In Algorithm 0.1, we present our implementation of the ECMP algorithm for link-path formulations. Procedure \textit{ECMP Allocation} is executed for every demand and is used to determine the values of \(\bar{x} \) following the ECMP allocation. \(\mathcal{P}^{nl} \) denotes a set of all shortest paths between node \(n \) and sink \(t \) with \(w_k \) as link weights.

\begin{algorithm}
\caption{ECMP Allocation}
\begin{algorithmic}
\Procedure{ECMP Allocation}{s, t, h_d, \mathcal{P}^{nl}}
\State \(S^{st} = \{ \ell \in \mathcal{L} : \ell \text{ is first link of path } \mathcal{P} \in \mathcal{P}^{st} \} \);
\State \(\delta^{st} := |S^{st}| \);
\State \(h' := \frac{b}{k} \);
\For {\(\ell \in S^{st} \)}
\State \(n := \text{otherend}(\ell, s) \);
\State \(\text{flow}_\ell := \text{flow}_\ell + h' \);
\If {\(n \neq t \)}
\State \(\mathcal{P}^{nl} = \{ \mathcal{P} \setminus \{ \ell \} : \ell \text{ is first link of path } \mathcal{P} \in \mathcal{P}^{st} \} \);
\State \(\text{ECMP Allocation}(n, t, h', \mathcal{P}^{nl}) \);
\EndIf
\EndFor
\State return
\EndProcedure
\end{algorithmic}
\end{algorithm}

Observe that the set of all shortest paths between node \(n \) and sink \(t \), \(\mathcal{P}^{nl} \), is derived from the set of all shortest paths used in the previous step of the recursion. As the recursion progresses in a depth-first-search fashion, the set of shortest paths from node \(n \) (under consideration) to sink \(t \) keeps on getting filtered. At the step of recursion at the node \(n \), the path set \(\mathcal{P}^{nl} \) is a subset of paths \(\mathcal{P}^{st} \) which share the same links up till node \(n \).