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General Basic Ideas for Counting
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create easy-to-count representations of counted objects
“product rule”: multiply when choices are independent
“sum rule”: sum up exclusive alternatives

Basic

|
|
|
Counting [ ]

“combinatorial interpretation” proving technique

These ideas can be used not only to count objects but also to
easily prove non-trivial discrete-maths identities (examples
soon)
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Denotations: “#" means: “the number of”

Techniaues [n] means: the set {1,....,n}, for n€ N
nmeN
m (# functions from [m] into [n]) |Fun([ml], [n])| =
gzzi:ting B (# subsets of an n-element set) |P( nl)|=2"
m (# injections as above) |/nj([m], [n])] = n™ for n > m (called

“falling factorial”)

# ordered placings of m different balls into n different boxes : n”
(called “increasing power™)

(# permutations of [n]) |S,| = n!
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# k-subsets of [n]

_~
Basic k - kil

Counting

Nak<neN
(there is also possible a more general formulation for
non-natural numbers)
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Recursive formulation
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(5)-(1)+("¢)

(also known as “Pascal’s triangle”)

Basic

Counting how to prove it without (almost) any algebra?

(use “combinatorial interpretation” idea)

(consider whether one fixed element of [n] belongs to the
k-subset or not)
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Symmetry: ( 4 > = "

k n—k
(each k-subset defines (n-k)-subset — its complement)

Basic

Counting n
> ()=

k=0

(summing subsets of [n] by their multiplicity)
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(1) (n)=(5)(5-F)

(consider m-element subset of o k-element subset of [n])

("i)-5(7) ()

Basic
Counting



Binomial Theorem
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(explanation: each term on the right may be represented as a
k-subset of [n])
Corollaries:
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m # odd subsets of [n] equals # even subsets
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m # odd subsets of [n] equals # even subsets (substitute
x=1 and y=-1)



Binomial Theorem
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(explanation: each term on the right may be represented as a
k-subset of [n])

Basic Corollaries:
Counting m # odd subsets of [n] equals # even subsets (substitute
x=1 and y=-1)
L]

ik( Z ) = p2"1
k=0

(take derivative (as function of x) of both sides and then
subsitute x=y=1)
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# colourings of n balls with at most m different colours so that
exactly k; € N balls have the i-th colour
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(a generalisation of the binomial coefficient)

# colourings of n balls with at most m different colours so that
exactly k; € N balls have the i-th colour

Basic

Counting n n!
( kiks . ke ) Tl k)

(fix the sequence (k); and fix a permutation of [n] to be
coloured)
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Corollary:

> " =m"
kiko oo km ) "

kl)...,kme./\/'

k1+...+km:n

(substitute all 1's on the left-hand side)
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Recursive Formula
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B n—1 " n—1 n
kiky...km )\ ki —1ky...km kiko—1...kn
Basic

Counting + + n—l
kiky...kpm—1

(explanation: fix one element of [n] and analogously to the
binomial theorem)
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gasic. |Q|:k1+...+kn
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Subset S of Q:

S =< My *kX1yeeoyMp* Xy >
(0 < mj <k, for i € [n])

Fact:
# subsets of Q = 7



Multisets

Introduction
to Combina-
torics:
Basi . . .
Counting Element of type x; has k; (identical) copies.

Techniques

Q=< kyxx1y...,knp*xx, >

gasic. |Q|:k1+...+kn
ounting
Subset S of Q:

S =< My *kX1yeeoyMp* Xy >

(0 < mj <k, for i € [n])

Fact:

#subsetsof Q=7 (14+ k) - (1+ ko) ...- (14 k)
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S Partition of n: n=a; +...+ax, a1 > ... > a, >0

Recursive formula:
Basic
Counting

Pin,k)=P(n—1,k— 1)+ P(n— k, k)

(either ax =1 or all blocks can be decreased by 1 element)

Fact:

k
P(nk) =) Pln—k,i)
i=0

(decrease by 1 each of i terms greater than 1)
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Partition of finite set X into k blocks: TT, = Ay, ..., Ak so that:
m Vici<kAi # 0

Conring B A U...UA =X

B Vicicj<kAiNA; = 0
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(## partitions of [n] into k blocks)
Recursive formula:

Basic

Counting {n}: {n}:Oforn>0
n 0

n n—1 n—1

{k}:{k_1}+k{ ) }

(a fixed element constitutes a singleton-block or belongs to one
of bigger k blocks)
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k=0

Basic (# equivalence relations on [n])

