aspects of q. For example,
for two basic aspects a1 = bornIn(.,Poland), a2 = hasType(.,composer) ∈



J Intell Inf Syst

A(q) the set A = {a1, a2} represents the compound aspect of “being a composer born in
Poland”.

4.3 Entity set of an aspect

For each basic aspect a of some entity q, we naturally define its entity set E(a) as the set
of all entities e ∈ E that share this aspect, i.e. contain a in their set of basic aspects A(e).
For example, for the entity q =Chopin and its basic aspects hasType(.,composer),
bornIn(.,?) and bornIn(.,Poland) their entity sets consist of all entities that are
composers, born somewhere and born in Poland, respectively.

We naturally extend the above definition of entity set E(a) (for a basic aspect a) to the
concept of entity set E(A) of a compound aspect A as the set of all entities that share all
basic aspects in A (in the former example: all the entities that are both composers and are
born in Poland).

For any two compound aspects A and B where A ⊂ B, we say A subsumes B, as it is
“more general”, i.e. it is potentially shared by more entities (in particular by a superset of
entities).

4.4 Maximal aspect of an entity

By definition, for any compound aspect A of entity q, any entity e ∈ E(A) shares all basic
aspects a ∈ A with q, and the more basic aspects from A(q) it shares with q the more
similar it is to q. The entities that share all the basic aspects with q would be extremely
similar to q, but often only q itself has this property, since A(q) often characterizes the
entity uniquely. Thus, to look for most similar entities to q, we might have to relax A(q) by
dropping as few basic aspects from it as possible.

We say that a compound aspect A ⊆ A(q) of entity q is a maximal aspect of q if and
only if it satisfies the following two conditions:

1. E(A) contains at least one entity other than q

2. A is maximal wrt inclusion (i.e., extending this set of basic aspects with any more basic
aspect of q would violate the first condition).

Note that for efficiency reasons, we filter maximal aspects such that they include only
most specific types; this does not change semantics (as adding or removing a more gen-
eral type to an aspect A that already includes a specific type does not change E(A)), but
improves efficiency of computations.

M(q) denotes the family of all maximal aspects of q.

4.5 Maximal aspects for a set of entities

We naturally extend all the concepts related to aspects of a single entity q ∈ E for the case
of a set of entities Q ⊆ E. Thus, A(Q) will denote the set of all basic aspects shared by all
entities in Q, i.e. A(Q) = ∩q∈QA(q). Similarly, we define the family of maximal aspects
of a set of entities Q ⊆ E, M(Q) by modifying the first condition in the definition of M(q)

as follows: the entity set of a maximal aspect of an entity set Q must contain at least one
entity not in Q.

More precisely, for a query entity set Q we say that a compound aspect AQ ⊆ A(Q) is
a maximal aspect for Q if and only if it satisfies the following two conditions:
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1. E(AQ) contains at least one entity outside Q

2. AQ is maximal wrt inclusion (i.e., extending this set of basic aspects with any more
basic aspect from A(Q) would violate the first condition).

Illustrating example Let us illustrate the concept of the maximal aspect with the fol-
lowing example. Assume an entity set Q = {Schwarzenegger,Stallone} is given.
Each of the entities is an American action movie actor, a director, and a bodybuilder, and
Schwarzenegger is in addition a politician.

Assume that the set of all basic aspects A(Q) shared by all entities in Q

is A(Q) = {hasType(.,ActionMovieActor), livesIn(.,USA), hasType
(.,MovieDirector), hasType(.,Bodybuilder)} (Stallone is not a politician).

Assume that there is no other entity in the knowledge base that is at the same time an
American action movie actor, a director and a bodybuilder (except Schwarzenegger and
Stallone).

Then, consider two compound aspects for Q:
A1 = {hasType(.,ActionMovieActor), livesIn(.,USA)}
A2 ={hasType(.,ActionMovieActor), livesIn(.,USA), hasType(.,Movie
Director)}

Assume that E(A1) \ Q 
= ∅ i.e. there are entities outside Q that share compound aspect
A1, e.g. Clint Eastwood; similarly with A2. Thus, each of the two compound aspects A1
and A2 is shared by Clint Eastwood. In other words, the first condition of the definition of
maximal aspects holds for both A1 and A2. But, since A1 ⊆ A2, A1 is not a maximal aspect
(since it can be extended to A2, for example).

But, if we additionally assume that there are no other (than Schwarzenegger and Stallone)
entities in the knowledge base that are American action movie actors, directors that are
at the same time bodybuilders then the compound aspect A2 is a maximal aspect for Q,
because adding any more basic aspect from A(Q) to A2 would make it being satisfied only
by entities from Q (the second condition of the definition).

The main idea of our approach is the following. Given the query in the form of the
example entity set Q, we compute the family of maximal aspects for Q. Then, for each
maximal aspect, we return the entities that satisfy it as the candidate results.

The concept of maximal aspect, that is key to our approach, is designed so that it has the
following properties:

– the entities satisfying a maximal aspect are maximally similar to the entities given as
the example in terms of its structural properties in the semantic knowledge graph

– it is a minimum necessary possible relaxation of the set of all basic aspects A(Q)

– in addition, the results generated by different maximal aspects are naturally diversified
as is precisely explained in the Section 5.2

Intuitionally, each separate maximal aspect for Q represents a different potential user
interest hidden behind the ambiguous query Q.

4.6 Type filtering

It is a natural assumption that the selected entities should be of similar type as the query
entities. It would, for example, usually be intended that, given a city, the result should be
other cities and not, e.g., a country, even if they share the same river passing through. We
will now explain how to include such type constraints into the aspect model.
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First, we determine the set T of typical types allowed as types of returned entities,
independent of the query. How exactly this set is determined is driven by application
requirements. A natural approach is to restrict this set to types that are not too general;
general types would not really help in finding relevant results. In our implementation, a
type is general if it has at least 100,000 instances in the knowledge base; for the YAGO
knowledge base used in the experiments, this excludes 45 types. The original QBEES
paper (Metzger et al. 2013, 2014) used two different approaches, a manually defined cut
of the type hierarchy and an approach that forbids both general types and YAGO types
derived from Wikipedia categories. We will examine in the experimental evaluation which
of the methods performs best; as it will turn out, forbidding general types is most effec-
tive for queries with just a single entity, whereas larger queries do not require strict type
filtering.

Second, for a query Q, we need to compute the set of typical types T (Q) for Q. All
result entities must belong to at least one of the types in T (Q), hence any type aspects not
included in T (Q) are removed from the set A(Q) of basic aspects shared by the query
entities. When computing T (Q), we first identify the set S of types that are shared by all
entities in Q that are also in T , i.e. we compute S := T ∩ ⋂

q∈Q C(q). Then the most
specific types in S are identified by filtering out all classes that are a super class of another
class in the intersection. This yields T (Q) as {s ∈ S| 
 ∃s′ ∈ Ssubclassof (s′, s) ∈ O}.
As an example, consider the query Q = {Schwarzenegger, Stallone}, then the two
entities might share the types actor, AmericanActor and entity, but T (Q) may
only include actor (or AmericanActor in case it is also present in the set T ), thus,
enforcing the resulting entities to be some kind of actor.

