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General Basic Ideas for Counting

create easy-to-count representations of counted objects

�product rule�: multiply when choices are independent

�sum rule�: sum up exclusive alternatives

�combinatorial interpretation� proving technique

These ideas can be used not only to count objects but also to
easily prove non-trivial discrete-maths identities (examples
soon)
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Counting Basic Objects

Denotations: �#� means: �the number of�

[n] means: the set {1,...,n}, for n ∈ N
n,m ∈ N

(# functions from [m] into [n]) |Fun([m], [n])| =

nm

(# subsets of an n-element set) |P([n])| = 2n

(# injections as above) |Inj([m], [n])| = nm for n ≥ m (called
�falling factorial�)

# ordered placings of m di�erent balls into n di�erent boxes : n 	m

(called �increasing power�)

(# permutations of [n]) |Sn| = n!
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Binomial Coe�cient

# k-subsets of [n] (
n

k

)
=

nk

k!

N 3 k ≤ n ∈ N
(there is also possible a more general formulation for
non-natural numbers)
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Recursive formulation

(
n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1
k

)
(also known as �Pascal's triangle�)

how to prove it without (almost) any algebra?
(use �combinatorial interpretation� idea)
(consider whether one �xed element of [n] belongs to the
k-subset or not)
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Basic properties

Symmetry:

(
n

k

)
=

(
n

n − k

)

(each k-subset de�nes (n-k)-subset � its complement)

n∑
k=0

(
n

k

)
= 2n

(summing subsets of [n] by their multiplicity)
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Basic properties

(
n

k

)(
k

m

)
=

(
n

m

)(
n −m

n − k

)

(consider m-element subset of o k-element subset of [n])

(
m + n

k

)
=

k∑
s=0

(
m

s

)(
n

k − s

)
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Binomial Theorem

(x + y)n =

n∑
k=0

(
n

k

)
xkyn−k

(explanation: each term on the right may be represented as a
k-subset of [n])
Corollaries:

# odd subsets of [n] equals # even subsets

(substitute
x=1 and y=-1)

n∑
k=0

k

(
n

k

)
= n2n−1

(take derivative (as function of x) of both sides and then
subsitute x=y=1)
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Multinomial Coe�cient

(a generalisation of the binomial coe�cient)

# colourings of n balls with at most m di�erent colours so that
exactly ki ∈ N balls have the i-th colour(

n

k1k2 . . . km

)
=

n!

k1! · . . . · km!

(�x the sequence (k)i and �x a permutation of [n] to be
coloured)
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Multinomial Theorem

(x1+. . .+xm)
n =

∑
k1, . . . , km ∈ N
k1 + . . .+ km = n

(
n

k1k2 . . . km

)
xk11 ·. . .·x

km
m

Corollary: ∑
k1, . . . , km ∈ N
k1 + . . .+ km = n

(
n

k1k2 . . . km

)
= mn

(substitute all 1's on the left-hand side)
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Recursive Formula

(
n

k1k2 . . . km

)
=

(
n − 1

k1 − 1 k2 . . . km

)
+

(
n − 1

k1 k2 − 1 . . . km

)
+

+ . . .+

(
n − 1

k1 k2 . . . km − 1

)

(explanation: �x one element of [n] and analogously to the
binomial theorem)
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Multisets

Element of type xi has ki (identical) copies.

Q =< k1 ∗ x1, . . . , kn ∗ xn >

|Q | = k1 + . . .+ kn

Subset S of Q:
S =< m1 ∗ x1, . . . ,mn ∗ xn >
(0 ≤ mi ≤ ki , for i ∈ [n])

Fact:
# subsets of Q = ?

