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Abstract. Facility Dispersion Problem, originally studied in Operations Research,
has recently found important new applications in Result Diversification approach
in information sciences. This optimisation problem consists in selecting a small
set of p items out of a large set of candidates to maximise a given objective func-
tion. The function expresses the notion of dispersion of a set of selected items in
terms of a pair-wise distance measure between items.
In most known formulations the problem is NP-hard, but there exist 2-approximation
algorithms for some cases if distance satisfies triangle inequality.
We present generalised 2/α approximation guarantees for the Facility Dispersion
Problem in its two most common variants: Max Sum and Max Min, when the
underlying dissimilarity measure satisfies parameterised triangle inequality with
parameterα. The results apply to both relaxed and stronger variants of the triangle
inequality.
We also demonstrate potential applications of our findings in the result diversifi-
cation problem including web search or entity summarisation in semantic knowl-
edge graphs, as well as in practical computations on finite data sets.

Keywords: diversity, max sum and max min facility dispersion, approximation algo-
rithms, parameterised triangle inequality

1 Introduction

The concept of diversity-awareness has important practical applications in web search,
recommendation, database querying or summarisation (e.g. [11, 5, 17]). The general
idea is to return to the user the set of items (being database query or search results,
recommended items, etc.) that are not only relevant to the query but also diversified. The
rationale behind such approach is to reduce the risk of result redundance and to cover
as many different aspects of the query as possible. Equivalently, it is a technique for
maximising the likelihood that the user’s unkown intent behind a potentially ambiguous
query is satisfied, at least partially.

One possible formulation of the described diversification problem is by treating it as
the Facility Dispersion optimisation problem that was originally studied in Operations
Research (e.g. [15, 6, 13, 7]). More precisely, the problem concerned selecting locations
for some dangerous or obnoxious facilities in order to make them mutually distant to



each other. The range of possible applications is wide, and includes minimising the
effects of a terroristic or military attack (if items represent nuclear plants, amunition
dumps, etc.) or to avoid self-competition between the stores of the same brand, etc.

In the context of information sciences, the notion of mutual spatial distance has
been substituted with that of pairwise dissimilarity between the items to be returned to
the user.

Examples of recent applications of this approach include the Result Diversification
Problem in web search (e.g. [5, 11]) or in diversity-aware graphical summarisation of
entities in semantic knowledge graphs [17, 14], for example.

A quite recent interesting work [5] mentions in its very last sentence the issue of
studying the relationship between the approximation ratio of the Max Sum Diversifica-
tion Problem and the parameter of the relaxed triangle inequality among the interesting
future research problems but does not address it.

Therefore, our results presented in this article might be of additional interest in this
context.

The facility dispersion problem is NP-hard in most common variants, in particular,
in Max Min and Max Sum variants studied in this article, and it remains such even when
the distance (dissimilarity) function d satisfies the triangle inequality [8, 18]. However,
in such a case, there are polynomial-time approximation algorithms for this problem
with approximation factor of 2 [13, 15].

This article focuses on two most common variants of the problem called Max Sum
and Max Min Facility Dispersion. The main results include the generalisations of ap-
proximation guarantees for metric cases [13, 15] to the factor of 2/α for the case when
the distance function satisfies parameterised triangle inequality with parameter α.

1.1 Contributions

This article is a substantial extension of the short paper [16], where the following results
were first mentioned:

– generalised approximation guarantee for Max Sum Dispersion Problem with Pa-
rameterised Triangle Inequality

– the link between the above result and the Result Diversification Problem (e.g. [11,
5]) that is of interest in web search and other applications

– observation that parameterised triangle inequality is satisfied by finite datasets

Compared to the short paper [16] this article presents the results concerning gener-
alised approximation guarantee for Max Sum Dispersion Problem with Parameterised
Triangle Inequality and other results mentioned above, in its full, extended form with
a deeper and wider disscussion and, in addition, presents some additional, completely
novel results concerning another commonly studied variant of the problem, known as
Max Min Facility Dispersion. It also contains the proofs of the presented theorems. The
list of the novel contributions includes:

– discussion of the related work concerning Max Sum, Max Min and related prob-
lems (Section 2)

– some remarks on the parameterised triangle inequality (Section 4)



– tight example for the approximation guarantee for Max Sum Dispersion Problem
generalised for parameterised triangle inequality (Section 5.2)

– generalised approximation guarantee for Max Min Dispersion Problem with pa-
rameterised triangle inequality (Section 5.3)

– generalised impossibility result (i.e. lower-bound approximation factor) for the Max
Min Dispersion Problem with parameterised triangle inequality (Section 5.4) with
proof (Appendix)

2 Related Work

Up to the best knowledge of the author, no results for the impact of any form of pa-
rameterising the triangle inequality on the approximation guarantees of the Max Sum
or Max Min Dispersion Problem have been published at the time of writing this (except
our short paper [16], mentioned before).