However, T (Q) as computed above may be empty, e.g. because the entities do not share
any type within T , most likely due to faulty or missing information in the knowledge graph
or a fuzzy input. In this case, we compute T (Q) as T ∩∪q∈QC(Q), i.e. we intersect T with
the union of C(q) over q ∈ Q. In such a case the corresponding basic aspects will also be
added into A(Q), but their effect in some of the ranking approaches is reduced (see Section
5.5). As an example, consider the query Q = {Schwarzenegger, Terminator} that
combines an actor with a movie. As the only common type entity of the two query
entities would usually be too general, the initial computation of T (Q) yields an empty
set, and hence T (Q) would be set to include both actor and movie, provided both are
included in T .

Third, an important aspect is when to filter entities. Here, the most natural approach is
clearly to filter entities before they should be returned to the user, i.e., at the very end of the
processing. Unfortunately, this is not very efficient since many entities may be discarded.
We therefore propose to filter out maximal aspects that do not include at least one typical
type (or a more specific sub-type) as a basic aspect. This is more efficient since no results
are discarded after they were generated, but it could be less effective since some aspects
(and their entities) are excluded beforehand. We will examine the effects of late and early
type filtering in the experimental evaluation.

5 Finding similar entities

Let us now consider a QBEES retrieval task: Given a set of query entities Q, we want to
retrieve a ranked list of the k most similar entities R, where similarity is primarily defined
by aspects shared with the entities in Q.
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5.1 Entity similarity based on maximal aspects

Our approach is based on the fundamental observation that if A is a maximal aspect of q,
all entities e ∈ E(A) \ {q} are “maximally” similar to q wrt to a specific set of basic aspects
represented by A. Thus, for a given entity set Q, the most similar entities, in the aspect
sense, can be found in entity sets of maximal aspects of Q.

5.2 Maximal aspects support diversity and intent-awareness

As we observed in Section 1, one of the main problems to be addressed in the context of
suggesting or recommending a small set of items is the problem of the unknown intent of
the user submitting an ambiguous query.

This is especially important in the case studied here, where the query does not contain
any explicit query intent or user interest, since it is just a set of example entities without any
keywords or text that might suggest the actual user intent.

Thus, given a query set Q it is not obvious which properties of the given query entities
are important to the user and the system should carefully select the (low) number of returned
entities in order to maximize the chances that the implicit user interest behind the query will
be satisfied at least partially.

A typical solution in such cases is the diversity-aware approach, i.e. constructing the
result set so that it is diverse, in our particular case, it should represent multiple possible
interpretations of the implicit user interest.

In our approach, the user interests are naturally modeled by compound aspects of entities.
For example, the user may be interested in “American actors that are also politicians” or
“movie directors that are bodybuilders”, etc. Thus, returning an entity from an entity set of
any maximal aspect naturally covers some possible implicit user interest while keeping the
result maximally similar to the query set.

In addition, having the diversity awareness in mind, the concept of maximal aspect is
designed so that it not only expresses the closest similarity in aspect space but, importantly,
naturally provides diversity awareness.

We present this in the form of the following theorem:

Theorem 1 Let Q be a (query) set of entities and AQ 
= BQ be two different (non-empty)
maximal aspects of Q. Then, E(AQ) and E(BQ) do not share any entities, except those in
Q (i.e. (E(AQ) ∩ E(BQ) \ Q) = ∅).

Proof Assume, e ∈ E(AQ) ∩ E(BQ) for some entity e /∈ Q. This implies that e shares all
the basic aspects from both AQ and BQ. Let us introduce denotation CQ = AQ ∪BQ. Thus,
e shares all basic aspects from CQ what implies that e ∈ E(CQ). But, since AQ and BQ are
different and non-empty, CQ strictly contains both AQ and BQ what would contradict the
maximality property of them.

Due to the above theorem, the set of candidate similar entities to be returned is
partitioned by the entity sets of maximal aspects.

In other words, each new maximal aspect considered when computing the result set
brings at least one new entity to this result set (i.e. the entities are not repeated for differ-
ent maximal aspects). Avoiding redundancy in the result entity set can be viewed as one of
possible manifestations of diversity of the result set.
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Equivalently, in our model, each entity in the result set represents exactly one maximal
aspect of the query, which makes the interpretation of each resulting entity more clear.

Furthermore, selecting by the user an entity from the result set can serve as a kind of
relevance feedback in a possible interactive extension of our model to make it possible to
refine the results in an iterative way. Such an extension of our model deserves a separate
publication and is preliminarily presented and discussed in (Sydow et al. 2016; Sobczak
et al. 2015).

Notice that one of the main goals of diversity is to make it possible to refine the unknown
user need represented by an ambiguous query. Thus, entity sets of maximal aspects of Q

seem to be the right tool to guide the process of selecting a diverse set of entities that are
maximally similar to the query set Q and make it possible to refine the underspecified user
information need.

5.3 The algorithm

To solve the task, we select k entities with the following procedure (initially R = ∅):

1. Compute the family of maximal aspects M(Q) of Q.
2. Filter the maximal aspects by type constraints,
3. Rank the maximal aspects,
4. Pick the entity e not in Q ∪ R with the largest popularity pop(e) from the top aspect

A ∈ M(Q), add e to R, and remove A if E(A) does not include any entities not
included in R,

5. Repeat steps 3 and 4 until k entities are picked, i.e. |R| = k, or no aspects are left.

We will now give a short overview for each step, a more detailed explanation follows in
the next subsections.

1. Maximal aspects Given a set of entities Q, we first compute for each query entity
q ∈ Q the set of its basic aspects A(q). We then identify the aspects A(Q) shared by all
query entities: A(Q) = ∩q∈QA(q). If this intersection is empty, the query entities must be
of very different types (such as a person and a location), and we do not retrieve any similar
entities (in practice, this constraint can be loosened to deal with faulty data, see Sections 4.6
and 7). From A(Q), we can compute the corresponding family of maximal aspects M(Q).
Each such maximal aspect A ∈ M(Q) induces the set of entities E(A) that share a maximal
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set of properties with all query entities, but there may be multiple such maximal aspects.
We discuss our algorithm to identify maximal aspects in Section 5.4.

2. Type constraints It is a natural assumption that the selected entities should be of similar
type as the query entities. It would, for example, usually be intended that, given a city, the
result should be other cities and not, e.g., a country, even if they share the same river passing
through. Thus, for each query Q we determine a set of typical types T (Q) and consider only
maximal aspects that contain at least one such typical type (or a more specific sub-type) as
a basic aspect. We discussed how to compute T (Q) in Section 4.6.