(1+ k1) · (1+ k2) · . . . · (1+ kn)
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Partitions of number n into sum of k terms

P(n, k)

# k-partitions of n, n ∈ N
Partition of n: n = a1 + . . .+ ak , a1 ≥ . . . ≥ ak > 0

Recursive formula:

P(n, k) = P(n − 1, k − 1) + P(n − k , k)

(either ak = 1 or all blocks can be decreased by 1 element)

Fact:

P(n, k) =

k∑
i=0

P(n − k , i)

(decrease by 1 each of i terms greater than 1)
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Set Partitions

Partition of �nite set X into k blocks: Πk = A1, . . . ,Ak so that:

∀1≤i≤kAi 6= ∅
A1 ∪ . . . ∪ Ak = X

∀1≤i<j≤kAi ∩ Aj = ∅
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Stirling Number of the 2nd kind

{
n

k

}
= |Πk([n])|

(# partitions of [n] into k blocks)
Recursive formula:{

n

n

}
= 1

{
n

0

}
= 0 for n > 0

{
n

k

}
=

{
n − 1
k − 1

}
+ k

{
n − 1
k

}

(a �xed element constitutes a singleton-block or belongs to one
of bigger k blocks)
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Equivalence Relations and Surjections

Bell Number

Bn =

n∑
k=0

{
n

k

}
(# equivalence relations on [n])

# surjections from [m] onto [n], m ≥ n = ?

|Sur([m], [n])| = m! ·
{

m

n

}
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Relation between x
n, xn, xn (with Stirling 2-nd order numbers)

xn =

n∑
k=0

{
n

k

}
· xn =

n∑
k=0

(−1)n−k ·
{

n

k

}
· xn
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Permutations

Inj([n], [n])

Permutations on [n] constitute a group denoted by Sn

composition of 2 permutations gives a permutation on [n]

identity permutation is a neutral element (e)

inverse of permutation f is a permutation f −1 on [n]
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Examples

f =

(
12345
53214

)
g =

(
12345
25314

)
Inverse:

f −1 =

(
12345
43251

)
The group is not commutative: fg is di�erent than gf:

fg =

(
12345
34251

)

gf =

(
12345
43521

)
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Decomposition into Cycles

A cycle is a special kind of permutation.

Each permutation can be decomposed into disjoint cycles:

decomposition is unique

the cycles are commutative

Example:

f =

(
12345
53214

)
f = f ′f ′′ = [1, 5, 4][2, 3] = [2, 3][1, 5, 4] = f ′′f ′ = f
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Stirling Number of the 1st kind

# permutations consisting of exactly k cycles:

[
n

k

]
n∑

k=0

[
n

k

]
= n!

Recursive Formula:[
n

k

]
=

[
n − 1
k − 1

]
+ (n − 1)

[
n − 1
k

]

(�x a single element: it either itself constitutes a 1-cycle or can
be at one of the n-1 positions in the k cycles)
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Expressing decreasing and increasing powers in terms
of �normal� powers with the help of Stirling Numbers of the 1-st kind

xn =

n∑
k=0

[
n

k

]
(−1)n−kxk

xn =

n∑
k=0

[
n

k

]
xk
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(Reminder of the opposite)

xn =

n∑
k=0

{
n

k

}
· xn =

n∑
k=0

(−1)n−k ·
{

n

k

}
· xn
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Other (amazing) connections between Stirling
Numbers of both kinds

n∑
k=0

(−1)n−k

[
n

k

]{
k

m

}
= [m == n]

n∑
k=0

(−1)n−k

{
n

k

} [
k

m

]
= [m == n]
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Type of permutation

Permutation f ∈ Sn has type (λ1, . . . , λn) i� its decomposition
into disjoint cycles contains exactly λi cycles of length i .

Example:

f =

(
123456789
751423698

)
f = [1, 7, 6, 3], [2, 5], [4], [8, 9]

Thus, the type of f is (1, 2, 0, 1, 0, 0, 0, 0, 0).