2.1 Related Work on Result Diversification

Result diversification approach has recently become an intensively studied topic in web
search, recommendation, databases or summarisation.

The connection between the Facility Dispersion Problem and the Result Diversifi-
cation approach was presented in [11] by proposing an appropriate transformation of
the dissimilarity function. In this paper, in Section 6.2, we observe that our result holds
when this transformation is applied.

In particular, Result Diversification based on Max Sum was recently proposed in
[14] in a novel context of diversity-aware entity summarisation in semantic knowledge
graphs [17].

The results contained in this paper are related to the question recently stated in the
last sentence of [5], where the Max Sum Diversification Problem was studied in a more
general framework of the monotone submodular functions under matroid constraints.
The question concerned the impact of relaxing triangle inequality for approximation
guarantee for a generalised Max Sum Dispersion Problem. Our result can be viewed as
a partial answer to the special case of this problem.

2.2 Previous Work on Facility Dispersion Problem

Facility Dispersion Problem was studied in many works in Operations Research.
In [15] there are presented approximation results for the metric Max Min (factor of

2 and its tightness, among others) and Max Average Facility Dispersion (factor of 4).
Some of these results were improved (factor of 2 for metric k-dispersion) in [13] for the
metric Max Sum variant. To be precise, the variant of the Max Sum Facility Dispersion
Problem considered in this article is equivalent to the k-dispersion problem considered
in [13] for the value of parameter k = 1. The meaning of the parameter k is explained
later in the Section 3.1 (the only value of k that is relevant to our applications in web
search diversification and recommendation, etc. is k = 1).



Many more variants of the Facility Dispersion problem (over 10) and approximation
algorithms for them were studied in [6] and its extension [7]. It would be interesting
to analyse the applicability of these variants in the result diversification problem in
information sciences, however we are not aware of such work at the time of writing.

None of the works mentioned above considered parameterised variant of the dis-
tance in the problem specification. The most relevant results to ours in the above works
concern 2-approximation results for Max Sum and Max Min Facility Dispersion Prob-
lem with metric distance.

Our main results presented here build on the results in the two works [15, 13] men-
tioned above, and the proofs presented in this paper are extensions of the proofs pre-
sented in these works and in [12] by appropriately introducing the parameter of the
parameterised triangle inequality.

2.3 Previous Work on the Impact of Parameterising Triangle Inequality on
Approximation Guarantees for Graph Optimisation Problems

The impact of various forms of parameterising the triangle inequality on the approx-
imation guarantees for various hard optimisation problems, especially for Travelling
Salesman Problem was studied previously in many works.

Most of such works consider parameterising the triangle inequality in the form of
the so-called ρ-relaxed triangle inequality (Section 4.1). The both formulations are al-
most equivalent, the similarities and differences between the ρ-relaxed and the Param-
eterised Triangle Inequality formulation used in this paper are discussed in Section 4.1

One of the early works on the impact of relaxing triangle inequality on approximat-
ing the solution of the Travelling Salesman Problem (TSP) is [1]. It demonstrates an
interesting phenomenon. Namely, some known approximation algorithms for TSP can
benefit from the relaxed triangle inequality and give better approximation guarantees
(e.g. quadratic improvement of the approximation guarantee with the relaxation param-
eter for the double-spanning tree heuristic) while other algorithms (e.g. Christofides
algorithm) cannot benefit from it.

Improving the approximation quality of the TSP in the context of relaxed triangle
inequality is also studied e.g. in [2], which presents, among others, 4τ approximation
for relaxed triangle inequality with parameter τ . In [4] some improvements on approx-
imation guarantees for TSP with sharpened (stronger) triangle inequality are presented.
In [3] further improvements of approximation guarantees for TSP with strenghtened
triangle inequlity for some specific range of values of the parameter are presented.

Other aspects related to the influence of relaxing the triangle inequality on the per-
formance of algorithms are studied. For example, a recent work [10] concerns the im-
pact of triangle inequality violations (resulting, for example, from rounding errors or
network delays, etc.) on the quality of solution in the vehicle routing problem.