3. Aspect ranking The resulting maximal aspects are of different specificity and thus
quality. For instance, a maximal aspect for Arnold Schwarzenegger might consist of
hasType(.,person) and hasBirthplace(.,Austria) while another one might
consist of hasType(.,GovernorOfCalifornia). Hence, we rank the maximal
aspects (see Section 5.5). Among other factors, this ranking takes into account the entity
sets of the maximal aspects aspects, but only the entities that have not yet been retrieved
as results. Thus the rank of an aspect can change whenever an entity from its entity set is
picked in step 4, hence the aspects are re-ranked in every step.

Depending on the application scenario a ranking method might need to introduce some
additional diversification, i.e. ensure entities are picked from different maximal aspects. In
that case, the rank of an aspect may depend on all entities already retrieved as results, which
is another reason why the aspects are re-ranked after each entity pick.

4. Picking an entity Similarly to aspects, the entities in the entity set of an aspect may
have different likelihoods of importance to a user, especially for relatively broad aspects.
Thus, we model the importance or popularity pop(e) for each entity e, that can be estimated
in various ways, including the knowledge graph structure or click information, etc. (see
Section 5.6). Once an entity has been picked from an aspect A’s entity set E(A), we check
whether the aspect can contribute more entities to the result R. If E(A) \ (R∪ Q) = ∅, we
call the aspect empty with respect to R and remove it; we will simply say that an aspect is
empty when it is clear to which set of entities we refer.

5.4 Finding maximal aspects

In order to identify maximal aspects, we need to consider all aspects that are subsets of
A(Q) and decide whether they satisfy the two conditions defining a maximal aspect. We
start by computing the set IA(Q) of aspects that satisfies the first condition: for each aspect
A ∈ IA(Q) it holds: A ⊆ A(Q) ∧ (E(A) \ Q) 
= ∅.

Let us assume n = |A(Q)| and that there are at most k entities in E. Now, for each
basic aspect a ∈ A(Q) we compute its entity set E(a), which we can do in O(n · k).
Then we consider the union U(A(Q)) of all entity sets of all basic aspects a ∈ A(Q), i.e.
U(A(Q)) = ∪a∈A(Q)E(a), the set of all entities that share at least one basic aspect with all
entities in Q.

Given U(A(Q)), we compute for each entity e in U(A(Q)) \ Q all basic aspects from
A(Q) that are also basic aspects of e, which we denote by AQ(e) := A(e) ∩ A(Q), i.e.
AQ(e) is the set of all basic aspects that e shares with all entities in Q. This can be done
again in O(n · k) by maintaining AQ(e) as a list or hash set for each entity and filling it up
by iterating over the elements of E(a) for all a ∈ A(Q).
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Now, this gives us the set of aspects IA(Q) = {AQ(e)|e ∈ U(A(Q))\Q} that are subsets
of A(Q) and whose entity sets contain another entity than Q. To find the subset of maximal
aspects, we need to check the second maximality condition, i.e. maximality wrt inclusion.
Hence, we remove all subsuming aspects from IA(Q), i.e. we remove all A ∈ IA(Q) for
which ∃B ∈ IA(Q) such that B ⊃ A. If we assume r = |IA(Q)|, then this requires to
check at most r aspects against r aspects (O(r2)) and we remove at most r elements (O(r)).
Thus the whole operation takes O(r2 + r), and in total with the first condition this makes
O(n·k+r2+r). While r is theoretically bound by k as well as 2n, in practice the knowledge
graph is not that dense, such that the real values are much smaller. In fact, the crucial part
is the first component (O(n · k)), as the number of entities for some basic aspects can be
relatively large. In particular, retrieval of the entity set for each basic aspect is crucial as this
requires database access, which is why we cache entity sets in a most-recently-used cache.

Claim: This procedure provides us with the maximal aspects: IA(Q) = M(Q). Proof:
1) For each AQ(e) ∈ IA(Q) there is some e ∈ E(A) that generated A with e 
∈ Q by
construction. 2) By the filtering of subsuming aspects, each aspect A left in IA(Q) cannot
be extended with other basic aspects without violating requirement 1), as this would mean
there is a maximal aspect not in IA(Q). 3) Completeness: There cannot be a maximal aspect
which we do not generate as a candidate this way. Assume that there is a maximal aspect B

such that B 
∈ IA(Q). Then ∃e ∈ B such that e 
∈ Q (otherwise it is not a maximal aspect)
and B ⊂ A(Q) (otherwise not an aspect of Q). Hence, e ∈ U(A(Q)) and thus, e generates
a candidate aspect C := AQ(e). Then either

– C = B, then B ∈ IA(Q),
– or C ⊃ B, then B is not a maximal aspect, as it subsumes C,
– C ⊂ B cannot be, as e ∈ B, thus, e satisfies all basic aspects of B and hence B ⊆ C as

C is generated by e.

If IA(Q) is empty, there are no maximal aspects, because no entity not in Q shares any
property combination with all entities in Q, this follows by completeness of IA(Q). In such
a case we cannot provide results; we will discuss in Section 7 how to extend this model such
that we can also deal with this case.

5.5 Aspect ranking

Given a set of query entities Q, we investigate four different ranking approaches based on
three general intuitions that we discuss in the following.

First, a (basic or compound) aspect A that represents popular entities might be considered
more useful for the average query than an aspect representing only entities that are hardly
known. Given an estimator for the popularity of an entity, pop(e) (see Section 5.6) , the
popularity pop(A) of aspect A can be estimated as the aggregated popularity of its entities,
i.e., pop(A) = ∑

e∈E(A) pop(e). It is clear that the larger the entity set, the larger the
popularity usually will be. Instead of plain popularity, we further normalize by the number
of entities, thus focusing on popularity density and giving higher weights to specific aspects.
This yields our simple popularity based ranker:

spop(A) := pop(A)

|E(A)| (1)

Second, a compound aspect might be considered interesting if it represents a small num-
ber of entities, whereas most of its component aspects represent many entities. To formalize
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this, we first estimate the value val(b) of a basic aspect b as a normalized version of the
number of entities it represents, i.e., val(b) = 1− 1

|E(b)| (which is close to 1 for aspects with
many entities). Based on this we can estimate the value of a compound aspect A by the sum
of the values of its components, i.e., val(A) = ∑

a∈A val(a). We normalize this as follows

nval(A) = val(A)
∑

B∈M(Q) val(B)
(2)

This alone will prefer aspects with many general properties. To give more weight to aspects
that represent a rare combination of basic aspects, we combine the normalized value with
the size of the aspect, yielding

cost (A) := 1

|E(A)| × nval(A) (3)

Third, we consider how much of Q’s basic aspects an aspect covers, giving more weight
to compound aspects that combine many basic aspects. Here, we weigh a basic aspect a by
its selectivity sel(a) = 1

|E(a)| , i.e., we give high weight to basic aspects with few entities. We
then consider the ratio ratio(A,B) between two (compound) aspects A, B where A ⊆ B,
which is defined as follows:

ratio(A, B) =
∑

a∈A∩B sel(a)
∑

b∈A∪B sel(b)

A⊆B=
∑

a∈A sel(a)
∑

b∈B sel(b)
(4)

This yields two ranker variations, one pure version only based on this ratio ‘distance’
(distp) and one that combines the ratio with the popularity represented by the aspect (dist).

dist (A) := ratio(A,A(Q)) × pop(A)

distp(A) := ratio(A,A(Q)) (5)

As shown in Section 7, in some cases we allow aspects to be included in A(Q) even
if they are not shared by all entities in Q. For each such basic aspect b the selectiv-
ity sel(b) is weighed by the ratio of entities in Q that share the aspect b, i.e. sel(b) =

1
|E(b)|

|{q∈Q|b∈A(q)}|
|Q| . The same holds for val(b) analogously.

