Grafika Komputerowa. Krzywe Béziera

Krzywe Béziera

Splajny
Krzywe Béziera
Algorytm de Casteljau
Krzywe Béziera sklejane
Krzywe Béziera dowolnego stopnia
Powierzchnie Béziera Wymierne krzywe Béziera
Bryła obrotowa

Najnowsza wersja tego dokumentu dostępna jest pod adresem

```
http://users.pja.edu.pl/~denisjuk
```

Splajny

Splajny

- Krzywe Béziera
- Algorytm de Casteljau
- Krzywe Béziera sklejane
- Krzywe Béziera
- dowolnego stopnia
- Powierzchnie Béziera Wymierne krzywe Béziera
- Bryła obrotowa

Krzywe Béziera

- □ Pierre Bézier Renault: 1968, 1974
- □ Paul de Casteljau Citroën: 1959, 1963
- B-splajny (Isaac Jacob Schoenberg 1946)

Krzywe Béziera trzeciego stopnia

Krzywe Béziera trzeciego stopnia

Splajny

Krzywe Béziera

- Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera
- dowolnego stopnia
- Powierzchnie Béziera Wymierne krzywe Béziera
- Bryła obrotowa

Krzywe Béziera trzeciego stopnia

Splajny

Krzywe Béziera

Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera

dowolnego stopnia

Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

 $q(u) = B_0(u)p_0 + B_1(u)p_1 + B_2(u)p_2 + B_3(u)p_3, \text{gdzie}$ $B_i(u) = {3 \choose i}u^i(1-u)^{3-i} - \text{wielomiany Bernsteina,}$ $C <math>{n \choose m} = C_n^m = \frac{n!}{m!(n-m)!} - \text{symbol Newtona}$ $B_0(u) = (1-u)^3, \quad B_1(u) = 3u(1-u)^2$ $C B_2(u) = 3u^2(1-u), \quad B_3(u) = u^3$ $C \sum_{i=0}^3 B_i(u) = \sum_{i=0}^3 {3 \choose i}u^i(a-u)^{3-i} = (u+(1-u))^3 = 1$

Wielomiany Bernsteina (stopnia 3)

Wielomiany Bernsteina (stopnia 3)

Splajny

Krzywe Béziera

Algorytm de Casteljau

Krzywe Béziera sklejane

Krzywe Béziera

dowolnego stopnia

Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

$$B'_{0}(0) = -3, \quad B'_{1}(0) = 3, \quad B'_{2}(0) = 0, \quad B'_{3}(0) = 0$$
$$B'_{0}(1) = 0, \quad B'_{1}(1) = 0, \quad B'_{2}(1) = -3, \quad B'_{3}(1) = 3$$
$$q'(0) = 3(p_{1} - p_{0}),$$
$$q'(1) = 3(p_{3} - p_{2})$$

Algorytm de Casteljau

Algorytm de Casteljau ($u=\frac{1}{2}$)

$$r_{i} = \frac{p_{i} + p_{i+1}}{2}, \quad s_{i} = \frac{r_{i} + r_{i+1}}{2}, \quad t_{0} = \frac{s_{0} + s_{1}}{2},$$
$$q(1/2) = t_{0} = \frac{1}{8}p_{0} + \frac{3}{8}p_{1} + \frac{3}{8}p_{2} + \frac{1}{8}p_{3}$$

Podział krzywej

Twierdzenie 1. Niech q(u) będzie krzywą Béziera o punktach kontrolnych p_0 , p_1 , p_2 , p_3 . Wtedy $q_1(u) = q(u/2)$ będzie Krzywą Béziera o punktach kontrolnych p_0 , r_0 , s_0 , t_0 , $q_2(u) = q((u+1)/2)$ będzie krzywą Béziera o punktach t_0 , s_1 , r_2 , p_3 .

Zagęszczanie (recursive subdivision)

Twierdzenie 2. Niech q(u) będzie krzywą Béziera o punktach kontrolnych p_0 , p_1 , p_2 , p_3 . Wtedy $q_1(u) = q(u_0u)$ będzie Krzywą Béziera o punktach kontrolnych p_0 , r_0 , s_0 , t_0 , $q_2(u) = q(u_0 + (1 - u_0)u)$ będzie krzywą Béziera o punktach t_0 , s_1 , r_2 , p_3 .