Many of these works consider either relaxed or sharpened variant of the triangle
inequality. In this paper, we consider the full possible range of the parameter values.

An example of a practically useful pair-wise dissimalirity measure that naturally
satisfies parameterised triangle inequality is a variant of the NEM (Non-linear Elastic
Matching) measure used in pattern matching for comparing visual shapes [9].



3 Facility Dispersion Problem

In the Facility Dispersion Problem, the input consists of a complete, undirected graph
G(V,E), an edge-weight function d : E → R+ that represents pairwise distance be-
tween the vertices and a positive natural number p ≤ |V |. The task is to select a p-
element subset P ⊆ V that maximises the objective function fd(P ) that represents the
notion of dispersion of the elements of the selected set P . In the remaining part of the
article we will simplify the notation and use f(P ) instead of fd(P ), since the pairwise
distance function d will be known from the context.

Depending on the particular form of the objective dispersion function f(P ) to be
maximised there are considered several variants of the Facility Dispersion Problem. The
two most commonly studied variants are Max Sum and Max Min Facility Dispersion
and are described in Sections 3.1 and 3.2, respectively.

3.1 Max Sum, or equivalently, Max Average Facility Dispersion Problem

In the Max Sum Dispersion Problem the objective function to be maximised is defined
as follows:

fSUM (P ) =
∑

{u,v}⊆P

d(u, v). (1)

Relation to k-dispersion Problem. The above formulation of the problem is equiv-
alent to the k-dispersion problem that was studied, for example, in [13] for k = 1. In
the k-dispersion problem, for k ∈ {1, ..., b|V |/pc} there are k different p-element sets
P1, ..., Pk, |Pi| = p to be found that maximise the following objective function:

k∑
i=1

∑
{u,v}⊆Pi

d(u, v) (2)

Since our main motivation is in the application of the problem in the Result Diver-
sification problem (as explained in Section 6) and other related problems (e.g. recom-
mendation or summarisation problems) where there is exactly one set of elements to be
diversified, we focus only on the case k = 1 in this work.

Relation to Average Sum Dispersion Problem. In some works (e.g. [15, 12]) the
objective function is formulated as:

fAV E(P ) =
2

p(p− 1)

∑
{u,v}⊆P

d(u, v),

and then the problem is known as Max Average Facility Dispersion. Since, for the
fixed value of p, the formulation is obviously equivalent to that of Max Sum Facility
Dispersion, we will refer to them interchangeably in this paper.



INPUT: An undirected graph G(V,E) with edge-weight function d : E → R+, a natural
number 1 < p ≤ |V |

OUTPUT: A p-element set P ⊆ V

1. P = ∅
2. Compute a maximum-weight bp/2c-matching M∗ in G
3. For each edge in M∗, add its both ends to P
4. In case p is odd, add any node from V \ P to P
5. return P

Fig. 1. HRT: an efficient 2-Approximation Algorithm for Max Average Dispersion Problem

The Max Sum Dispersion problem is NP-hard even if the distance function d is
a metric, but in such case there exists a polynomial-time algorithm of approximation
factor of 2 that was presented in [13].

Figure 3.1 shows a heuristic, polynomial-time approximation algorithm, based on
computing a maximum-weight matching, that guarantees approximation factor of 2 for
Max Average Dispersion when d satisfies triangle inequality. It was presented in [13]
under the name HRT. A straightforward implementation of the algorithm makes its time
complexity O(|V |3), however it is possible to implement it so that the time complexity
is reduced to O(|V |2(p+ log(|V |)). There exists another algorithm for the same prob-
lem, for which the same approximation guarantee of 2 can be proved, but which has
better time complexity of O(|V |2 + p2log(p)). For all the remaining details we refer
the reader to [13].

3.2 Max Min Dispersion Problem

In the Max Min Dispersion Problem the objective function to be maximised is defined
as follows:

fMIN (P ) = minu,v∈P,u6=vd(u, v). (3)

Similarly to Max Sum, even if the distance function d satisfies the standard triangle
inequality, the problem is NP-hard, but in such case there exists a polynomial-time
algorithm that guarantees an approximation factor of 2.

The algorithm and its 2-approximation guarantee proof is presented in [15] under
the name GMM and is shown in Figure 2. Its time complexity is O(p2|V |).