5.6 Entity popularity

When selecting an entity in step 4 of our algorithm, we prefer entities with high popularity.
In our model, the popularity pop(e) is a numerical value in the interval [0, 1], where a higher
value represents a higher estimated popularity, and

∑
e∈E pop(e) = 1. We currently provide

two different estimators for the popularity pop(e) of an entity e, a graph-based estimator
and a click-based estimator. The graph-based estimator uses the stationary probability of an
entity in a global random walk on the knowledge graph to estimate its popularity. Similar
node importance measures inspired by PageRank (Brin and Page 1998) have been applied
in many graph applications. As a big advantage, it does not use any information outside the
graph and can therefore be applied to any knowledge graph. We consider the undirected
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version of the knowledge graph, i.e., a graph that has the same vertices as KG and an edge
set W ′ that contains an edge {u, v} whenever an arc from u to v or from v to u exists
in W . We chose this undirected representation since each arc in the knowledge graph has
a corresponding natural inverse arc (e.g., a hasBirthplace arc has the natural inverse
isBirthplaceOf) that may not be explicitly modeled in KG. The recursive definition
of our graph-based popularity measure popG(e) is then

popG(e) = ε

|E| + (1 − ε)
∑

f :{e,f }∈W ′

popG(f )

deg(f )

where deg(f ) is the degree of vertex f . We iteratively solve this equation through a power
iteration implemented in Apache Giraph,2 setting ε = 0.15.

For the YAGO knowledge base used in our experiments, we can exploit that it was
created from Wikipedia and a mapping from YAGO entities to Wikipedia articles is straight-
forward. For Wikipedia, click frequencies for each page are available,3 from which we can
derive click frequencies c(e) for each entity e in YAGO, setting c(e) = 1 for entities that
cannot be mapped to Wikipedia. The click-based popularity popC(e) of entity e can then
be computed as

popC(e) = c(e)
∑

e′∈E c(e′)

In our experiments, we aggregated click statistics for August 2012, December 2012, and
May 2013.

Our entity popularity estimators do not take the query into account, hence the popular-
ities are independent of the query and the aspect. In some cases we may therefore be led
astray picking a globally popular entity from an aspect unrelated to the reasons why this par-
ticular entity is famous. For instance, we may pick Angela Merkel before Marie Curie from
an aspect about female scientists since our popularity estimate is larger for Angela Merkel
than for Marie Curie. However, Angela Merkel is usually considered popular as German
chancellor and not for her earlier career as a chemist, while Marie Curie would much more
likely be associated with her scientific achievements. While such an aspect-dependent pop-
ularity measure is an interesting topic for future work, in most cases a global popularity
estimate is a good basis for selecting relevant entities; for instance, it has been a well proven
component in the form of PageRank in traditional web search.

Note that we exploit entity popularity not only for ranking entities, but also for ranking
aspects where we prefer, in some variants of our ranking method, aspects that contain many
popular entities. This is driven by the assumption that a user might rather have aspects in
mind that contain on average more well-known entities.

6 Relaxing aspects

Our algorithm from Section 5.1 removes a maximal aspect as soon as all its entities are
picked. This is desired when we aim at retrieving only the most similar entities from each
‘similarity branch’ represented by the different maximal aspects. However, if only the now

2http://giraph.apache.org/
3http://dumps.wikimedia.org/other/pagecounts-raw/

http://giraph.apache.org/
http://dumps.wikimedia.org/other/pagecounts-raw/
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empty maximal aspect reflects the user’s general information need, entities from any other
maximal aspect may be non-relevant, and if we want to retrieve all relevant entities we
might need to explore this branch further. As an example, consider a now empty maxi-
mal aspect A1 = {hasType(.,actor), bornIn(.,Austria), actedIn(.,The
Terminator)} corresponding to “Actors born in Austria that starred in Terminator”. If
the user is interested in all actors that appeared in Terminator, we will potentially miss all
non-Austrian actors. Thus, we want to allow a relaxation of the now empty maximal aspect’s
constraints to cover more entities of the same branch of similar entities.

A first approach towards relaxation is removing one or more aspects from an empty
maximal aspect, until the resulting set(s) of aspects are maximal again, now in a slightly
modified sense. We extend the notion of maximal aspects M(Q) to M(B, Q′) allowing to
restrict the set of basic aspects that can be included in a maximal aspect as follows. Given
a set of basic aspects B and a set of entities Q′, we define the set M(B, Q′) of maximal
aspects constructed from the basic aspects in B relative to the entities in Q′ such that for
any aspect A ∈ M(B, Q′) it holds: 1) E(A) contains at least one entity not in Q′ 2) A is
maximal wrt inclusion 3) A ⊆ B. With this notation, the set of maximal aspects for a set Q

of entities as introduced in Section 4 can now be written as M(A(Q),Q).
To relax an empty maximal aspect A we take the original query entities Q and all entities

in R (which are already picked as result) into account and compute M(A, Q ∪ R), which
can be done with the algorithm from Section 5.4. This yields a new set of additional maximal
aspects which are all subsets of A that can be added to the set of ranked aspects, given they
satisfy the type constraints. We call this approach recursive plain or short rec. Note
that at any time all aspects considered are maximal with respect to Q ∪ R.

A second approach towards relaxation exploits any type aspects that may be included
in the empty maximal aspect. As we discussed in Section 4.4, we include only the
most specific common types in a maximal aspect. Relaxation is now an opportunity to
replace a type with a more general type, according to the type hierarchy S. As an exam-
ple, consider the case where A represents “Austrian actors that appeared in Terminator”,
i.e., A = {hasType(.,AustrianActor), actedIn(.,Terminator)}. Using the
approach explained before, we could only find {hasType(.,AustrianActor)} or
{actedIn(.,Terminator)} as new maximal aspects. We now exploit the fact that
AustrianActor is a subclass of actor and relax hasType(.,AustrianActor)
to hasType(.,actor). This yields the new maximal aspect {hasType(.,actor),
actedIn(.,Terminator)}. Formally, to relax an empty aspect A including type relax-
ation, we first extract all type aspects T ⊂ A, then consider all aspects T ′ with more general
types according to S. The new set of maximal aspects to replace A is then computed as
M(A ∪ T ′,Q ∪ R). We refer to this relaxation strategy as recursive full or short
recf. While this approach helps to increase the overall recall, it is also quite costly since a
large number of potential maximal aspects must be checked.