Counting

8

m # surjections from [m] onto [n], m>n =7

|Sur([ml, [n])] =m!-{ m }

n
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Relation between x, x2, x™ (with Stirling 2-nd order numbers)




Permutations
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Inj(In], [n])

Permutations on [n] constitute a group denoted by S,

Basic

Counting m composition of 2 permutations gives a permutation on [n]
m identity permutation is a neutral element (e)

m inverse of permutation f is a permutation £~ on [n]



Examples

Introduction

e . < 12345 )
Ccﬁlans:icng 53214
Techniques
Marcin _ 12345
e €=\ 25314
Inverse:
BaSict. -1 _ 12345
Counting f — ( 43251

The group is not commutative: fg is different than gf:
o — 12345
&=\ 34251

[ 12345
& =\ 43521



Decomposition into Cycles
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Each permutation can be decomposed into disjoint cycles:
m decomposition is unique
m the cycles are commutative

Basic
Counting

Example:
Fo 12345
~\ 53214

f=ff"=11,5,4]2,3] = [2,3][1,5,4] = f"f = f
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Stirling Number of the 1st kind
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# permutations consisting of exactly k cycles: [ Z ]

Basic k=0
Counting

Recursive Formula:

L=l ren 7

(fix a single element: it either itself constitutes a 1-cycle or can
be at one of the n-1 positions in the k cycles)
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Expressing decreasing and increasing powers in terms
of “normal” powers with the help of Stirling Numbers of the 1-st kind




(Reminder of the opposite)
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Other (amazing) connections between Stirling
Numbers of both kinds
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Type of permutation
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Permutation f € S, has type (A1,...,A,) iff its decomposition
into disjoint cycles contains exactly A; cycles of length /.

Marcin

Sydov
Example:

_ ¢ _ (123456789
casie — \ 751423698

f =1,7,6,3],2,5], 4], 8,9]

Counting

Thus, the type of fis (1,2,0,1,0,0,0,0,0).

We equivalently denote it as: 112241



Inversion in a permutation
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Inversion in a permutation f = (a1,...,a,) € S, is a pair
(aj,a;) so that i < j < nand a; > aj

Becfe The number of inversions in permutation f is denoted as /(f)
Counting

What is the minimum/maximum value of /(f)?

How does it relate to sorting?

How to efficiently compute /()7



Transpositions
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A permutation that is a cycle of length 2 is called transposition

Basic

Bt Fact: Each permutation f is a composition of exactly /(f)
transpositions of neighbouring elements



Sign of Permutation
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Counting (definition)

Techniques Sgn(f_) _ (_1)’(7’:)

Marcin

Sydov

Counting sgn(fg) = sgn(f) - sgn(g)
sgn(f1) = sgn(f)

We say that a permutation is even when sgn(f) =1 and odd
otherwise

Fact: sgn(f) = (—1)k~1 for any f being a k-cycle



Computing the sign of a permutation
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For any permutation f € S, of the type (1% ...n") its sign

can be computed as follows:

Basic . [n/2] .
Counting Sgn(f) — (_1)21:1 )\2!

(only even cycles contribute to the sign of the permutation)
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m Pigeonhole Principle
m Inclusion-Exclusion Principle

m Generating Functions

General
Techniques



Pigeonhole Principle (Pol. “Zasada szufladkowa”)
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Let X,Y be finite sets, f € Fun(X,Y) and |X| > r-|Y]| for some
r € Ry. Then, for at leastone y € Y, [ L({y}| > r.

Comera (or equivalently: if you put m balls into n boxes then at least
Techniques one box contains not less than m/n balls)
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Any 10-subset of [50] contains two different 5-subsets that have
the same sum of elements.
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Techniques



Examples
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Any 10-subset of [50] contains two different 5-subsets that have
the same sum of elements.

(“Hair strands theorem”, etc.):
ST s At the moment, there exist two people on the earth that have
exactly the same number of hair strands



Inclusion-Exclusion Principle

(Pol. "Zasada Wtaczen-Wytaczen”)

Introduction .

totCor.nbtina— For any non-empty family A ={A1,..., A,} of subsets of a
Basic finite set X, the following holds:
Counting

Techniques

n

Yal=) (- > [Apy N A, NN Al
i=1

i=1 1<pi<p2<..<pi<n

(proof by induction on n)

General

Techniques

Example: the principle can be used to prove that
n 1= i m “n
AR =D MV (A IR
T i=0

(a closed-form formula for Stirling number of the 2-nd kind)




Example: number of Derangements
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A derangement (Pol. “nieporzadek”) is a permutation f € S, so
that £ (i) # i, for i € [n].