4 Parameterised Triangle Inequality

Assume that V is a non-empty universal set and d : V 2 → R+ ∪ {0} is a distance
function. More preciselty, it is assumed that d for all u, v ∈ V satisfies the properties of
discernibility (d(u, v) = 0⇔ u = v) and symmetry (d(u, v) = d(v, u)). If, in addition,



INPUT: An undirected graph G(V,E) with edge-weight function d : E → R+, a natural
number 1 < p ≤ |V |

OUTPUT: A p-element set P ⊆ V

1. P = argmax{vi,vj}⊆V d(vi, vj)
2. while (|P | < p):

– find v ∈ V \ P so that v = argmaxv∈V \P (minu∈P {d(v, u)})
– P = P ∪ {v}

3. return P

Fig. 2. GMM: an efficient 2-Approximation Algorithm for Max Min Dispersion Problem

for all mutually different u, v, z ∈ V , d satisfies the triangle inequality: d(u, v) +
d(v, z) ≥ d(u, z), d is called a metric.

Here, we introduce the following definition of parameterised triangle inequality:

Definition 1. Let V be a set, α ∈ R, 0 ≤ α ≤ 2. A distance function d : V 2 →
R+ ∪ {0} satisfies parameterised triangle inequality (α-PTI) with parameter α iff for
all mutually different u, v, z ∈ U :

d(u, v) + d(v, z) ≥ αd(u, z).

α-PTI generalises the standard triangle inequality (for α = 1). 0-PTI is the weakest
variant, i.e. it is satisfied by any distance function d, which is equivalent to the semi-
metric. Observe that the higher the value of the α parameter, the stronger the property.

The value of α cannot be higher than 2:

Lemma 1. The value of 2 is the highest possible value for α in α-PTI.

Proof. Assume that some distance function d : V 2 → R+ ∪ 0 satisfies α-PTI for
α > 2 with |V | ≥ 3. Let u, v, z be three different elements of V . Let introduce the
following denotations: a = d(u, v), b = d(v, z), c = d(z, u). We obtain directly from
the definition that a+ b > 2c, and hence c < a+b

2 .
By summing up the following two inequalities obtained directly from the definition:

b+c > 2a and c+a > 2b and then using the above observation, we obtain the following
chain of inequalities (that makes a contradiction):

2a+ 2b < 2c+ a+ b < 2
a+ b

2
+ a+ b = 2a+ 2b.

(Quod erat demonstrandum)♦

Notice that 2-PTI implies that all non-zero distances are equal, that is equivalent
to being a discrete metric (up to rescaling), hence the Facility Dispersion Problem be-
comes trivial for the case α = 2.



4.1 PTI vs Relaxed Triangle Inequality

In some works (e.g. [9] or the works mentioned in Section 2.3) the concept of ρ-relaxed
triangle inequality (RTI) is considered instead of parameterised triangle inequality. It
is defined as follows, for some ρ ∈ R+:

ρ(d(u, v) + d(v, z)) ≥ d(u, z).

Obviously, such formulation is equivelent to α-PTI with ρ = 1/α with the following
observations:

– the case of semi-metric (α = 0) cannot be expressed by ρ-relaxed triangle inequal-
ity

– the range of possible values of α is bounded [0, 2], with the metric case being
exactly in the middle of that range (α = 1). For RTI its parameter value has no
upper bound and cannot be smaller than 1

2 .
– for PTI the higher the value of the parameter, the stronger the property, while for

the RTI it is the opposite.

For the above reasons the α-PTI formulation seems a bit more natural than that of RTI.

5 Improved Approximation Guarantees for α-PTI Case

In this section we present the main results, i.e. we demonstrate that the approximation
guarantees for Max Sum and Max Min Facility Dispersion problems can be generalised
from the value of 2 (for the metric case) to the value of 2/α when the distance function
d satisfies α-PTI for 0 ≤ α ≤ 2. The longer proofs are presented in the Appendix.

5.1 2/α Approximation Guarantee for Max Sum Dispersion Satisfying α-PTI

In this subsection we present a theorem that generalises and extends the 2-factor ap-
proximation guarantee of the algorithm presented in Figure 3.1 for the case when the
function d satisfies α-PTI. The algorithm, under the name HRT, was presented in [13]
together with a proof for a metric case. Our proof of this theorem, is an adaptation of
the one presented in [12] by properly introducing the α parameter and is presented in
the Appendix.

Theorem 1. Let I be an instance of Max Average Dispersion problem with distance
function d satisfying α-PTI for 0 < α < 2. Let OPT (I) denote the value of an optimal
solution and by HRT (I) the value of the solution found by the algorithm HRT . It
holds that OPT (I)/HRT (I) < 2/α.