In an attempt to include type relaxation while keeping the runtime cost of relaxing a
maximal aspect low, we suggest a heuristic that only considers a single relaxation step
looking for new maximal aspects, but also considering type relaxation in an ad-hoc fashion.
This one-step approach relaxes an aspect A by individually considering each basic aspect
a ∈ A and verifying if an aspect A′ yielded by relaxing a is a maximal aspect with respect
to Q ∪ R. A basic aspect a is either relaxed by dropping it, or by replacing its type by a
direct super type in case a is a type aspect. Note that if there are multiple direct super types
for the type of a type aspect, we generate a relaxed aspect A′ based on each such direct
super type. Algorithm 2 summarizes this approach. We refer to this approach as 1-step.
Figure 1 illustrates the above variants of relaxation.
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7 Dealing with incomplete knowledge bases and inconsistent examples

In the discussion so far, we always assumed that the underlying knowledge base was com-
plete, i.e., that it represented all important facts for an entity needed for finding similar
entities. In practice, this is often too optimistic. Recent facts about entities (such as recent
movies of an actor) may be missing, old information (such as the position of a politician)
may not be updated, and type assignments may be incomplete (such as animated cartoons
being assigned to movies or cartoons, but not both) or even wrong (possibly caused by con-
fusing an entity with another that has the same name). When facing such problems, the
intersection of the basic aspects of hint entities will often include only very generic aspects,

Fig. 1 Relaxing Aspects variations
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e.g., type(.,entity) or wasBornOn(.,?) and thus will generate huge amounts of
entities, most of which will be useless for the user.

A second source for such problems are inconsistent examples given by the user. Since
the user is unaware how an entity is internally modeled, she may provide examples that are
totally different in nature. For example, consider topic 67 from the INEX 2007 benchmark
used for the evaluation in Section 8 that asks for “Ferris and observation wheels”, including
the Sky Dream in Fukuoka (modeled in the YAGO knowledge base as an attraction without
any further non-type facts), the London Eye (modeled as a building, with facts about height
and creation date), and the Wiener Riesenrad (also modeled as a building). If these three
examples are given, they have nothing in common except the type “entity”, even though
they are very similar for a user, and our method will not retrieve any useful entity as the
maximal aspect generates way too many entities to rank them in a useful way. Relaxation
as explained in the previous section cannot help here since there is nothing to relax in a
maximal aspect consisting only of the most general type. Formally, we say that a maximal
aspect is too large if it generates too many entities, where the actual limit is a parameter
that is set to 10,000 in our system.

We solve this problem by loosening the requirements for shared aspects if all maximal
aspects produced by our method are too large. In this case, we also consider basic aspects
that are not shared by all |Q| example entities, but by |Q| − 1, and recompute maximal
aspects for this set of basic aspects. We keep lowering this share threshold until at least
one maximal aspect is produced that is not too large; this is always the case when the share
threshold reaches a value of 1 unless none of the example entities has at least one specific
fact; in that rare case, it would be impossible to generate useful results anyway.

In the example above, we will ignore the maximal aspect constructed from all three
examples, and will create maximal aspects based only on the London Eye and the Wiener
Riesenrad, ignoring the Sky Dream. Note that, with examples that are not inconsistent, but
for which the knowledge base is incomplete, it is possible that multiple maximal aspects are
created based on basic aspects shared by different subsets of the examples’ basic aspects.
We can therefore deal with both incomplete knowledge bases and inconsistent examples.
We will demonstrate the value of this in Section 8.2.6.

8 Evaluation

8.1 Setup

We use the “core” variant of the Wikipedia-based general knowledge base YAGO2 (Hoffart
et al. 2013) in version 2.3.0 as the underlying knowledge graph for the following evalu-
ation. We ignore the following meta-relations: hasGloss, hasPreferredMeaning,
hasPreferredName, hasWikipediaUrl, isCalled, means, subclassOf,
subpropertyOf.

Bron et al. (Bron et al. 2013) introduced three data sets, two of which are based
on data from the INEX 2007 and INEX 2008 entity-ranking track respectively, while
the third consists of topics from the search challenge of the Semantic Search Workshop
2011 (SemSearch’11). Each data set consists of several topics, to which entities have
been assigned with graded relevance assessments. In the same spirit, we created two
new data sets based on the QALD (Question Answering over Linked Data) evaluation
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Table 2 Number of topics and
queries per Dataset Dataset #topics #queries

inex2007 23 862

inex2008 48 1729

semsearch2011 39 1449

qald3 21 771

qald4 23 836

campaign,4 more precisely the dbpedia-train-answers data set from the QALD 3 cam-
paign and the qald-4 multilingual train withanswers data set from the QALD 4 campaign.
Among the queries in the original data sets we used those whose answers contain multiple
entities from DBpedia (i.e., those containing the properties answertype="resource",
aggregation="false", onlydbo="false"). We transformed the filtered queries
to the same format as queries from INEX. The questions in English were used as the topics
(needed for Bron et al.) and the answers as gold standard.

We mapped the original entities (given as DBpedia URIs) to YAGO where possible and
removed them otherwise, removing topics where no or only one relevant entity was left.
We use the data set from INEX 2007 (inex2007) to analyse our model variations in Sec-
tion 8.2 and the data sets from INEX 2008 (inex2008), the Semantic Search Workshop
(semsearch2011), QALD3 and QALD4 as test data to compare our approach against a ran-
dom walk with restart and the approach introduced by Bron et al. (Bron et al. 2013) in
Sections 8.3.1 and 8.3.2. We randomly generate example entity queries of different query
size, i.e. number of example entities, for each topic, where the examples are taken from the
ground truth. In particular, we generate up to ten distinct queries per query size for sizes 1
to 5, if possible, i.e. as long as there remains at least one other relevant entity (see Table 2).