Renderowanie krzywych Béziera w postaci ciągu odcinków prostych

Sp	lajny	

Krzywe Béziera

Algorytm de Casteljau

- Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia
- Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

 $||q(\frac{1}{2}) - \frac{1}{2}(p_0 + p_3)|| < \varepsilon,$ $||p_0 - p_1 - p_2 + p_3||^2 < (8\varepsilon/3)^2,$ $p_1, p_2 \approx \in \overline{p_0 p_3}$

Właściwość otoczki wypukłej

Splajny

Krzywe Béziera

- Algorytm de Casteljau
- Krzywe Béziera sklejane
- Krzywe Béziera
- dowolnego stopnia
- Powierzchnie Béziera Wymierne krzywe Béziera
- Bryła obrotowa

Krzywa Béziera zawiera się w otoczce wypukłej swoich punktów kontrolnych

Krzywe Béziera sklejane

$$q_1'(1) = q_2'(0) \Rightarrow p_{1,3} - p_{1,2} = p_{2,1} - p_{2,0}$$

 $\mathbf{p}_{2,2}$

Zagadnienie interpolacji

Splajny Krzywe Béziera Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia Powierzchnie Béziera Wymierne krzywe

Béziera

Bryła obrotowa

- Dane są punkty p_0, \ldots, p_m i węzły u_0, \ldots, u_m .
- Określić parametryzowaną krzywą q(u) tak, żeby $q(u_i) = p_i$ dla $i = 0, \ldots, m$.
- Krzywa odcinkowo-wielomianowa (trzeciego stopnia).
- Sklejanie krzywych Béziera.

Splajny Catmulla-Roma

Splajny

- Krzywe Béziera
- Algorytm de Casteljau
- Krzywe Béziera sklejane
- Krzywe Béziera dowolnego stopnia
- Powierzchnie Béziera Wymierne krzywe Béziera
- Bryła obrotowa

Dane są punkty P_0, \ldots, P_m i węzły $u_i = i$ dla $i = 0, \ldots, m$.

- Określić parametryzowaną krzywą q(u) tak, żeby $q(i) = P_i$ dla $i = 1, \ldots, m-1$.
- Krzywa Catmull-Rom składa się zm-2 krzywych Béziera.
 - Punkty kontrolne wybiera się tak, żeby krzywa była klasy C^1 .

Splajny Catmulla-Roma

Figure VII.22: Defining the Catmull-Rom spline segment from the point \mathbf{p}_i to the point \mathbf{p}_{i+1} . The points \mathbf{p}_i^- , \mathbf{p}_i , and \mathbf{p}_i^+ are collinear and parallel to $\mathbf{p}_{i+1} - \mathbf{p}_{i-1}$. The points \mathbf{p}_i , \mathbf{p}_i^+ , \mathbf{p}_{i+1}^- , and \mathbf{p}_{i+1} form the control points of a degree three Bézier curve, which is shown as a dotted curve.

$$l_i = \frac{1}{2}(p_{i+1} - p_{i-1}), \quad p_i^{\pm} = p_i \pm \frac{1}{3}l_i$$

Syngularność splajnu Catmulla-Roma

Figure VII.23: Two examples of Catmull-Rom splines with uniformly spaced knots.

Krzywe Béziera dowolnego stopnia

Splajny Krzywe Béziera Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

 $q(u) = \sum_{i=0}^{n} B_{i}^{k}(u) p_{i}$ $B_{i}^{k}(u) = {\binom{k}{i}} u^{i} (1-u)^{k-i},$ $\sum_{i=0}^{k} B_{i}^{k}(u) = \sum_{i=0}^{k} {\binom{k}{i}} u^{i} (1-u)^{k-i} = (u+(1-u))^{k} = 1,$ $q'(0) = k(p_{1}-p_{0}),$ $q'(1) = k(p_{k}-p_{k-1}).$

Krzywe Béziera dowolnego stopnia

Podwyższenie stopnia

Splajny
Krzywe Béziera
Algorytm de Casteljau
Krzywe Béziera sklejane
Krzywe Béziera
dowolnego stopnia
dowolnego stopnia Powierzchnie Béziera Wymierne krzywe Béziera

 $\hat{P}_0 = P_0 \quad \hat{P}_{k+1} = P_k$ $\hat{P}_{i} = \frac{i}{k+1}P_{i-1} + \frac{k-i+1}{k+1}P_{i}$