As mentioned in Section 3.1, the result applies equivalently to the Max Sum Dispersion
problem. For the value of α = 2 the problem becomes trivial, since d becomes a discrete
metric in such case.



5.2 Tight Example for Max Sum Dispersion

We show here that the 2/α bound for the algorithm for Max Sum Dispersion with α-PTI
presented in Figure 3.1 is (asymptotically) tight.

Let the graph G(V,E), where |V | ≥ 2p, M = 2/α, m = βM = 2β/α, for some
0 < β < 1 (intentionally, close to 1 )contain exactly bp/2c edges of weight M and
exactly one p-clique, call it C, within which all the edges have weights of m, and all
the other edges have weight of 1. Note that α-PTI is satisfied.

The HRT algorithm will select the ends of the bp/2c edges of weight M and, in
case p is odd, any arbitrary vertex that brings a total weight of (p− 1).

But the optimum, for β being sufficiently close to 1, is the set of vertices of the
p-clique C, with the value of OPT = p(p− 1)m/2. Thus, we have:

OPT/Heven =
p(p−1)

2 m
p(p−1)

2 + p
2 (M − 1)

=
m

1 + (M−1)
(p−1)

, (4)

OPT/Hodd =
p(p−1)

2 m
(p−1)(p−2)

2 + (p−1)
2 (M − 1) + (p− 1)

=
m

1 + (M−1)
p

. (5)

Both the above expressions, for sufficiently large p are arbitrarily close to m =
2β/α that is arbitrarily close to 2/α for β < 1 sufficiently close to 1.

5.3 2/α Approximation Guarantee for Max Min Dispersion Satisfying α-PTI

The following theorem is a generalisation and extension of the result [15] of 2-approximation
for Max Min Dispersion satisfying standard triangle inequality.

Theorem 2. Let I be an instance of the Max Min Dispersion Problem where the dis-
tance function d satisfies α-PTI for 0 < α ≤ 2. Let OPT(I) denote the optimum
value of the objective function fMIN (Equation 3) for this instance and GMM(I) de-
note the value of the solution found by the GMM algorithm for I (Figure 2). Then
OPT (I)/GMM(I) ≤ 2/α, i.e. the GMM algorithm provides 2/α-approximation
guarantee for this problem.

The proof is presented in Appendix 8.2 and constitutes our extension of the one
presented in [15] by properly introducing the parameter α.

5.4 Lower Bound for Max Min Dispersion with α-PTI

For metric cases, the 2-factor polynomial approximation algorithm is the best that exists
for Max Min Dispersion problem, assuming P 6= NP [15].

Below, we present a generalisation of this fact to the case of α-PTI.

Theorem 3. Assume that the distance function d satisfies α-PTI for 0 < α < 2, and
that β < 2/α is a real positive number. There is no poly-time algorithm for Max Min
Dispersion with approximation factor of β unless P = NP .



Proof. Imagine an instance (G(V,E), p) of the Maximum Independent Set problem,
stated in its decision version: “Does there exist an independent set of size at least p
in the given graph G”? Let us set weights of edges in E to 2/α and add all the other
possible edges of weight 1. A polynomial-time β-approximation algorithm for Max Min
Dispersion problem on such modified graph would return the value of 1 iff the answer
for the question is positive i.e. solve an NP-hard problem. (Quod erat demonstrandum)
♦

One can notice that for the value of α = 2, as explained in Section 4, all the pairwise
distances in V are the same, and all feasible solutions to Max Min Dispersion have the
same value. Thus, formally, the guarantee of approximation factor of 2/α = 1 also
holds.

6 Practical Applications

6.1 α-PTI in Practical Computational Problems

In practical applications, the input dataset V is always finite. Here, we make the obser-
vation that this fact implies that the distance function d always satisfies α-PTI for some
0 < α ≤ 2. To practically find the actual maximum value of the α parameter it suffices
to check all triples u, v, z ∈ V inO(|V |3) time, so that the α-PTI is satisfied as follows:
α = minu,v,z∈V,|{u,v,z}|=3[d(u, v) + d(v, z)]/d(u, z).1

In this way, it is possible to guarantee constant-factor approximation algorithms for
Max Sum and Max Min Dispersion problems even if no other theoretical properties
about the distance function are known. In particular, in the metric case, it is always
possible to guarantee better than 2 approximation factor for finite data sets unless there
are no “co-linear” points in the data.2

In the on-line variant of the considered problems (i.e. when data comes in time), α
can be systematically updated while data comes.