As evaluation measures, we use mean average-precision (map), mean normalized dis-
counted cumulative gain (mndcg), precision, recall, and mean reciprocal rank (mrr) for
rankings of length 10 and 100. Precision is the fraction of relevant entities in a ranking over
the length of the ranking, recall the number of relevant entities in a ranking over all relevant
entities to be retrieved. The average precision (ap) for a query is the sum over all precision
values measured at ranks where a relevant entity has been returned divided by the number
of relevant entities. The reciprocal rank (rr) is based on the first rank r that provides a rele-
vant entity, based on this the reciprocal rank is 1/r . The discounted cumulative gain (dcg)
measures the information gain for a ranking of length n by summing up the relevance reli
of the results at each rank i before n, however, the contribution is discounted on a logarith-
mic scale ( reli

log2(i)
). To compute the ndcg a ranking’s dcg value is normalized by the dcg of

a perfect ranking. The mean version of ap, ndcg and rr is computed by averaging over a set
of topics (Manning et al. 2008); in our case, we average over all queries of a data set with
the same number of example entities. The assessments for semsearch2011 are graded with
values from 0 to 2, but we assume a relevance threshold of 1 for computing map, i.e. any
assessment other than 0 was considered relevant. For all computations, the example entities

4http://qald.sebastianwalter.org/. The preprocessed datafiles used in our experiments are available on e-mail
request.

http://qald.sebastianwalter.org/
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were not retrieved by the algorithms and not considered for recall-based measures; as a con-
sequence, results for different numbers of examples cannot be directly compared since the
queries and the ground truth are different.

8.2 Model analysis

In this section we present the result of an analysis of several components of our model using
the inex2007 data set.

8.2.1 Entity importance estimation

We first evaluate the impact of the two entity importance estimators from Section 5.6. As
clearly visible in Fig. 2, the Wikipedia click based importance estimation (+wi versions)
is always more effective in supporting the rankers than the knowledge graph based ran-
dom walk estimator (+rw versions). Hence, we use the Wikipedia page clicks for entity
importance estimation in the following experiments.

8.2.2 Type filtering

We now compare the effect of the the different variants for filtering results by type dis-
cussed in Section 4.6. The main alternatives are when to filter (late, i.e., filter on the level
of results; early, i.e., filter on the level of maximal aspects; none, i.e., do not perform
any type filtering) and what to filter. For early filtering, we consider the two variants used
in the original QBEES paper, i.e., filtering out a manual set of types (early+manual)
or generic types and types derived from Wikipedia categories (early+gen+wiki), fil-
tering out general types with more than 100000 entities (early+>100000), and no type
filtering, i.e., simply making sure that each maximal aspect includes at least one type aspect
(early+none). For late filtering, we examine the two thresholds 10,000 and 100,000; a
result entity is filtered out if its most specific type includes at least that many entities.

Figure 3 shows MAP and nDCG results for dist, results for other measures and other
rankers are similar. It is evident that late filtering performs best for small numbers of
examples, but it is also very inefficient since many potential results are filtered out after
computing them. Early filtering is more efficient, and the different variants perform very

Fig. 2 Importance Estimators Top10 for INEX2007
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Fig. 3 Type Filtering Variants on Top100 for INEX2007

similarly. Interestingly, no type checking at all performs best when at least two examples
are given. For the remainder of the experiments we thus use a hybrid type filtering approach
that, for one-example queries, uses early filtering of general types, and does not perform
any type filtering otherwise (indicated as dist).

8.2.3 Type constraints

As the original topics of the INEX data sets come with target categories for the entities based
on Wikipedia categories, we automatically mapped these to YAGO Wikicategory classes
where possible and used them as a constraint, comparing this to identifying typical types as
constraints with our method from Section 4.6. In cases where the category mapping failed,
we fall back to our type finding approach for determining constraint types.

Figure 4 compares the results of this topic category based approach(+cats versions)
with our type finding approach(+tf versions) introduced in Section 4.6. The results show
that our own method performs better than the manually selected query categories. The rea-
son for this is that the categories are too specific in general, and YAGO is unfortunately also
quite incomplete in this perspective, such that the category constraints often filter out too
many entities that just lack the specific type assignment within YAGO.

Fig. 4 Topic Constraints Top10 - INEX2007
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8.2.4 Ranking benefits

As a baseline providing a lower bound for the ranking approaches, an additional random
ranking variant has been implemented that simply selects entities randomly from all maxi-
mal aspects. If we compare (see Fig. 5) the result quality of the random ranking with that of
the other ranking approaches, we can see that all our approaches indeed perform better than
a random ranking and thus, the ranking component is shown to be a substantial component
in our approach besides the maximal aspect pre-filtering.

8.2.5 Relaxing aspects

In Section 6 we discussed three aspect relaxation strategies that relax an empty maxi-
mal aspect when more entities are needed. Here we compare the result quality among the
different relaxation strategies and put these into perspective by comparing against the non-
relaxing variants. As the relaxing approaches aim at providing more entities in the long run,
we also look at how they compare at longer rankings of size 100. For simplicity, only the
relaxing variations of three ranking approaches cost, dist and distp are compared,
leaving spop out. As for the relaxing strategies, we compare the one-step approach ( step),
the recursive approach with specific types ( rec) and the recursive approach using full type
aspects ( recf).

Figures 6 and 7 provide the MAP and nDCG values for rankings of length 10 and 100,
and Figs. 8 and 9 provide recall and average ranking length for rankings of length 10 and
100.

When looking at the MAP and nDCG values, it is clearly visible that compared to the
non-relaxing variants, the relaxing approaches provide a better result quality, especially
when considering longer rankings. Amongst the relaxing variants the fully recursive ( recf)
version of each ranking approach often leads the field by most measures, while the one-step
heuristic and rec achieve nearly the same quality and lie close together. Note, however,
that the run-time for the recursive approaches, especially with all types, can be significantly
larger (see Section 8.2.7).

Considering the recall (see Figs. 8 and 9), it is evident that a (and probably the) main
reason for the supreme result quality of the relaxing approaches is a larger overall recall.
Especially in the long-tail the recursive relaxing approaches gain the most by additional

Fig. 5 Ranking Approaches vs Random Ranking Top-10: MAP (left), nDCG (right) for INEX2007
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Fig. 6 Aspect relaxation variations Top-10: MAP and nDCG for INEX2007

Fig. 7 Aspect relaxation variations Top-100: MAP and nDCG for INEX2007

Fig. 8 Aspect relaxation variations Top-10: recall and average ranking length for INEX2007

Fig. 9 Aspect relaxation variations Top-100: recall and average ranking length for INEX2007
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relevant entities as indicated by Fig. 9. The main reason for this is that they retrieve
more entities overall, shown by much larger average ranking lengths than the non-relaxing
versions produce.

8.2.6 Impact of share thresholds

Share thresholds were introduced before to cope with inconsistent examples or missing
information in the knowledge base, which can result in maximal aspects too large to be
useful. Figures 10 and 11 show the impact of using share thresholds on MAP and nDCG on
the inex2007 data set, with and without additional one-step relaxation. The runs with share
thresholds are marked with +st.

It is evident from the figures that MAP and nDCG increase a lot for five example entities.
At the same time, additional relaxation can further improve result quality for top-100 results;
this additional benefit is enabled only by the smaller maximal aspects now generated. For
fewer results, the effect is less pronounced, and for just one example, share thresholds can-
not make a difference. Using recursive relaxation instead of one-step relaxation provides
only minor additional improvements; we do not present these results for space reasons. Due
to this big advantage, the combination of share thresholds and relaxation (usually one-step
due to runtime advantages) will be the method of choice.