D, is the set of all derangements on [n]. |D,| is denoted as !n.

General
Techniques

Theorem: 'n=|Dyl=n!3> 7, (=17

il



Proof of the formula for In

noduction ECATES {f €Sp:f(i)=1i}, for i € [n]. Thus

torics: !n:|5n|—|A1UA2U...UAn|:

Basic
Counting n

Techniques R
N —nl =Y (1Y A NAL NN A

i=1 1<p1<p2<..<pi<n

But for any sequence p = (p1,..., pi) the intersection
Ap, NAp, N...N Ap, represents all the permutations for which
f(pj) =, for j e [il. Thus, [Ay, NAp, N...N Ayl =(n—1i)l.

General

Techniques

There are 7 > possibilities for choosing the sequence p, so

finally:

Dol = nl=> (—1)"" ( ’,’ ) (n—i)! = Z(—l)"ﬁ = n! A

i=1



Ratio of Derangements in Permutations
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(=1)f

il

The ratio of derangements: |D,|/|S,| while n — oo tends to %

i1
General eil = Z(—l)lf ~ 0.368 ey

Techniques I |

(e = 2.7182... is the base of the natural logarithm)



Generating Functions
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R A generar%/ng function of an infinite sequence ag, a1,...is a
power series:

Alz) = Z aiz’

General where z is a complex variable

Techniques

Generating functions is a powerful tool for representing,
manipulating and finding closed-form formulas for sequences
(especially recurrent sequences)



How to extract a sequence from its generating
function?
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Let's view A(z) as a function of z, that is convergent in some
neighbourhood of z. Then we have:

A“‘)(O)
a = ———

General k'

Techniques

(k-th factor in the Maclaurin series of A(z))
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Techniques (a)

(0,1,1/2,1/3/,1/4,...) ~ Y2 E = —In(l—2)




Basic Operations
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Sydo Let A(z) and B(z) are the generating functions (GF) of
sequences (a;) and (b;), respectively, « € R. Then:

m GF of (aj + b;) is A(z) + B(z) = Y 2, (ai + bi)Z’
Ceneral m GFof (x-a;)isa-A(z) =Y Pyoc-a;- 2

Techniques m GF of (aj_pm) is 2™ - A(2)




Further Examples
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(0,1,0,1...) ~ z(1 —2z%)1

(1,1/2,1/3,...) ~ —z In(1 — 2)

ai=1~(1—2)1!

aj = (—1)i ~ (1+ z)_l

General
Techniques

i-aj~z-Az)

ai=1~z—(1 —z)_1 =z(1 —z)_2
dz



Convolution of sequences
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Techniques
i
G = E a - bi_x
k=0

and is denoted as: (c¢;i) = (a;) * (b;)
o Convolution is commutative.
Techniques FaCt

(GF of (aj) x (b;) is A(z) - B(z))



Example

Introduction
to Combina-
torics:
Basic
Counting
Techniques

Harmonic number:

Closed-form formula?

General
Techniques

GF for (H,) is a convolution of (0,1,1/2,1/3,...) and
(1,1,1,...). Thus, this GF is —(1 — z)"!in(1 — z2).



Example: Closed-form formula Fibonacci Numbers

Introduction
to Combina-

torics: FI = FI*]. —|— FI*2 —l— [[ ey 1]

Basic
Counting . RV
Pl thus (its GF is):

Marcin

Sydo, F(z) =zF(z) + Z2F(Z) +z

V4
Flz) = — %
(2) 1—z—22
General

I (1 2 22) = (1— az)(1 — bz), where a = (1 —+/5)/2 and
b= (1++/5)/2. Thus,
1 1 o] —bf i

_ _ 1 _
F(z) = (l—az)z(l—bz] = (a—b]((l—az) - (1—bz)) =2 205 2
Finally:

1+xf 1—+/5
Fi = 7[( 5 — ( >

)]



N-th order linear recurrent equations
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ai=qli)+qr-ai1+q-a2+...+qr-aj_k

where q(i) = aj, for i € [k — 1] (initial conditions)

A(z) = Ao(2) + g1 - ZA(2) + q2 - 22A(2) + ... + g - Z¥A(2)

General
Techniques

Alz) = aot+az+...+ ak,lzk_l

N 1—qlz—qzz2—...—qkzk
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Thank you for attention

General
Techniques
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