6.2 Applications to the Result Diversification Problem in Web Search, etc.

In this section, it is demonstrated how the theoretical results from section 5.1 impact
some important recent applications in information sciences including web search and
others.

In web search, the problem known as Result Diversification Problem can be speci-
fied as follows [11]. There is given a set V of documents that are potentially relevant to
a user query, a number p ∈ N+, p < |V |, a document relevance function w : V → R+

and a document pairwise dissimilarity function d : V 2 → R+ ∪ {0}. The task in this
problem is to select a subset P ⊆ V that maximises the properly defined diversity-
aware set relevance function. For example, in [11] the following objective function (to
be maximised) is proposed as the diversity-aware relevance function:

1 Notice that u, v, z are pairwise different and d(u, v) is always positive for u 6= v
2 I.e. pair-wise different u, v, z so that d(u, z) is exactly equal to d(u, v) + d(v, z)



fdiv−sum(λ, P ) = (p− 1)
∑
v∈P

w(v) + 2λ
∑

{u,v}⊆P

d(u, v). (6)

The λ ∈ R+ ∪ {0} parameter controls the balance between the relevance term and the
diversity term.

It is explained in the same work that by a proper modification of d to d′ (Equation 7)
it is possible to make the described problem of maximising fdiv−sum(λ, P ) equivalent
to maximising

∑
{u,v}⊆P d

′
λ(u, v), where:

d′λ(u, v) = w(u) + w(v) + 2λd(u, v). (7)

In this way, the result diversification problem described above is equivalent to the
Max Sum Dispersion problem for d′λ. 3

It is also claimed in [11] that d′ is a metric if d is such. 4

The following lemma 2 extends the application of the results presented in this paper
to the result diversification problem on any finite datasets, due to the observation in
Section 6.1.

Lemma 2. If distance function d satisfies α-PTI, for some 0 < α ≤ 1, then the modified
distance function d′λ defined in equation 7 also satisfies α-PTI.

Proof. d′λ(u, v) + d′λ(v, z) = 2w(v) + w(u) + w(z) + 2λ(d(u, v) + d(v, z)) ≥

≥ 2w(v) + w(u) + w(z) + 2λαd(u, z) ≥

≥ 2w(v) + α[w(u)/α+ w(z)/α+ 2λd(u, z)] ≥ αd′λ(u, z). (Quod erat demonstrandum)♦

The diversification problem has other interesting applicaitons than in web search.
For example, the problem of optimising the fdiv−sum(λ, P ) objective function has been
recently adapted to the novel context of diversified entity summarisation in knowledge
graphs [17, 14].

3 Considering the Max Min Dispersion Problem, [11] also considers a variant of bi-criteria ob-
jective function: fdiv−min(λ, P ) = minu∈Pw(u)+λminu,v∈P d(u, v) and the authors seem
to suggest that maximising it is equivalent to the Max Min Dispersion by defining a modified
distance function d′λ(u, v) = (w(u)+w(v))/2+λd(u, v). But this is, unfortunately, not true,
in general. To see this consider the following example: V = {u, v, z}, w(u) = 1, w(v) =
1, w(z) = 20, d(u, v) = 10, d(v, z) = d(z, u) = 1, p = 2, λ = 1. In this example,
fdiv−min(λ, P ) is maximised for P = {u, v} but f ′div−min(λ, P ) = minu6=v∈P d

′
λ(u, v)

is maximised for P = {u, z} or P = {v, z}. Furthermore, it is necessary to make the dis-
cernibility property satisfied by explicitly setting d′λ(u, v) = 0 for u = v since this condition
is necessary in the proof of approximation factor of 2 that authors of [11] refer to (see the proof
of Theorem 2, in the Appendix, more precisely, the property of non-emptiness of S∗i ).

4 Formally, this is not true in the form proposed in [11] because the discernibility property would
be not satisfied by d′ (see Equation 7). A simple explicit addition of d′(u, v) = 0 for u = v,
however, makes this claim correct.



7 Conclusions and Future Work

In this work we gathered the results concerning approximation guarantees for metric
cases of Max Min and Max Sum Dispersion problems and generalised them to the case
of parameterised triangle inequality.

It was demonstrated that they may have additional practical impact on computations
on real, finite datasets and, in particular, on recent important diversity-related applica-
tions in information sciences as in [11] or [14], for example.

In addition, one can notice that our results concerning the impact of parameterising
the triangle inequality on the approximation guarantees in the Max Sum Dispersion
problem answer the open research question mentioned quite recently in the last sentence
of [5] for the special case of the uniform matroid and simple form of the objective
function. It would be interesting to extend this answer for more general cases.