Table 3 summarizes the impact of share thresholds on the query execution. The table
shows, for each number of examples, how many queries were evaluated with a given final
share threshold. As an example, for queries with five examples, only for 74 of the 174
queries maximal aspects constructed from aspects shared by all five examples were used;
for 24 of these queries, aspects shared by only two entities were finally used to generate
results. The majority of these cases is rooted in the incompleteness of YAGO or inconsistent
examples in the benchmarks (where some results labeled as relevant in the ground truth
clearly do not match the intent of the topic, such as the entity “Giacomo Casanova” for
the topic on movies about Venice); only a minority is caused by problems mapping entities
from DBPedia or Wikipedia to YAGO. This clearly shows the need for loosening the strict
requirement of aspects being shared by all examples.

8.2.7 Performance

Components We implemented our method in Java 8, storing the YAGO ontology in a Post-
greSQL 9.5 database. To analyze the performance of our approach, we selected 200 queries
from the INEX 2007 data set and processed them in random order to mimic a reasonably
realistic workload. We ran every test 3 times and averaged the runtime measures over all 3
runs. All tests were run as a single thread on an Intel 6700K processor (4GHz) with 4 cores

Fig. 10 Share Threshold, Top-10: MAP and nDCG for INEX2007
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Fig. 11 Share Threshold, Top-100: MAP and nDCG for INEX2007

and 16 GB main memory. The data was served from a Postgres 9.5 database run on the same
machine under Windows 10.

We first aim at identifying the critical components for runtime. We analyze the time
needed for A) retrieval of the entity sets of all basic aspects of A(Q), B) the computation
of the set IA(Q) generated by the entities of A(Q), C) the computation of maximal aspects
by applying the subsumption test on IA(Q), and D) the ranking and selecting of entities.
Table 4 provides the averaged results. Note that for this experiment, every query is run with
a cold cache, i.e. after each query the system is completely restarted. The variant used no
relaxation and the distp ranking. Note that when measuring the run-times we left out the
initialization phase setting up the system once for all queries, in which, for instance, caches
are initialized, the connection to the database established and tested and the type hierarchy
is loaded into main memory; this holds for this and the next test.

It is evident that the most crucial aspect is the retrieval of data from the database dwarfing
all computations. Hence, we make use of caching for the entity sets of basic properties in
the following experiment, where at most 10G of the machine’s main memory are used for
caching.

Performance of rankers We now want to evaluate the average performance of the dif-
ferent rankers for the 200 queries. Caching is activated for this analysis, but the cache is
empty at the very first query for each ranker to provide a realistic setting. As the com-
putation took place on a shared infrastructure, we ran the test 3 times and averaged the
runtime measures over all 3 runs. Figures 12 and 13 show the average time it takes to com-
pute the top-10 and top-100 results, respectively, for a single query for different settings of
our model: cost and distp are the different ranking approaches with all the default set-
tings discussed before without relaxation; results for dist and spop are very similar. The
1step variants relax using the one-step heuristic, the rec variants use recursive relax-

ation, the recf variants use recursive full relaxation, the st variants have share threshold

Table 3 Effective Share
Thresholds used for INEX 2007
queries (top100 results)

# ex. Thresh=1 Thresh=2 Thresh=3 Thresh=4 Thresh=5 Overall

1 163 163

2 67 134 201

3 20 18 150 188

4 3 45 22 100 170

5 0 24 24 18 74 140
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Table 4 Runtime Contribution
of components Component Average time spent

entity set retrieval 2.22 sec

computing aspect candidates 0.12 sec

maximal aspect computation 0.06 sec

ranking and selection 0.32 sec

enabled, and the st 1step variants use one-step relaxation with share threshold enabled.
The chart shows average time overall queries (’avg’ on the left) and averages over queries
with a certain number of examples (’avg-i’).

The results show that, as long as we are not using recursive relaxation, our approach
provides results relatively fast within a few seconds. Clearly the best performance show
the variants that make use of share thresholds, where advantage is most obvious for larger
numbers of examples. For these queries, maximal aspects without share thresholds are often
very huge, hence much data must be loaded for ranking the entities in these aspects. With
share thresholds, more, but smaller maximal aspects are generated, hence the time to rank
the entities is smaller.

Our straight-forward implementation of the Bron et al. approach takes about 30 seconds
per query when evaluated against precomputed per-term index lists loaded from disk for the
content part of the score and loading entity information from a database for the structural
part. While we did not measure the runtime of our random walk implementation within
the same setup, we can safely say that on average the time to process a query is above 1
minute. However, note that both our implementations for bron-hybrid and for the ran-
dom walk are simple and not performance-optimized, such that better performance results
may certainly be possible. Still, there is also room for improvement with our own approach.
With some improvement and the right underlying architecture, that, for instance, loads the
ontology in its entirety into main memory, real-time processing for an interactive setting is
possible, at least with our faster approaches.

Fig. 12 Average runtimes for top-10 results over 200 queries
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Fig. 13 Average runtimes for top-100 results over 200 queries

8.3 Comparison to competitors

8.3.1 Evaluation on INEX 2008 and SemSearch

We now compare result quality on the inex2008 and semsearch2011 data sets with dif-
ferent variants of our approach to two state-of-the-art competitors: (1) a random walk
with restart (RWWR) at the query nodes, (rwalk:c, rwalk:tf, rwalk:n) as a graph-
based baseline, and (2) the hybrid approach suggested by Bron et al. in (Bron et al. 2013)
(bron-hybrid), since this provides the best results combining a structural score based on
the example entities and a textural score based on a short query description. Similar to the
random walk used for estimating entity popularity in Section 5.6, in an RWWR a random
surfer traverses the knowledge graph in random movements from entity to entity, start-
ing at a randomly selected query entity. With a probability of β, the random surfer jumps
directly to a query entity selected uniformly at random instead of following an edge. We
computed an approximate solution of the recursive equation of the RWWR in an in-memory
implementation with a random jump probability of β = 0.15 and stopping after 100 steps,
ignoring all relations that include literal arguments. Note that for the RWWR we option-
ally apply a filter on resulting entities, either using the categories provided in the INEX
data set for the topic where possible (‘:c’ versions) or using our own typical type identifica-
tion approach(‘:tf’). For the structural component of the Bron et al. approach we leave out
means and isCalled facts and the 10 most generic types, all with more than 100,000
instances.

Based on our model analysis findings, we investigate two settings in the following. First,
we consider an online, precision-oriented setting with a focus on top-10 results. Second, we
consider an offline, recall-oriented setting where we consider the top-100 results. For both
settings, we use the 1-step relaxation using only specific types and shared thresholds, since
this is clearly the best compromise of result quality and runtime.