We equivalently denote it as: 112241
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Inversion in a permutation

Inversion in a permutation f = (a1, . . . , an) ∈ Sn is a pair
(ai , aj) so that i < j ≤ n and ai > aj

The number of inversions in permutation f is denoted as I (f )

What is the minimum/maximum value of I (f )?
How does it relate to sorting?
How to e�ciently compute I (f )?
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Transpositions

A permutation that is a cycle of length 2 is called transposition

Fact: Each permutation f is a composition of exactly I (f )
transpositions of neighbouring elements
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Sign of Permutation

assume, f ∈ Sn:
(de�nition)

sgn(f ) = (−1)I (f )

sgn(fg) = sgn(f ) · sgn(g)

sgn(f −1) = sgn(f )

We say that a permutation is even when sgn(f ) = 1 and odd

otherwise

Fact: sgn(f ) = (−1)k−1 for any f being a k-cycle
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Computing the sign of a permutation

For any permutation f ∈ Sn of the type (1λ1 . . . nλn) its sign
can be computed as follows:

sgn(f ) = (−1)
∑bn/2c

j=1
λ2j

(only even cycles contribute to the sign of the permutation)
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General Techniques

Pigeonhole Principle

Inclusion-Exclusion Principle

Generating Functions
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Pigeonhole Principle (Pol. �Zasada szu�adkowa�)

Let X,Y be �nite sets, f ∈ Fun(X ,Y ) and |X | > r · |Y | for some
r ∈ R+. Then, for at least one y ∈ Y , |f −1({y })| > r .

(or equivalently: if you put m balls into n boxes then at least
one box contains not less than m/n balls)
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Examples

Any 10-subset of [50] contains two di�erent 5-subsets that have
the same sum of elements.

(�Hair strands theorem�, etc.):
At the moment, there exist two people on the earth that have
exactly the same number of hair strands
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Examples

Any 10-subset of [50] contains two di�erent 5-subsets that have
the same sum of elements.

(�Hair strands theorem�, etc.):
At the moment, there exist two people on the earth that have
exactly the same number of hair strands
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Inclusion-Exclusion Principle
(Pol. �Zasada Wª¡cze«-Wyª¡cze«�)

For any non-empty family A = {A1, . . . ,An} of subsets of a
�nite set X, the following holds:

|

n⋃
i=1

Ai | =

n∑
i=1

(−1)i−1
∑

1≤p1<p2<...<pi≤n
|Ap1 ∩ Ap2 ∩ . . . ∩ Api |

(proof by induction on n)

Example: the principle can be used to prove that{
n

k

}
=

1

m!

m−1∑
i=0

(−1)i
(

m

i

)
(m − i)n

(a closed-form formula for Stirling number of the 2-nd kind)
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Example: number of Derangements

A derangement (Pol. �nieporz¡dek�) is a permutation f ∈ Sn so
that f (i) 6= i , for i ∈ [n].

Dn is the set of all derangements on [n]. |Dn| is denoted as !n.

Theorem: !n = |Dn| = n!
∑n

i=0
(−1)i

i !



Introduction
to Combina-

torics:
Basic

Counting
Techniques

Marcin
Sydow

Introduction

Basic
Counting

General
Techniques

Proof of the formula for !n

Let Ai = {f ∈ Sn : f (i) = i }, for i ∈ [n]. Thus
!n = |Sn|− |A1 ∪ A2 ∪ . . . ∪ An| =

= n! −

n∑
i=1

(−1)i−1
∑

1≤p1<p2<...<pi≤n
|Ap1 ∩ Ap2 ∩ . . . ∩ Api |

But for any sequence p = (p1, . . . , pi ) the intersection
Ap1 ∩ Ap2 ∩ . . . ∩ Api represents all the permutations for which
f (pj) = j , for j ∈ [i ]. Thus, |Ap1 ∩ Ap2 ∩ . . . ∩ Api | = (n − i)!.

There are

(
n

i

)
possibilities for choosing the sequence p, so

�nally:

|Dn| = n!−

n∑
i=1

(−1)i−1
(

n

i

)
(n−i)! =

n∑
i=0

(−1)i
n!

i !
= n!

n∑
i=0

(−1)i

i !
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Ratio of Derangements in Permutations

Since !n = |Dn| = n!
∑n

i=0
(−1)i

i !