Powierzchnie Béziera

Powierzchnie Béziera trzeciego stopnia

$$q(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} B_i(u) B_j(v) p_{i,j} =$$

= $\sum_{i=0}^{3} \left(B_i(u) \sum_{j=0}^{3} B_j(v) p_{i,j} \right) =$
= $\sum_{j=0}^{3} B_j(v) \left(\sum_{i=0}^{3} B_i(u) p_{i,j} \right),$
 $(u,v) \in [0,1] \times [0,1]$

Przekrój powierzchni Béziera

Graniczne linie powierzchni Béziera

Pochodne cząstkowe powierzchni Béziera

Splajny		
Krzywe Béziera		
Algorytm de Casteljau		
Krzywe Béziera sklejane		
Krzywe Béziera dowolnego stopnia		
Powierzchnie Béziera		
Wymierne krzywe Béziera		
Bryła obrotowa		

 $\frac{\partial q}{\partial v}(u,0) = \sum_{i=0}^{3} 3B_i(u)(p_{i,1} - p_{i,0})$ $\frac{\partial q}{\partial v}(u,1) = \sum_{i=0}^{3} 3B_i(u)(p_{i,3} - p_{i,2})$ $\frac{\partial q}{\partial u}(0,v) = \sum_{i=0}^{3} 3B_j(v)(p_{1,j} - p_{0,j})$ $\frac{\partial q}{\partial v}(1,v) = \sum_{i=0}^{3} 3B_j(v)(p_{3,j} - p_{3,j})$

Sklejane powierzchnie Béziera

Wymierne krzywe Béziera

Splajny

Krzywe Béziera

Algorytm de Casteljau

Krzywe Béziera sklejane

 $p_i = (x$

Krzywe Béziera

dowolnego stopnia

Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

:
$$y : z : w$$
),
$$q(u) = \sum_{i} B_{i}^{k}(u)p_{i}$$

współrzędna w pozwala na powiększenie wagi punktu kontrolnego
modelowanie krzywych stożkowych

rzut perspektywiczny krzywej wymiernej jest zawsze krzywą wymierną

punkty kontrolne mogą być umieszczone w nieskończoności

Powiększenie wagi punktu kontrolnego

Okrąg

Splajny Krzywe Béziera Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

$$q(u) = (1-u)^2 p_0 + 2u(1-u)p_1 + u^2 p_2 =$$

= $(2u(1-u): (1-u)^2 - u^2: (1-u)^2 + u^2) \sim$
 $\sim \left(\frac{2u(1-u)}{(1-u)^2 + u^2}, \frac{(1-u)^2 - u^2}{(1-u)^2 + u^2}\right)$

Krzywe stożkowe

Splajny

Krzywe Béziera

Algorytm de Casteljau

Krzywe Béziera sklejane

Krzywe Béziera

dowolnego stopnia

Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

Twierdzenie 3. Niech T_0 i T_2 będą stycznymi do krzywej stożkowej Cw punktach p_0 i p_2 , p_1 bęzie punktem przecięcia T_0 i T_2 . Wtedy istnieje waga $w \ge 0$ taka, że wymierna krzywa Béziera o punktach kontrolnych $(p_0:1), (p_1:w), (p_2:1)$ generuje odcinek krzywej C pomiędzy p_0 a p_2 .

Krzywe stożkowe

Półokrąg jako krzywa trzeciego stopnia

Okrąg o promieniu 2

Splajny Krzywe Béziera Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia Powierzchnie Béziera Wymierne krzywe Béziera Bryła obrotowa

$$(p_0, p_1, p_2) \mapsto (p_0^* = Mp_0, p_1^* = Mp_1, p_2^* = Mp_2)$$

Bryła obrotowa

Splajny Krzywe Béziera Algorytm de Casteljau Krzywe Béziera sklejane Krzywe Béziera dowolnego stopnia Powierzchnie Béziera Wymierne krzywe Béziera

Bryła obrotowa

$$\begin{array}{lll} (-2:1:0:1) & (0:0:2:0) & (2:1:0:1) \\ (-\frac{3}{2}:\frac{1}{2}:0:1) & (0:0:\frac{3}{2}:0) & (\frac{3}{2}:\frac{1}{2}:0:1) \\ (-3:0:0:1) & (0:0:3:0) & (3:0:0:1) \\ (-2:-1:0:1) & (0:0:2:0) & (2:-1:0:1) \end{array}$$