The way in which α-PTI property affects the guarantees of approximation algo-
rithms and their proofs presented in this paper is quite simple, i.e. the value of approx-
imation factor of 2 changes to the value of 2/α. It is important to notice, however, that
there exist natural optimisation problems, in which generalising the triangle inequality
to α-PTI does not affect the approximation factor in such a straightforward way. A good
example is the Travelling Salesman Problem in which one approximation algorithm
(double-spanning tree heuristic) can be modified so that the approximation guarantee
can benefit from relaxing the triangle inequality while the Christofides algorithm for
TSP cannot be mofified in the same way [1].

In the context of practical computations, it would be interesting to study which
distance metrics used in practical applications (such as the measure described in [9])
satisfy α-PTI and what is the value of the parameter.
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8 Appendix: Proofs

In this Appendix we present two longer proofs of theorems presented in previous sections.

8.1 Proof of Theorem 1 from Section 5.1

The following, including the Lemmas, Theorem and their proofs constitute our extensions of the
versions presented in [12][pp. 38-8–38-9] (earlier variants were in [13]). The extensions presented
here consist mostly in properly introducing the parameter α.



Let us introduce some denotations. Let V ′ ⊆ V be a non-empty subset of vertices. Let
G(V ′) denote the complete graph induced on V ′ and W (V ′),W ′(V ′) denote the total weight
and average weight of edges in G(V ′) respectively. By analogy, for a non-empty subset E′ ⊆ E
of edges, let denote by W (E′) and W ′(E′) = W (E′)/|E′| the total and average weight of the
edges in E′, respectively. We use the following technical Lemma, presented in [13].

Lemma 3. If V ′ ⊆ V is a subset of vertices of cardinality at least p ≥ 2 andM
′∗ is a maximum-

weight bp/2c-matching in G(V ′), then W ′(V ′) ≤W ′(M
′∗).

A very short proof, presented in [13] does not assume anything on the distance function d, so
that we omit it here.

Lemma 4. Assume that the distance function d satisfies α-PTI for some 0 < α < 2. If V ′ ⊆
V is a subset of p ≥ 2 vertices and M is any bp/2c-matching in G(V ′), then W ′(V ′) >
(α/2)W ′(M).

Proof. (of Lemma 4) Let M = {{ai, bi} : 1 ≤ i ≤ bp/2c} and let denote by VM the set of all
vertices that are ends of the edges in M . For each edge {ai, bi} ∈ M let Ei denote the set of
edges in G(V ′) that are incident on ai or bi, except the edge {ai, bi} itself. From α-PTI we get
that for any vertex v ∈ VM \ {ai, bi} we have d(v, ai) + d(v, bi) ≥ αd(ai, bi). After summing
this inequality over all the vertices in VM \ {ai, bi} we obtain:

W (Ei) ≥ α(p− 2)d(ai, bi). (8)

There are two cases:
Case 1: p is even, i.e. bp/2c = p/2. After summing up the Inequality 8 above, over all

the edge sets Ei, 1 ≤ i ≤ p/2, we obtain, on the left-hand side, each edge of G(V ′) twice,
except those in M . Thus, 2[W (V ′) −W (M)] ≥ α(p − 2)W (M). If we substitute in the last
inequality W (V ′) = W ′(V ′)p(p − 1)/2 and W (M) = W ′(M)p/2, and divide both sides by
p, we can quickly get to W ′(V ′) ≥ (α/2)W ′(M)[p− 2 + (2/α)]/(p− 1), that is equivalent to
W ′(V ′) > (α/2)W ′(M) (for α < 2). This completes the proof for the Case 1.

Case 2: p is odd, i.e. bp/2c = (p − 1)/2. Let x be the only node in V ′ \ VM and let Ex
denote the set of all edges incident on x in G(V ′). By α-PTI we get:

W (Ex) ≥ αW (M). (9)

Let’s again sum up the previous Inequality 8 over all the edges Ei, 1 ≤ i ≤ bp/2c. On the
left-hand side, each edge in G(V ′) occurrs twice, except the edges in M (that do not occur at
all) and the edges in Ex that occur once, each. Thus, 2[W (V ′) −W (M)] −W (Ex) ≥ α(p −
2)W (M). Now, applying the inequality 9, we obtain 2[W (V ′) −W (M)] ≥ α(p − 1)W (M).
If we now substitute W (V ′) =W ′(V ′)p(p− 1)/2 and W (M) =W ′(M)(p− 1)/2 and divide
both sides by (p− 1)/2 we will quickly obtain that W ′(V ′) ≥ (α/2)W ′(M)[p− 1+ (2/α)]/p
that is equivalent to W ′(V ′) > (α/2)W ′(M) (for 0 < α < 2). This completes the Case 2 and
the whole proof of the Lemma. (Quod erat demonstrandum)♦

The following proof of Theorem 1 is an extension of the one proposed in [13] (and later
presented in [12]) by properly introducing the parameter α.