The ratio of derangements: |Dn|/|Sn| while n→∞ tends to 1
e

e−1 =

∞∑
i=0

(−1)i
1

i !
≈ 0.368 . . . ,

(e ≈ 2.7182 . . . is the base of the natural logarithm)
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Generating Functions

A generating function of an in�nite sequence a0, a1, . . . is a
power series:

A(z) =

∞∑
i=0

aiz
i

where z is a complex variable

Generating functions is a powerful tool for representing,
manipulating and �nding closed-form formulas for sequences
(especially recurrent sequences)
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How to extract a sequence from its generating
function?

Let's view A(z) as a function of z, that is convergent in some
neighbourhood of z. Then we have:

ak =
A(k)(0)

k!

(k-th factor in the Maclaurin series of A(z))
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Examples

ai = [i = n] 
∑∞

i=0[i = n]z i = zn

ai = c i  
∑∞

i=0 c
iz i = (1− cz)−1 (geometric series)

ai = [m|i ] 
∑∞

i=0 z
m·i = 1

1−zm

ai = (i !)−1  
∑∞

i=0
z i

i ! = ez

(a) = (0, 1, 1/2, 1/3/, 1/4, . . .) 
∑∞

i=1
z i

i
= −ln(1− z)
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Basic Operations

Let A(z) and B(z) are the generating functions (GF) of
sequences (ai ) and (bi ), respectively, α ∈ R. Then:

GF of (ai + bi ) is A(z) + B(z) =
∑∞

i=0(ai + bi )z
i

GF of (α · ai ) is α · A(z) =
∑∞

i=0 α · ai · z i

GF of (ai−m) is z
m · A(z)
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Further Examples

(0, 1, 0, 1 . . .) z(1− z2)−1

(1, 1/2, 1/3, . . .) −z−1ln(1− z)

ai = 1 (1− z)−1

ai = (−1)i  (1+ z)−1

i · ai  z · A ′(z)

ai = i  z
d

dz
(1− z)−1 = z(1− z)−2
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Convolution of sequences

A convolution of two sequences (ai ) and (bi ) is a sequence ci :

ci =

i∑
k=0

ak · bi−k

and is denoted as: (ci ) = (ai ) ∗ (bi )
Convolution is commutative.
Fact: ∞∑

i=0

ciz
i = A(z) · B(z)

(GF of (ai ) ∗ (bi ) is A(z) · B(z))
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Example

Harmonic number:

Hn =

n∑
i=1

1

i

Closed-form formula?

GF for (Hn) is a convolution of (0, 1, 1/2, 1/3, . . .) and
(1, 1, 1, . . .). Thus, this GF is −(1− z)−1ln(1− z).
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Example: Closed-form formula Fibonacci Numbers

Fi = Fi−1 + Fi−2 + [i = 1]

thus (its GF is):

F (z) = zF (z) + z2F (z) + z

F (z) =
z

1− z − z2

(1− z − z2) = (1− az)(1− bz), where a = (1−
√
5)/2 and

b = (1+
√
5)/2. Thus,

F (z) = z
(1−az)(1−bz) =

1
(a−b)(

1
(1−az) −

1
(1−bz)) =

∑∞
i=0

ai−bi

a−b
· z i .

Finally:

Fi =
1√
5
[(
1+
√
5

2
)i − (

1−
√
5

2
)i ]
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N-th order linear recurrent equations

ai = q(i) + q1 · ai−1 + q2 · ai−2 + . . .+ qk · ai−k

where q(i) = ai , for i ∈ [k − 1] (initial conditions)

A(z) = A0(z) + q1 · zA(z) + q2 · z2A(z) + . . .+ qk · zkA(z)

A(z) =
a0 + a1z + . . .+ ak−1z

k−1

1− q1z − q2z2 − . . .− qkzk
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Thank you for attention
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