Figures 14 and 15 show the map and mndcg values for our approaches as well as the
competitors on the inex2008 and semsearch2011 data sets for both ranking-length variants.
As the results show, all our approaches behave similarly well, with spop lagging somewhat
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Fig. 14 Approach Comparison one-step relaxing versions Top-10

behind the other variants, in particular in the semsearch2011 data set, probably mislead by
maximal aspects with popular entities not relevant for the query. However, as soon as at
least two examples are given, our stronger variants outperform all competitors. The random
walk benefits strongly from entity filtering (‘:c’,‘:tf’ versions vs ‘:n’ version), which, based
on the wide spread of entities the random walk covers as candidates, seems logical. Note
that not all topics have enough entities to produce queries for all query sizes, hence the topic
base changes from size to size.

When we consider the offline setting with the longer rankings, we can see a similar pic-
ture, our stronger approaches outperform all competitors in most cases with a few exceptions
where bron-hybrid or the random walk with type filtering reach the same quality level.

While our results for the approach by Bron et al. indicate a slightly lower quality (i.e.
lower map values) than what was reported in (Bron et al. 2013), this is not a contradic-
tion. First, our queries differ as we generated them independently. Second, our underlying
knowledge graph differs and most importantly by mapping to YAGO and ignoring entities
that could not be mapped the set of relevant entities is smaller, thus, if the distribution of
relevant results in rankings is similar, this typically leads to lower measurements for map.

8.3.2 Evaluation on QALD datasets

We evaluated our approach and our competitors on the newly created datasets qald3 and
qald4. The results are presented in Figs. 16 and 17.

Fig. 15 Approach Comparison one-step relaxing versions Top-100
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Fig. 16 Approach Comparison: MAP and nDCG for Top-10 on QALD datasets

The experimental results on the QALD data sets are essentially similar to the results
achieved on inex2008 and semsearch2011, but absolute values for map and mndcg are much
higher. This can be explained by the fact that QALD uses structural (SPARQL) queries to
define the ground truth for the topics, and a maximal aspect essentially corresponds to a
SPARQL star-shaped query. Our aspect-based method therefore can, for many queries, gen-
erate exactly the indented structural query representation. Another clear evidence for this is
the fact that only about 25 % of all qald queries with five examples require a share threshold
below five, i.e., their maximal aspects constructed from aspects shared by all examples are
too large; for inex2007, 50 % of the queries with five examples showed this behavior. Our
method does not work similarly well for all queries since some are too complex to represent
as an intersection of basic aspects, for example queries including unions and linear queries
with diameter of at least one. Extending our framework to also support these more complex
structures is an interesting topic for future work.

Comparing to Bron et al., our methods are almost always clearly better, with the excep-
tion of top-100 for one-example queries on qald3; this means that our methods can usually
better pick up the underlying structure of the results. Comparing to the random walk with
restart combined with our type filter, the difference is smaller, but still our methods perform
better (and, as an additional advantage shown before, are a lot faster than the random walk).

This advantage in terms of result quality directly translates into an advantage in terms
of mean reciprocal rank (mrr), shown in Fig. 18. Independent of the number of example

Fig. 17 Approach Comparison: MAP and nDCG for Top-100 on QALD datasets
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Fig. 18 Approach Comparison: mrr for Top-10 on qald3 and qald4

entities, our methods retrieve the first relevant result always earlier than any of the com-
petitors. Our methods are therefore useful for a user who aims at finding quickly a relevant
result.

9 Conclusion

In this paper we discussed our facet aware aspect based entity similarity model in detail and
extended it by recursive relaxation of the aspects to expand the search space. We also dis-
cussed an approach for dealing with incomplete knowledge bases and inconsistent example
entities. We evaluated various system settings in the context of set completion tasks. While
our evaluation shows that our system outperforms state of the art models in terms of pre-
cision and recall based measures for several benchmark collections, we also showed that
finding the right constraint types can be an important part of the problem.

However, there remain several interesting directions for future work. While our entity
popularity estimators achieve good results, they are query-independent, and it would inter-
esting to extend them towards identifying not only globally popular entities but predicting
representative entities for a chosen aspect. Similarly, aspect selection could be guided by
identifying aspects that are more commonly associated with the query entities than others.

The experiments on the QALD collections have shown that, while the model is already
well performing in many cases, there are a number of interesting paths for making it
more powerful, including support for more complex aspects that span multiple facts and
disjunctive combinations of aspects.

Another interesting direction is to apply the aspect-based approach to model user inter-
ests in other entity-related applications on semantic knowledge graphs, including the entity
summarization problem. There are other use cases, like interactive navigation, that might
require amendments and offer additional opportunities. It would be also interesting to eval-
uate how well our approach adapts to other knowledge graphs with richer knowledge, and
how schema information could be exploited.

Acknowledgments This work was partially supported by Polish National Science Centre grant “DIS-
QUSS” 2012/07/B/ST6/01239. We would like to thank Grzegorz Sobczak for providing additional experi-
mental evaluation results of QBEES on the QALD3 and QALD4 data sets, his work was supported by the
European Union under the European Social Fund Project PO KL “Information technologies: Research and
their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.



J Intell Inf Syst

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Agarwal, A., Chakrabarti, S., & Aggarwal, S. (2006). Learning to rank networked entities. In KDD, pages
14–23.

Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search results. In WSDM, pages
5–14, New York, NY, USA. ACM.

Albertoni, R., & Martino, M.D. (2008). Asymmetric and context-dependent semantic similarity among
ontology instances. J. Data Semantics, 10, 1–30.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). DBpedia: A nucleus for a
web of open data Aberer, K., et al. (Eds.) In The Semantic Web, volume 4825 of LNCS, pages 722–735.
Springer Berlin Heidelberg.

Balog, K., Bron, M., & de Rijke, M. (2011). Query modeling for entity search based on terms, categories,
and examples. ACM Trans. Inf. Syst., 29(4), 22.

Balog, K., Serdyukov, P., & de Vries, A.P. (2011). Overview of the TREC 2011 entity track. In TREC.
Bollacker, K., Tufts, P., Pierce, T., & Cook, R. (2007). A platform for scalable, collaborative, structured

information integration. In In Intl. Workshop on Information Integration on the Web (IIWeb’07).
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer

Networks, 30(1-7), 107–117.
Bron, M., Balog, K., & de Rijke, M. (2013). Example based entity search in the web of data. In ECIR, pages

392–403.
Demartini, G., Iofciu, T., & de Vries, A.P. (2009). Overview of the INEX 2009 entity ranking track. In INEX,

pages 392–403.
Haveliwala, T.H. (2003). Topic-sensitive PageRank: A context-sensitive ranking algorithm for web search.

IEEE Trans. Knowl. Data Eng., 15(4), 784–796.
Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures

on the Semantic Web. Morgan & Claypool Publishers.
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