Proof. (of Theorem 1 from Section 5.1) Let P ∗ and P be the set of nodes in an optimal solution
and that in the solution returned by the HRT algorithm for instance I , respectively. By definition,
OPT (I) = W ′(P ∗) and HRT (I) = W ′(P ). Let M∗ and M denote a maximum-weight
bp/2c-matching in P ∗ and in P , respectively. By Lemma 3, we get:



OPT (I) ≤W ′(M∗). (10)

In addition, from Lemma 4 we get:

HRT (I) > (α/2)W ′(M). (11)

Now, because the algorithm HRT finds a maximum-weight bp/2c-matching in G, we get
W ′(M) ≥ W ′(M∗). This, together with the inequalities 10 and 11 implies that HRT (I) >
(α/2)W ′(M) ≥ (α/2)W ′(M∗) ≥ OPT (I)/ 2

α
that completes the proof of the theorem.

(Quod erat demonstrandum)♦

8.2 Proof of Theorem 2 from Section 5.3

The proof constitutes an extension of the one presented in [15] by properly introducing the pa-
rameter α.

Let define λ = 2
α

, where α is the value of the parameter in α-PTI satisfied by the distance
function d. LetP denote the set-valued variable used in GMM presented in Figure 2. By induction
on size of P we will show the following condition:

fMIN (P ) ≥ OPT (I)/λ (12)

holds after each addition to P . After the last addition to P , GMM(I) = fMIN (P ) holds, that
would imply the theorem.

Initially, the condition holds due to adding two vertices joined by the heaviest edge in V to
P . Let’s make the inductive assumption that the condition holds after k additions to P , for some
1 ≤ k < p − 1 (notice that after k additions P contains k + 1 elements). It will be proven that
the condition also holds after the (k + 1)-th addition to P .

Let P ∗ = {v∗1 , . . . , v∗p} denote an optimal solution to I and let l∗ = OPT (I).

Observation 1: d(v∗i , v
∗
j ) ≥ l∗ for any i 6= j, due to the minimality of l∗.

Let Pk = {x1, x2, . . . , xk+1} denote the set P after k additions for 1 ≤ k < p−1. Because
GMM adds at least one more node to P the following holds:

Observation 2: For 1 ≤ k < p− 1, |Pk| = k + 1 < p.

Let, for every v∗i ∈ P ∗, define S∗i = {u ∈ V | d(v∗i , u) < l∗/λ}. Notice that for any
1 ≤ i ≤ p, S∗i 6= ∅, since v∗i ∈ S∗i due to the discernibility property of the distance function d
(see Section 4).

Furthermore, for any 1 ≤ i < j ≤ p, S∗i and S∗j are disjoint. To prove this, assume the
opposite, i.e. that S∗i ∩ S∗j 6= ∅ for some i 6= j. Let u ∈ S∗i ∩ S∗j . Thus d(v∗i , u) < l∗/λ
and d(v∗j , u) < l∗/λ. This, together with α-PTI implies αd(v∗i , v

∗
j ) ≤ d(v∗i , u) + d(v∗j , u) <

2l∗/λ = αl∗ that is equivalent to d(v∗i , v
∗
j ) < l∗. But this would contradict the Observation 1.

Thus S = {S∗i }1≤i≤p constitutes a family of p non-empty and pair-wise disjoint sets. Thus,
since for k < p− 1, Pk has strictly less than p elements and there are p nonempty sets in family
S there must be at least one index r, 1 ≤ r ≤ p such that S∗r ∩ Pk = ∅.

Due to the definition of S∗r , for each u ∈ Pk, d(v∗r , u) ≥ l∗/λ. Due to the fact that v∗r is
available for selection in the k + 1-th step of GMM and GMM will select a vertex v ∈ V \ Pk
that maximisesminv′∈Pk

d(v, v′) among all the vertices in V \Pk it is implied that the condition
12 still holds after the (k + 1)-th addition to P (having made the inductive assumption). (Quod
erat demonstrandum)♦


